Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations

Author(s): Vijai K. Rai* , Fooleswar Verma , Suhasini Mahata , Smita R. Bhardiya , Manorama Singh , Ankita Rai .

Journal Name: Current Organic Chemistry

Volume 23 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.

Keywords: Heterogeneous catalysis, magnetic nanoparticles, photocatalysis, visible light, carbon nitride (g-C3N4), C-H activation, C-C and C-hetero atom bond formation.

[1]
Benaglia, M. Recoverable and Recyclable Catalysts; John Wiley & Sons: Chichester, 2009.
[http://dx.doi.org/10.1002/9780470682005]
[2]
Wittmann, S.; Schätz, A.; Grass, R.N.; Stark, W.J.; Reiser, O. A recyclable nanoparticle-supported palladium catalyst for the hydroxycarbonylation of aryl halides in water. Angew. Chem. Int. Ed. Engl., 2010, 49(10), 1867-1870.
[http://dx.doi.org/10.1002/anie.200906166] [PMID: 20175169]
[3]
Copéret, C.; Chabanas, M.; Petroff Saint-Arroman, R.; Basset, J.M. Homogeneous and heterogeneous catalysis: Bridging the gap through surface organometallic chemistry. Angew. Chem. Int. Ed. Engl., 2003, 42(2), 156-181.
[http://dx.doi.org/10.1002/anie.200390072] [PMID: 12532344]
[4]
Basset, J.M.; Copéret, C.; Soulivong, D.; Taoufik, M.; Cazat, J.T. Metathesis of alkanes and related reactions. Acc. Chem. Res., 2010, 43(2), 323-334.
[http://dx.doi.org/10.1021/ar900203a] [PMID: 19856892]
[5]
Sheldon, R.A. E factors, green chemistry and catalysis: An odyssey. Chem. Commun. (Camb.), 2008, 29, 3352-3365.
[http://dx.doi.org/10.1039/b803584a] [PMID: 18633490]
[6]
Sheldon, R.A.; Bekkum, H.V. Fine Chemicals through Heterogeneous Catalysis; Wiley-VCH: Weinheim, 2001.
[7]
Baskaya, G.; Esirden, I.; Erken, E.; Sen, F.; Kaya, M. Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol., 2017, 17, 1992-1999.
[http://dx.doi.org/10.1166/jnn.2017.12867]
[8]
Goksu, H.; Sert, H.; Kilbas, B.; Sen, F. Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr. Org. Chem., 2017, 21, 794-820.
[http://dx.doi.org/10.2174/1385272820666160525123907]
[9]
Sen, B.; Akdere, E.H.; Savk, A.; Gultekin, E.; Parali, O.; Goksu, H.; Sen, F. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with Malononitrile. Appl. Catal. B, 2018, 225, 148-153.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.067]
[10]
Goksu, H.; Celik, B.; Yildiz, Y.; Sen, F.; Kilbas, B. Superior Monodisperse CNT‐Supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. Chem. Select, 2016, 1, 2366-2372.
[http://dx.doi.org/10.1002/slct.201600509]
[11]
Goksu, H.; Yildiz, Y.; Celik, B.; Yazici, M.; Kilbas, B.; Sen, F. Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 1, 953-958.
[http://dx.doi.org/10.1002/slct.201600207]
[12]
Yildiz, Y.; Esirden, I.; Erken, E.; Demir, E.; Kaya, M.; Sen, F. Microwave (Mw)‐assisted Synthesis of 5‐Substituted 1H‐Tetrazoles via [3+2] cycloaddition catalyzed by Mw‐Pd/Co nanoparticles decorated on multi‐walled carbon nanotubes. ChemistrySelect, 2016, 1, 1695-1701.
[http://dx.doi.org/10.1002/slct.201600265]
[13]
Demirci, T.; Celik, B.; Yildiz, Y.; Eris, S.; Arslan, M.; Sen, F.; Kilbas, B. One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Adv, 2016, 6, 76948-76956.
[http://dx.doi.org/10.1039/C6RA13142E]
[14]
Lee, N.; Hyeon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev., 2012, 41(7), 2575-2589.
[http://dx.doi.org/10.1039/C1CS15248C] [PMID: 22138852]
[15]
Le Sage, D.; Arai, K.; Glenn, D.R.; DeVience, S.J.; Pham, L.M.; Rahn-Lee, L.; Lukin, M.D.; Yacoby, A.; Komeili, A.; Walsworth, R.L. Optical magnetic imaging of living cells. Nature, 2013, 496(7446), 486-489.
[http://dx.doi.org/10.1038/nature12072] [PMID: 23619694]
[16]
Moroz, P.; Jones, S.K.; Gray, B.N. Magnetically mediated hyperthermia: Current status and future directions. Int. J. Hyperthermia, 2002, 18(4), 267-284.
[http://dx.doi.org/10.1080/02656730110108785] [PMID: 12079583]
[17]
Tomitaka, A.; Yamada, T.; Takemura, Y. Magnetic nanoparticle hyperthermia using pluronic-coated Fe3O4 nanoparticles: An in vitro study. J. Nanomater., 2012, 2012, 1-5.
[http://dx.doi.org/10.1155/2012/480626]
[18]
Zhang, Q.; Tong, J.; Chen, H.; Jiang, L.; Zhu, H.; Zhu, X.; Yu, H.; Liu, J.; Liu, B. A novel magnetic nanoparticle hyperthermia combined with ACMF-dependant drug release by DAMMs injection in VX-2 liver tumors. J. Nanosci. Nanotechnol., 2012, 12(1), 127-131.
[http://dx.doi.org/10.1166/jnn.2012.5118] [PMID: 22523955]
[19]
Binns, C. Nanostructured Materials for Magnetoelectronics; Aktaş, B; Mikailzade, F., Ed.; Springer: Berlin, Heidelberg, 2013, Vol. 175, pp. 197-215.
[http://dx.doi.org/10.1007/978-3-642-34958-4_8]
[20]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[21]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42(8), 3371-3393.
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127]
[22]
Dhakshinamoorthy, A.; Navalon, S.; Alvaro, M.; Garcia, H. Metal nanoparticles as heterogeneous Fenton catalysts. ChemSusChem, 2012, 5(1), 46-64.
[http://dx.doi.org/10.1002/cssc.201100517] [PMID: 22250135]
[23]
Lim, C.W.; Lee, I.S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today, 2010, 5, 412-434.
[http://dx.doi.org/10.1016/j.nantod.2010.08.008]
[24]
Zhang, D.; Zhou, C.; Sun, Z.; Wu, L.Z.; Tung, C.H.; Zhang, T. Magnetically recyclable nanocatalysts (MRNCs): A versatile integration of high catalytic activity and facile recovery. Nanoscale, 2012, 4(20), 6244-6255.
[http://dx.doi.org/10.1039/c2nr31929b] [PMID: 22965398]
[25]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[26]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. (Camb.), 2013, 49(8), 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208]
[27]
Xu, H.J.; Wan, X.; Geng, Y.; Xu, X.L. The catalytic application of recoverable magnetic nanoparicles-supported organic compounds. Curr. Org. Chem., 2013, 17, 1034-1050.
[http://dx.doi.org/10.2174/1385272811317100006]
[28]
Byun, S.; Chung, J.; Jang, Y.; Kwon, J.; Hyeon, T.; Kim, B.M. Highly selective Wacker oxidation of terminal olefins using magnetically recyclable Pd-Fe3O4 heterodimer nanocrystals. RSC Adv, 2013, 3, 16296-16299.
[http://dx.doi.org/10.1039/c3ra43322f]
[29]
Liu, Y.H.; Deng, J.; Gao, J.W.; Zhang, Z.H. Triflic acid‐functionalized silica‐coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gem‐dihydroperoxides. Adv. Synth. Catal., 2012, 354, 441-447.
[http://dx.doi.org/10.1002/adsc.201100561]
[30]
Polshettiwar, V.; Varma, R.S. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: A selective and sustainable oxidation protocol with high turnover number. Org. Biomol. Chem., 2009, 7(1), 37-40.
[http://dx.doi.org/10.1039/B817669H] [PMID: 19081941]
[31]
Lu, A.H.; Schmidt, W.; Matoussevitch, N.; Bönnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schüth, F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Ed. Engl., 2004, 43(33), 4303-4306.
[http://dx.doi.org/10.1002/anie.200454222] [PMID: 15368378]
[32]
Panella, B.; Vargas, A.; Baiker, A. Magnetically separable Pt catalyst for asymmetric hydrogenation. J. Catal., 2009, 261, 88-93.
[http://dx.doi.org/10.1016/j.jcat.2008.11.002]
[33]
Arundhathi, R.; Damodara, D.; Likhar, P.R.; Kantam, M.L.; Saravanan, P.; Magdaleno, T.; Kwon, S.H. Fe3O4@mesoporouspolyaniline: A highly efficient and magnetically separable catalyst for cross‐coupling of aryl chlorides and phenols. Adv. Synth. Catal., 2011, 353, 1591-1600.
[http://dx.doi.org/10.1002/adsc.201000977]
[34]
Liu, J.; Peng, X.; Sun, W.; Zhao, Y.; Xia, C. Magnetically separable Pd catalyst for carbonylative Sonogashira coupling reactions for the synthesis of α,β-alkynyl ketones. Org. Lett., 2008, 10(18), 3933-3936.
[http://dx.doi.org/10.1021/ol801478y] [PMID: 18722455]
[35]
Luque, R.; Baruwati, B.; Varma, R.S. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation. Green Chem., 2010, 12, 1540-1543.
[http://dx.doi.org/10.1039/c0gc00083c]
[36]
Baig, R.B.N.; Varma, R.S. A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1,3-dipolar cycloadditions. Green Chem., 2012, 14, 625-632.
[http://dx.doi.org/10.1039/c2gc16301b]
[37]
Wang, D.; Salmon, L.; Ruiz, J.; Astruc, D. A recyclable ruthenium(II) complex supported on magnetic nanoparticles: A regioselective catalyst for alkyne-azide cycloaddition. Chem. Commun. (Camb.), 2013, 49(62), 6956-6958.
[http://dx.doi.org/10.1039/c3cc43048k] [PMID: 23807317]
[38]
Hoseini, S.J.; Nasrabadi, H.; Azizi, M.; Beni, A.S.; Khalifeh, R. Fe3O4 Nanoparticles as an efficient and magnetically recoverable catalyst for friedel–crafts acylation reaction in solvent-free conditions. Synth. Commun., 2012, 43, 1683-1691.
[http://dx.doi.org/10.1080/00397911.2012.663048]
[39]
Parella, R. Naveen, Kumar, A.; Babu, S.A. Catalytic Friedel-Crafts acylation: Magnetic nanopowder CuFe2O4 as an efficient and magnetically separable catalyst. Tetrahedron Lett., 2013, 54, 1738-1742.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.081]
[40]
Chen, J.S.; Chen, C.; Liu, J.; Xu, R.; Qiao, S.Z.; Lou, X.W. Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chem. Commun. (Camb.), 2011, 47(9), 2631-2633.
[http://dx.doi.org/10.1039/c0cc04471g] [PMID: 21234477]
[41]
Li, G.; Mao, L. Magnetically separable Fe3O4-Ag3PO4 sub-micrometre composite: Facile synthesis, high visible light-driven photocatalytic efficiency, and good recyclability. RSC Adv, 2012, 2, 5108-5111.
[http://dx.doi.org/10.1039/c2ra20504a]
[42]
Xuan, S.; Jiang, W.; Gong, X.; Hu, Y.; Chen, Z. Magnetically separable Fe3O4/TiO2 hollow spheres: Fabrication and photocatalytic activity. J. Phys. Chem. C, 2008, 113, 553-558.
[http://dx.doi.org/10.1021/jp8073859]
[43]
Sickafus, K.E.; Wills, J.M.; Grimes, N.W. Structure of spinel. J. Am. Ceram. Soc., 1999, 82, 3279-3292.
[http://dx.doi.org/10.1111/j.1151-2916.1999.tb02241.x]
[44]
Hill, R.J.; Craig, J.R.; Gibbs, G.V. Systematics of the spinel structure type. Phys. Chem. Miner., 1979, 4, 317-339.
[http://dx.doi.org/10.1007/BF00307535]
[45]
Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015, 7(19), 8920-8930.
[http://dx.doi.org/10.1039/C4NR07243J] [PMID: 25917286]
[46]
Indra, A.; Menezes, P.W.; Sahraie, N.R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc., 2014, 136(50), 17530-17536.
[http://dx.doi.org/10.1021/ja509348t] [PMID: 25469760]
[47]
Li, L.; Zhang, Y.Q.; Liu, X.Y.; Shi, S.J.; Zhao, X.Y.; Zhang, H.; Ge, X.; Cai, G.F.; Gu, C.D.; Wang, X.L.; Tu, J.P. One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim. Acta, 2014, 116, 467-474.
[http://dx.doi.org/10.1016/j.electacta.2013.11.081]
[48]
Liu, Y.; Li, J.; Li, F.; Li, W.; Yang, H.; Zhang, X.; Liu, Y.; Ma, J. A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 4472-4478.
[http://dx.doi.org/10.1039/C5TA10420C]
[49]
Li, H.; Liang, M.; Sun, W.; Wang, Y. Bimetal-organic framework: One‐step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high‐capacity, high‐rate, and long‐cycle‐life lithium storage. Adv. Funct. Mater., 2016, 26, 1098-1103.
[http://dx.doi.org/10.1002/adfm.201504312]
[50]
Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev., 2017, 117(15), 10121-10211.
[http://dx.doi.org/10.1021/acs.chemrev.7b00051] [PMID: 28745484]
[51]
Indra, A.; Menezes, P.W.; Sahraie, N.R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc., 2014, 136(50), 17530-17536.
[http://dx.doi.org/10.1021/ja509348t] [PMID: 25469760]
[52]
Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015, 7(19), 8920-8930.
[http://dx.doi.org/10.1039/C4NR07243J] [PMID: 25917286]
[53]
Chen, C.; Ma, W.; Zhao, J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev., 2010, 39(11), 4206-4219.
[http://dx.doi.org/10.1039/b921692h] [PMID: 20852775]
[54]
Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 2012, 41(2), 782-796.
[http://dx.doi.org/10.1039/C1CS15172J] [PMID: 21853184]
[55]
Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater., 2012, 24(2), 229-251.
[http://dx.doi.org/10.1002/adma.201102752] [PMID: 21972044]
[56]
Liu, S.W.; Yu, J.G.; Jaroniec, M. Anatase TiO2 with dominant high-energy 001 facets: Synthesis, properties, and applications. Chem. Mater., 2011, 23, 4085-4093.
[http://dx.doi.org/10.1021/cm200597m]
[57]
Di Paola, A.; García-López, E.; Marcì, G.; Palmisano, L. A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater., 2012, 211-212, 3-29.
[http://dx.doi.org/10.1016/j.jhazmat.2011.11.050] [PMID: 22169148]
[58]
Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. Engl., 2012, 51(1), 68-89.
[http://dx.doi.org/10.1002/anie.201101182] [PMID: 22109976]
[59]
Wang, X.C.; Blechert, S.; Antonietti, M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal., 2012, 2, 1596-1606.
[http://dx.doi.org/10.1021/cs300240x]
[60]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci., 2012, 5, 6717-6731.
[http://dx.doi.org/10.1039/c2ee03479d]
[61]
Devi, L.G.; Kavitha, R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B, 2013, 140-141, 559-587.
[http://dx.doi.org/10.1016/j.apcatb.2013.04.035]
[62]
Liu, G.; Niu, P.; Cheng, H.M. Visible-light-active elemental photocatalysts. ChemPhysChem, 2013, 14(5), 885-892.
[http://dx.doi.org/10.1002/cphc.201201075] [PMID: 23418060]
[63]
Nicewicz, D.A.; MacMillan, D.W.C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science, 2008, 322(5898), 77-80.
[http://dx.doi.org/10.1126/science.1161976] [PMID: 18772399]
[64]
Ischay, M.A.; Anzovino, M.E.; Du, J.; Yoon, T.P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. [2+2], 2008, 130( 39), 12886- 12887.
[http://dx.doi.org/10.1021/ja805387f] [PMID: 18767798]
[65]
Narayanam, J.M.R.; Tucker, J.W.; Stephenson, C.R.J. Electron-transfer photoredox catalysis: Development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc., 2009, 131(25), 8756-8757.
[http://dx.doi.org/10.1021/ja9033582] [PMID: 19552447]
[66]
Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem., 2010, 2(7), 527-532.
[http://dx.doi.org/10.1038/nchem.687] [PMID: 20571569]
[67]
Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341]
[68]
Teply, F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect. Czech. Chem. Commun., 2011, 76, 859-917.
[http://dx.doi.org/10.1135/cccc2011078]
[69]
Shi, L.; Xia, W. Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. Chem. Soc. Rev., 2012, 41(23), 7687-7697.
[http://dx.doi.org/10.1039/c2cs35203f] [PMID: 22869017]
[70]
Xuan, J.; Xiao, W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502]
[71]
Maity, S.; Zheng, N. A photo touch on amines: New synthetic adventures of nitrogen radical cations. Synlett, 2012, 23(13), 1851-1856.
[http://dx.doi.org/10.1055/s-0032-1316592] [PMID: 23419975]
[72]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[73]
Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What for? Chem. Soc. Rev., 2013, 42(1), 97-113.
[http://dx.doi.org/10.1039/C2CS35250H] [PMID: 22990664]
[74]
Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem., 2013, 11(15), 2387-2403.
[http://dx.doi.org/10.1039/c3ob40137e] [PMID: 23426621]
[75]
Meggers, E. Asymmetric catalysis activated by visible light. Chem. Commun. (Camb.), 2015, 51(16), 3290-3301.
[http://dx.doi.org/10.1039/C4CC09268F] [PMID: 25572775]
[76]
Wang, Y.; Di, Y.; Antonietti, M.; Li, H.; Chen, X.; Wang, X. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater., 2010, 22, 5119-5121.
[http://dx.doi.org/10.1021/cm1019102]
[77]
Wang, Y.; Zhang, J.; Wang, X.; Antonietti, M.; Li, H. Boron- and fluorine-containing mesoporous carbon nitride polymers: Metal-free catalysts for cyclohexane oxidation. Angew. Chem. Int. Ed. Engl., 2010, 49(19), 3356-3359.
[http://dx.doi.org/10.1002/anie.201000120] [PMID: 20340148]
[78]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir, 2010, 26(6), 3894-3901.
[http://dx.doi.org/10.1021/la904023j] [PMID: 20175583]
[79]
Zhang, J.; Sun, J.; Maeda, K.; Domen, K.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci., 2011, 4, 675-678.
[http://dx.doi.org/10.1039/C0EE00418A]
[80]
Hong, J.D.; Xia, X.Y.; Wang, Y.S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem., 2012, 30, 15006-15012.
[http://dx.doi.org/10.1039/c2jm32053c]
[81]
Liu, Y.; Chen, G.; Zhou, C.; Hu, Y.; Fu, D.; Liu, J.; Wang, Q. Higher visible photocatalytic activities of nitrogen doped In2TiO5 sensitized by carbon nitride. J. Hazard. Mater., 2011, 190(1-3), 75-80.
[http://dx.doi.org/10.1016/j.jhazmat.2011.02.082] [PMID: 21435783]
[82]
Zhang, J.H.; Zhang, M.W.; Zhang, G.G.; Wang, X.C. Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal., 2012, 2, 940-948.
[http://dx.doi.org/10.1021/cs300167b]
[83]
Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J.D.; Fu, X.; Antonietti, M.; Wang, X. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. Engl., 2010, 49(2), 441-444.
[http://dx.doi.org/10.1002/anie.200903886] [PMID: 19950150]
[84]
Bojdys, M.J.; Müller, J.O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry, 2008, 14(27), 8177-8182.
[http://dx.doi.org/10.1002/chem.200800190] [PMID: 18663712]
[85]
Dong, F.; Wu, L.W.; Sun, Y.J.; Fu, M.; Wu, Z.B.; Lee, S.C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem., 2011, 21, 15171-15174.
[http://dx.doi.org/10.1039/c1jm12844b]
[86]
Dong, F.; Sun, Y.J.; Wu, L.W.; Fu, M.; Wu, Z.B. Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catal. Sci. Technol., 2012, 2, 1332-1335.
[http://dx.doi.org/10.1039/c2cy20049j]
[87]
Dong, F.; Wang, Z.; Sun, Y.; Ho, W.K.; Zhang, H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci., 2013, 401, 70-79.
[http://dx.doi.org/10.1016/j.jcis.2013.03.034] [PMID: 23623412]
[88]
Cui, Y.J.; Zhang, J.S.; Zhang, G.G.; Huang, J.H.; Liu, P.; Antonietti, M.; Wang, X.C. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. J. Mater. Chem., 2011, 21, 13032-13039.
[http://dx.doi.org/10.1039/c1jm11961c]
[89]
Xu, J.; Wu, H.T.; Wang, X.; Xue, B.; Li, Y.X.; Cao, Y. A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys. Chem. Chem. Phys., 2013, 15(13), 4510-4517.
[http://dx.doi.org/10.1039/c3cp44402c] [PMID: 23420192]
[90]
Wang, X.; Chen, X.; Thomas, A.; Fu, X. Metal-containing carbon nitride compounds: A new functional organic-metal hybrid material. Adv. Mater., 2009, 21, 1609-1612.
[http://dx.doi.org/10.1002/adma.200802627]
[91]
Zhang, J.; Zhang, G.; Chen, X.; Lin, S.; Möhlmann, L.; Dołęga, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3183-3187.
[http://dx.doi.org/10.1002/anie.201106656] [PMID: 22334504]
[92]
Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.; Wang, X. Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc., 2009, 131(33), 11658-11659.
[http://dx.doi.org/10.1021/ja903923s] [PMID: 19642702]
[93]
Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys., 2012, 14(4), 1455-1462.
[http://dx.doi.org/10.1039/C1CP22820J] [PMID: 22159039]
[94]
Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater., 2012, 24(41), 5610-5616.
[http://dx.doi.org/10.1002/adma.201201920] [PMID: 22890786]
[95]
Kundu, S.; Nagaiah, T.C.; Xia, W.; Wang, Y.; Dommele, S.V.; Bitter, J.H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.; Muhler, M. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C, 2009, 113, 14302-14310.
[http://dx.doi.org/10.1021/jp811320d]
[96]
Morozan, A.; Jégou, P.; Jousselme, B.; Palacin, S. Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction. Phys. Chem. Chem. Phys., 2011, 13(48), 21600-21607.
[http://dx.doi.org/10.1039/c1cp23199e] [PMID: 22068682]
[97]
Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem., 2012, 22, 8083-8091.
[http://dx.doi.org/10.1039/c2jm00097k]
[98]
Wang, Y.; Li, H.; Yao, J.; Wang, X.; Antonietti, M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. (Camb.), 2011, 2, 446-450.
[http://dx.doi.org/10.1039/C0SC00475H]
[99]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009, 25(17), 10397-10401.
[http://dx.doi.org/10.1021/la900923z] [PMID: 19705905]
[100]
Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem., 2008, 18, 4893-4908.
[http://dx.doi.org/10.1039/b800274f]
[101]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1), 76-80.
[http://dx.doi.org/10.1038/nmat2317] [PMID: 18997776]
[102]
Fischer, A.; Antonietti, M.; Thomas, A. Growth confined by the nitrogen source: Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv. Mater., 2007, 19, 264-267.
[http://dx.doi.org/10.1002/adma.200602151]
[103]
Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc., 2010, 132(18), 6294-6295.
[http://dx.doi.org/10.1021/ja101749y] [PMID: 20397632]
[104]
Li, X.H.; Wang, X.C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. (Camb.), 2012, 3, 2170-2174.
[http://dx.doi.org/10.1039/c2sc20289a]
[105]
Niu, P.; Zhang, L.L.; Liu, G.; Cheng, H.M. Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater., 2012, 22, 4763-4770.
[http://dx.doi.org/10.1002/adfm.201200922]
[106]
Han, K.K.; Wang, C.C.; Li, Y.Y.; Wan, M.M.; Wang, Y.; Zhu, J.H. Facile template-free synthesis of porous g-C3N4 with high photocatalytic performance under visible light. RSC Adv, 2013, 3, 9465-9469.
[http://dx.doi.org/10.1039/c3ra40765a]
[107]
Fareghi-Alamdari, R.; Zandi, F.; Keshavarz, M.H. Copper-cobalt synergy in Cu1-xCoxFe2O4 spinel ferrite as a highly efficient and regioselective nanocatalyst for the synthesis of 2,4-dinitrotoluene. RSC Adv, 2015, 5, 71911-71921.
[http://dx.doi.org/10.1039/C5RA11338E]
[108]
Eidi, E.; Kassaee, M.Z. Green synthesis of primary, secondary, and tertiary amides through oxidative amidation of methyl groups with amine hydrochlorides over recyclable CoFe2O4 NPs. RSC Adv, 2016, 6, 106873-106879.
[http://dx.doi.org/10.1039/C6RA20902E]
[109]
Rajput, J.K.; Kaur, G. CoFe2O4 nanoparticles: An efficient heterogeneous magnetically separable catalyst for “click” synthesis of arylidene barbituric acid derivatives at room temperature. Chin. J. Catal., 2013, 34, 1697-1704.
[http://dx.doi.org/10.1016/S1872-2067(12)60646-9]
[110]
Senapati, K.K.; Borgohain, C.; Phukan, P. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. J. Mol. Catal. Chem., 2011, 339, 24-31.
[http://dx.doi.org/10.1016/j.molcata.2011.02.007]
[111]
Moghaddama, F.M.; Tavakolia, G.; Aliabadi, A. Application of nickel ferrite and cobalt ferrite magnetic nanoparticles in C-O bond formation: A comparative study between their catalytic activities. RSC Adv, 2015, 5, 59142-59153.
[http://dx.doi.org/10.1039/C5RA08146G]
[112]
Kumara, K.S.J.; Krishnamurthy, G.; Kumar, N.S.; Naik, N.; Praveen, T.M. Sustainable synthesis of magnetically separable SiO2/Co@Fe2O4 Nanocomposite and its catalytic applications for the benzimidazole synthesis. J. Magn. Magn. Mater., 2018, 451, 808-821.
[http://dx.doi.org/10.1016/j.jmmm.2017.10.125]
[113]
Hajipour, A.R.; Khorsandi, Z.; Fakhari, F.; Mortazavi, M.; Farrokhpour, H. A comparative study between Co- and CoFe2O4-NPs catalytic activities in synthesis of flavone derivatives; study of their interactions with estrogen receptor by molecular docking. ChemistrySelect, 2018, 3, 6279-6285.
[http://dx.doi.org/10.1002/slct.201702702]
[114]
Hajipour, A.R.; Khorsandia, Z. A comparative study of the catalytic activity of Co- and CoFe2O4-NPs in C-N and C-O bond formation: Synthesis of benzimidazoles and benzoxazoles from o-haloanilides. New J. Chem., 2016, 40, 10474-10481.
[http://dx.doi.org/10.1039/C6NJ02293F]
[115]
Verma, F.; Singh, P.K.; Bhardiya, S.R.; Singh, M.; Rai, A.; Rai, V.K. A co-operative effect of visible light photo-catalysis and CoFe2O4 nanoparticles for green synthesis of furans in water. New J. Chem., 2017, 41, 4937-4942.
[http://dx.doi.org/10.1039/C6NJ04091H]
[116]
Eidi, E.; Kassaee, M.Z.; Nasresfahani, Z. Synthesis of 2,4,5-trisubstituted imidazoles over reusable CoFe2O4 nanoparticles: An efficient and green sonochemical process. Appl. Organomet. Chem., 2016, 30, 561-565.
[http://dx.doi.org/10.1002/aoc.3470]
[117]
Rajput, J.K.; Kaur, G. Synthesis and applications of CoFe2O4 nanoparticles for multicomponent reactions. Catal. Sci. Technol., 2014, 4, 142-151.
[http://dx.doi.org/10.1039/C3CY00594A]
[118]
Li, B.L.; Hu, H.C.; Mo, L.P.; Zhang, Z.H. Nano CoFe2O4 supported antimony(III) as an efficient and recyclable catalyst for one-pot three component synthesis of multisubstituted pyrroles. RSC Adv, 2014, 4, 12929-12943.
[http://dx.doi.org/10.1039/C3RA47855F]
[119]
Kulkarni, A.M.; Pandit, K.S.; Chavan, P.V.; Desai, U.V.; Wadgaonkar, P.P. Cobalt ferrite nanoparticles: A magnetically separable and reusable catalyst for Petasis-Borono-Mannich reaction. RSC Adv, 2015, 5, 70586-70594.
[http://dx.doi.org/10.1039/C5RA10693A]
[120]
Zhang, M.; Liu, P.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Magnetically separable graphene oxide anchored sulfonic acid: A novel, high efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv, 2016, 6, 106160-106170.
[http://dx.doi.org/10.1039/C6RA19579B]
[121]
Safaei-Ghomi1, J.; Shahbazi-Alavi1, H.; Babaei1, P.; Basharnavaz, H.; Pyne, S.G.; Willis, A.C. Synthesis of furo[3,2-c]coumarins under microwave irradiation using nano-CoFe2O4@SiO2–PrNH2 as an efficient and magnetically reusable catalyst. Chem. Heterocycl. Compd., 2016, 52, 288-293.
[http://dx.doi.org/10.1007/s10593-016-1892-9]
[122]
Aleem, M.A.E.; El-Remailya, A.A.; Hamad, H.A. Synthesis and characterization of highly stable superparamagnetic CoFe2O4 nanoparticles as a catalyst for novel synthesis of thiazolo[4,5-b]quinolin-9-one derivatives in aqueous medium. J. Mol. Catal. Chem., 2015, 404-405, 148-155.
[http://dx.doi.org/10.1016/j.molcata.2015.04.023]
[123]
Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H. CoFe2O4@SiO2/PrNH2 nanoparticles as highly efficient and magnetically recoverable catalyst for the synthesis of 1,3-thiazolidin-4-ones. J. Sulfur Chem., 2016, 37, 601-612.
[124]
Miri, N.S.; Safaei-Ghomi, J. Synthesis of benzodiazepines catalyzed by CoFe2O4@SiO2-PrNH2 nanoparticles as a reusable catalyst. Z. Naturforsch., 2017, 72, 497-503.
[http://dx.doi.org/10.1515/znb-2017-0023]
[125]
Yadollahi, M.; Hamadi, H.; Nobakht, V. CoFe2O4/TMU-­‐17-­‐NH2 as a hybrid magnetic nanocomposite catalyst for multicomponent synthesis of dihydropyrimidines. Appl. Organomet. Chem, 2018, 32e4629.
[126]
Li, P.H.; Li, B.L.; An, Z.M.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanoparticles (CoFe2O4)-Supported phosphomolybdate as an efficient, green, recyclable catalyst for synthesis of b-hydroxy hydroperoxides. Adv. Synth. Catal., 2013, 355, 2952-2959.
[http://dx.doi.org/10.1002/adsc.201300551]
[127]
Ranganath, K.V.S.; Sahu, M.; Shaikh, M.; Gavel, P.K.; Atyam, K.K.; Khilari, S.; Das, P. CoFe2O4-decorated carbon nanotubes for the dehydration of glucose and fructose. New J. Chem., 2016, 40, 4468-4471.
[http://dx.doi.org/10.1039/C6NJ00501B]
[128]
Burange, A.S.; Kale, S.R.; Zboril, R.; Gawande, M.B.; Jayaram, R.V. Magnetically retrievable MFe2O4 spinel (M 1/4 Mn, Co, Cu, Ni, Zn) catalysts for oxidation of benzylic alcohols to carbonyls. RSC Adv, 2014, 4, 6597-6601.
[http://dx.doi.org/10.1039/c3ra45327h]
[129]
Kooti, M.; Afshari, M. Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Scientia Iranica F, 2012, 19, 1991-1995.
[http://dx.doi.org/10.1016/j.scient.2012.05.005]
[130]
de Abreu, W.C.; Garcia, M.A.S.; Nicolodi, S.; de Moura, C.V.R.; de Moura, E.M. Magnesium surface enrichment of CoFe2O4 magnetic nanoparticles immobilized with gold: Reusable catalysts for green oxidation of benzyl alcohol. RSC Adv, 2018, 8, 3903-3909.
[http://dx.doi.org/10.1039/C7RA13590D]
[131]
Martins, N.M.R.; Pombeiro, A.J.L.; Martins, L.M.D.R.S. A green methodology for the selective catalytic oxidation of styrene by magnetic metal-transition ferrite nanoparticles. Cat. Comm., 2018, 116, 10-15.
[http://dx.doi.org/10.1016/j.catcom.2018.08.002]
[132]
Mçhlmann, L.; Baar, M.; Rieß, J.; Antonietti, M.; Wang, X.; Blechert, S. Carbon nitride-catalyzed photoredox c-c bond formation with N-aryltetrahydroisoquinolines. Adv. Synth. Catal., 2012, 354, 1909-1913.
[http://dx.doi.org/10.1002/adsc.201100894]
[133]
Mçhlmann, L.; Blechert, S. Carbon nitride-catalyzed photoredox sakurai reactions and allylborations. Adv. Synth. Catal., 2014, 356, 2825-2829.
[http://dx.doi.org/10.1002/adsc.201400551]
[134]
Wang, L.; Shen, L.; Yang, S.; Liu, W.; Chena, Q.; Hea, M. C-H arylation reactions through aniline activation catalysed by PANI-g-C3N4-TiO2 composite under visible light in aqueous medium. Green Chem., 2018, 20, 1290-1296.
[http://dx.doi.org/10.1039/C8GC00012C]
[135]
Verma, S.; Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Photocatalytic C−H Activation of Hydrocarbons over VO@g-C3N4. ACS Sustain. Chem.& Eng., 2016, 4, 2333-2336.
[http://dx.doi.org/10.1021/acssuschemeng.6b00006]
[136]
Verma, S.; Nasir Baig, R.B.; Nadagouda, M.N.; Varma, R.S. Hydroxylation of benzene via C-H activation using bimetallic CuAg@g-C3N4. ACS Sustain. Chem.& Eng., 2017, 5(5), 3637-3640.
[http://dx.doi.org/10.1021/acssuschemeng.7b00772] [PMID: 30245941]
[137]
Verma, S.; Nasir Baig, R.B.; Han, C.; Nadagouda, M.N.; Varma, R.S. Magnetic graphitic carbon nitride: Its application in the C-H activation of amines. Chem. Commun. (Camb.), 2015, 51(85), 15554-15557.
[http://dx.doi.org/10.1039/C5CC05895C] [PMID: 26352198]
[138]
Wang, L.; Yu, M.; Wu, C.; Deng, N.; Wang, C.; Yao, X. Synthesis of Ag/g-C3N4 composite as highly efficient visible- light photocatalyst for oxidative amidation of aromatic aldehydes. Adv. Synth. Catal., 2016, 358, 2631-2641.
[http://dx.doi.org/10.1002/adsc.201600138]
[139]
Xu, H.; Wu, K.; Tian, J.; Zhu, L.; Yaoa, X. Recyclable Cu/C3N4 composite catalysed homo- and cross-coupling of terminal alkynes under mild conditions. Green Chem., 2018, 20, 793-797.
[http://dx.doi.org/10.1039/C7GC03120C]
[140]
Verma, S.; Baig, R.B.N.; Han, C.; Nadagouda, M.N.; Varma, R.S. Oxidative esterification via photocatalytic C-H activation. Green Chem., 2016, 18, 251-254.
[http://dx.doi.org/10.1039/C5GC02025E]
[141]
Cai, X.; Liu, H.; Zhi, L.; Wen, H.; Yu, A.; Li, L.; Chen, F.; Wang, B. A g-C3N4/rGO nanocomposite as a highly efficient metal-free photocatalyst for direct C-H arylation under visible light irradiation. RSC Adv, 2017, 7, 46132-46138.
[http://dx.doi.org/10.1039/C7RA07462J]
[142]
Verma, S.; Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Photocatalytic C-H activation and oxidative esterification using Pd@g-C3N4. Catal. Today, 2018, 309, 248-252.
[http://dx.doi.org/10.1016/j.cattod.2017.06.009]
[143]
Bhuyan, B.; Devi, M.; Bora, D.; Dhar, S.S.; Newar, R. Design of a Photoactive Bimetallic Cu-Au@g-C3N4 Catalyst for visible light driven hydroxylation of the benzene reaction through C-H activation. Eur. J. Inorg. Chem., 2018, 34, 3849-3858.
[http://dx.doi.org/10.1002/ejic.201800622]
[144]
Su, F.; Mathew, S.C.; Möhlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 657-660.
[http://dx.doi.org/10.1002/anie.201004365] [PMID: 21226146]
[145]
Pieber, B.; Shalom, M.; Antonietti, M.; Seeberger, P.H.; Gilmore, K. Continuous heterogeneous photocatalysis in serial micro-batch reactors. Angew. Chem. Int. Ed. Engl., 2018, 57(31), 9976-9979.
[http://dx.doi.org/10.1002/anie.201712568] [PMID: 29377383]
[146]
Su, F.; Antoniettia, M.; Wang, X. mpg-C3N4 as a solid base catalyst for Knoevenagel condensations and transesterification reactions. Catal. Sci. Technol., 2012, 2, 1005-1009.
[http://dx.doi.org/10.1039/c2cy00012a]
[147]
Ding, G.; Han, H.; Jiang, T.; Wu, T.; Han, B. Heterogeneous copper-catalyzed hydroxylation of aryl iodides under air conditions. Chem. Commun. (Camb.), 2014, 50(65), 9072-9075.
[http://dx.doi.org/10.1039/C4CC02267J] [PMID: 24947007]
[148]
Meyer, A.U.; Lau, V.W.; Konig, B.; Lotsch, B.V. Photocatalytic oxidation of sulfinates to vinyl sulfones with cyanamide-functionalised carbon nitride. Eur. J. Org. Chem., 2017, 15, 2179-2185.
[http://dx.doi.org/10.1002/ejoc.201601637]
[149]
Baig, R.B.N.; Verma, S.; Nadagouda, M.N.; Varma, R.S. A photoactive bimetallic framework for direct aminoformylation of nitroarenes. Green Chem., 2016, 18, 1019-1022.
[http://dx.doi.org/10.1039/C5GC02799C]
[150]
Kumar, A.; Kumar, P.; Joshi, C.; Ponnada, S.; Pathak, A.K.; Ali, A.; Sreedhard, B.; Jain, S.L.A. [Fe(bpy)3]2+ grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chem., 2016, 18, 2514-2521.
[http://dx.doi.org/10.1039/C5GC02090E]
[151]
Sharma, P.; Sasson, Y. Highly active g-C3N4 as a solid base catalyst for knoevenagel condensation reaction under phase transfer conditions. RSC Adv, 2017, 7, 25589-25596.
[http://dx.doi.org/10.1039/C7RA03051G]
[152]
Wang, L.; Wang, Y.; Chen, Q.; He, M. Photocatalyzed facile synthesis of 2,5-diaryl 1,3,4-oxadiazoles with polyaniline-g-C3N4-TiO2 composite under visible light. Tetrahedron Lett., 2018, 59, 1489-1492.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.005]
[153]
Cai, Y.; Tang, Y.; Fan, L.; Lefebvre, Q.; Hou, H.; Rueping, M. Heterogeneous visible-light photoredox catalysis with graphitic carbon nitride for α-Aminoalkyl radical additions, allylations, and heteroarylations. ACS Catal., 2018, 8, 9471-9476.
[http://dx.doi.org/10.1021/acscatal.8b02937]
[154]
Sadjadi, S.; Malmir, M.; Heravi, M.M. Preparation of Ag-­‐doped g-­‐C3N4 nano sheet decorated magnetic γ-­‐Fe2O3@SiO2 core-shell hollow spheres through a novel hydrothermal procedure: Investigation of the catalytic activity for A3,KA2 coupling reactions and [3+2] cycloaddition. Appl. Organomet. Chem, 2018, 32e4413.
[http://dx.doi.org/10.1002/aoc.4413]
[155]
Xu, Y.; Chen, Y.; Fu, W.F. Visible-light driven oxidative coupling of amines to imines with high selectivity in air over core-shell structured CdS@C3N4. Appl. Catal. B, 2018, 236, 176-183.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.098]
[156]
Chen, Z.; Shen, R.; Chen, C.; Li, J.; Li, Y. Synergistic effect of bimetallic PdAu nanocrystals on oxidative alkyne homocoupling. Chem. Commun. (Camb.), 2018, 54(93), 13155-13158.
[http://dx.doi.org/10.1039/C8CC06744A] [PMID: 30403206]
[157]
Zhao, Y.; Antonietti, M. Visible-light-irradiated graphitic carbon nitride photocatalyzed diels-alder reactions with dioxygen as sustainable mediator for photoinduced electrons. Angew. Chem. Int. Ed. Engl., 2017, 56(32), 9336-9340.
[http://dx.doi.org/10.1002/anie.201703438] [PMID: 28631867]
[158]
Xu, J.; Wu, F.; Jiang, Q.; Li, Y.X. Mesoporous carbon nitride grafted with n-bromobutane: A high-performance heterogeneous catalyst for the solvent-free cycloaddition of CO2 to propylene carbonate. Catal. Sci. Technol., 2015, 5, 447-454.
[http://dx.doi.org/10.1039/C4CY00770K]
[159]
Su, Q.Q.; Yao, X.; Cheng, W.; Zhang, S. Boron-doped melamine-derived carbon nitrides tailored by ionic liquids for catalytic conversion of CO2 into cyclic carbonates. Green Chem., 2017, 19, 2957-2965.
[http://dx.doi.org/10.1039/C7GC00279C]
[160]
Xue, Z.; Liu, F.; Jiang, J.; Wang, J.; Mu, T. Scalable and super-stable exfoliation of graphitic carbon nitride in biomass-derived γ-valerolactone: Enhanced catalytic activity for the alcoholysis and cycloaddition of epoxides with CO2. Green Chem., 2017, 19, 5041-5045.
[http://dx.doi.org/10.1039/C7GC02583A]
[161]
Biswas, T.; Mahalingam, V. g-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditions. New J. Chem., 2017, 41, 14839-14842.
[http://dx.doi.org/10.1039/C7NJ03720A]
[162]
Verma, F.; Sahu, A.; Singh, P.K.; Singh, M.; Rai, A.; Rai, V.K. Visible-light driven regioselective synthesis of 1H-tetrazoles from aldehydes through isocyanide-based [3 + 2] cycloaddition. Green Chem., 2018, 20, 3783-3789.
[http://dx.doi.org/10.1039/C8GC01321G]
[163]
Payra, S.; Saha, A.; Banerjee, S. On Water Cu@g-C3N4 catalyzed synthesis of NH-1,2,3-Triazoles via [2+3] cycloadditions of nitroolefins/alkynes and sodium azide. ChemCatChem, 2018, 10 5468-5474. , 10 -1-8.
[http://dx.doi.org/10.1002/cctc.201801524]
[164]
Devthade, V.; Kamble, G.; Ghugal, S.C.; Chikhalia, K.H.; Umare, S.S. Visible light-driven biginelli reaction over mesoporous g-C3N4 Lewis-base catalyst. ChemistrySelect, 2018, 3, 4009-4014.
[http://dx.doi.org/10.1002/slct.201800591]
[165]
Azizi, N.; Farhadi, E. Magnetically separable g‐C3N4 hybrid nanocomposite: highly efficient and eco‐friendly recyclable catalyst for one‐pot synthesis of α‐aminonitriles. Organ Chem., 2018, 32e4188
[http://dx.doi.org/10.1002aoc.4188]
[166]
Xu, H.; Wang, J.; Wang, P.; Niu, X.; Luo, Y.; Zhu, L.; Yao, X. Recyclable Cu/C3N4 composite catalyzed AHA/A3 coupling reactions for the synthesis of propargylamines. RSC Adv, 2018, 8, 32942-32947.
[http://dx.doi.org/10.1039/C8RA06613B]
[167]
Verma, S.; Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Selective oxidation of alcohols using photoactive VO@g-C3N4. ACS Sustain. Chem.& Eng., 2016, 4, 1094-1098.
[http://dx.doi.org/10.1021/acssuschemeng.5b01163]
[168]
Zhang, P.; Wang, Y.; Yao, J.; Wang, C.; Yan, C.; Antonietti, M.; Li, H. Visible-light-induced metal-free allylic oxidation utilizing a coupled photocatalytic system of g-C3N4 and N-Hydroxy Compounds. Adv. Synth. Catal., 2011, 353, 1447-1451.
[http://dx.doi.org/10.1002/adsc.201100175]
[169]
Yang, D.; Jiang, T.; Wu, T.; Zhang, P.; Han, H.; Han, B. Highly selective oxidation of cyclohexene to 2-cyclohexene-1-one in water using molecular oxygen over Fe-Co-g-C3N4. Catal. Sci. Technol., 2016, 6, 193-200.
[http://dx.doi.org/10.1039/C5CY01177A]
[170]
Zhang, P.; Li, H.; Wang, Y. Post-functionalization of graphitic carbon nitrides by grafting organic molecules: Toward C-H bond oxidation using atmospheric oxygen. Chem. Commun. (Camb.), 2014, 50(48), 6312-6315.
[http://dx.doi.org/10.1039/C4CC02676D] [PMID: 24816768]
[171]
Zhang, P.; Wang, Y.; Li, H.; Antonietti, M. Metal-free oxidation of sulfides by carbon nitride with visible light illumination at room temperature. Green Chem., 2012, 14, 1904-1908.
[http://dx.doi.org/10.1039/c2gc35148j]
[172]
Zhang, W.; Bariotaki, A.; Smonou, I.; Hollmann, F. Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride. Green Chem., 2017, 19, 2096-2100.
[http://dx.doi.org/10.1039/C7GC00539C]
[173]
Su, F.; Mathew, S.C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. mpg-C3 N4-Catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc., 2010, 132(46), 16299-16301.
[http://dx.doi.org/10.1021/ja102866p] [PMID: 21043489]
[174]
Li, X.H.; Chen, J.S.; Wang, X.; Sun, J.; Antonietti, M. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc., 2011, 133(21), 8074-8077.
[http://dx.doi.org/10.1021/ja200997a] [PMID: 21561075]
[175]
Xu, S.; Zhou, P.; Zhang, Z.; Yang, C.; Zhang, B.; Deng, K.; Bottle, S.; Zhu, H. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc., 2017, 139(41), 14775-14782.
[http://dx.doi.org/10.1021/jacs.7b08861] [PMID: 28956917]
[176]
Goncalves, D.A.F.; Alvim, R.P.R.; Bicalho, H.A.; Peres, A.M.; Binatti, I.; Batista, P.F.R.; Teixeira, L.S.; Resende, R.R.; Lorencon, E. Highly dispersed Mo-doped graphite carbon nitride: Potential application as oxidation catalyst with hydrogen peroxide. New J. Chem., 2018, 42, 5720-5727.
[http://dx.doi.org/10.1039/C8NJ00316E]
[177]
Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Selective oxidation of benzene to phenol by FeCl3/mpg-C3N4 hybrids. RSC Adv, 2013, 3, 5121-5126.
[http://dx.doi.org/10.1039/c3ra23357j]
[178]
Huang, S.; Zhao, Y.; Tang, R. Facile fabrication of the Cu@g-C3N4 nanocatalyst and its application for the aerobic oxidations of alkylaromatics and the reduction of 4-nitrophenol. RSC Adv, 2016, 6, 90887-90896.
[http://dx.doi.org/10.1039/C6RA18288G]
[179]
Cheng, S.; Meng, X.; Shang, N.N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z. Pd supported on g-C3N4 nanosheets: Mott-Schottky heterojunction catalyst for transfer hydrogenation of nitroarenes using formic acid as hydrogen source. New J. Chem., 2018, 42, 1771-1778.
[http://dx.doi.org/10.1039/C7NJ04268J]
[180]
Nișancı, B.; Turgut, M.; Sevim, M.; Metin, Ö. Three-component cascade reaction in a tube: In Situ Synthesis of Pd nanoparticles supported on mpg-C3N4, Dehydrogenation of ammonia borane and hydrogenation of nitroarenes. ChemistrySelect, 2017, 2, 6344-6349.
[http://dx.doi.org/10.1002/slct.201701188]
[181]
Baig, R.B.N.; Verma, S.; Varma, R.S.; Nadagouda, M.N. Magnetic Fe@g-C3N4: A photoactive catalyst for the hydrogenation of alkenes and alkynes. ACS Sustain. Chem.& Eng., 2016, 4, 1661-1664.
[http://dx.doi.org/10.1021/acssuschemeng.5b01610]
[182]
Deng, D.; Yang, Y.; Gong, Y.; Li, Y.; Xu, X.; Wang, Y. Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chem., 2013, 15, 2525-2531.
[http://dx.doi.org/10.1039/c3gc40779a]
[183]
Gong, L.H.; Cai, Y.Y.; Li, X.H.; Zhang, Y.N.; Su, J.; Chen, J.S. Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem., 2014, 16, 3746-3751.
[http://dx.doi.org/10.1039/C4GC00981A]
[184]
Xu, X.; Li, Y.; Gong, Y.; Zhang, P.; Li, H.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc., 2012, 134(41), 16987-16990.
[http://dx.doi.org/10.1021/ja308139s] [PMID: 23030399]
[185]
Verma, S.; Baig, R.B.N.; Nadagouda, M.N.; Varma, R.S. Visible light mediated upgrading of biomass to biofuel. Green Chem., 2016, 18, 1327-1331.
[http://dx.doi.org/10.1039/C5GC02951A]
[186]
Tadele, K.; Verma, S.; Gonzalez, M.A.; Varma, R.S. A sustainable approach to empower the bio-based future: Upgrading of biomass via process intensification. Green Chem., 2017, 19(7), 1624-1627.
[http://dx.doi.org/10.1039/C6GC03568J] [PMID: 30294242]
[187]
Sharma, P.; Sasson, Y. A photoactive catalyst Ru-g-C3N4 for hydrogen transfer reaction of aldehydes and ketones. Green Chem., 2017, 19, 844-852.
[http://dx.doi.org/10.1039/C6GC02949C]
[188]
Xu, X.; Luo, J.; Li, L.; Zhang, D.; Wang, Y.; Li, G. Unprecedented catalytic performance in amines syntheses via Pd/g-C3N4 catalyst-assisted transfer hydrogenation. Green Chem., 2018, 20, 2038-2046.
[http://dx.doi.org/10.1039/C8GC00144H]
[189]
Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc., 2011, 133(8), 2362-2365.
[http://dx.doi.org/10.1021/ja109856y] [PMID: 21294506]
[190]
Li, Y.; Xu, X.; Zhang, P.; Gong, Y.; Li, H.; Wang, Y. Highly Selective Pd@mpg-C3N4 catalyst for phenol hydrogenation in aqueous phase. RSC Adv, 2013, 3, 10973-10982.
[http://dx.doi.org/10.1039/c3ra41397g]
[191]
Vellaichamy, B.; Periakaruppan, P. Catalytic hydrogenation performance of an in situ assembled Au@g-C3N4-PANI nanoblend: Synergistic inter-constituent interactions boost the catalysis. New J. Chem., 2017, 41, 7123-7132.
[http://dx.doi.org/10.1039/C7NJ01085K]
[192]
Guo, Y.; Chen, J. Photo-induced reduction of biomass-derived 5-hydroxymethylfurfural using graphitic carbon nitride supported metal catalysts. RSC Adv, 2016, 6, 101968-101973.
[http://dx.doi.org/10.1039/C6RA19153C]
[193]
Li, Y.; Gong, Y.; Xu, X.; Zhang, P.; Li, H.; Wang, Y. A practical and benign synthesis of amines through Pd@mpg-C3N4 catalyzed reduction of nitriles. Catal. Commun., 2012, 28, 9-12.
[http://dx.doi.org/10.1016/j.catcom.2012.08.005]
[194]
Xiao, G.; Li, P.; Zhao, Y.; Xu, S.; Su, H. Visible-light-driven chemoselective hydrogenation of nitroarenes to anilines in water via graphitic carbon nitride metal-free photocatalysis. Chem. Asian J., 2018, 13, 1950-1955.
[http://dx.doi.org/10.1002/asia.201800515]
[195]
Sharma, P.; Sasson, Y. Sustainable visible light assisted in situ hydrogenation via a magnesium-water system catalyzed by a Pd-g-C3N4 photocatalyst. Green Chem., 2019, 21, 261-268.
[http://dx.doi.org/10.1039/C8GC02221F]
[196]
Verma, F.; Shukla, P.; Bhardiya, S.R.; Singh, M.; Rai, A.; Rai, V.K. Visible light-induced direct conversion of aldehydes into nitriles in aqueous medium using Co@g-C3N4 as photocatalyst. Catal. Commun., 2019, 119, 76-81.
[http://dx.doi.org/10.1016/j.catcom.2018.10.031]
[197]
Verma, F.; Shukla, P.; Bhardiya, S.R.; Singh, M.; Rai, A.; Rai, V.K. Photocatalytic C(sp0033)-H activation towards α-methylenation of ketones using MeOH as 1C source steering reagent. Adv. Synth. Catal., 2019, 361, 1247-1252.
[http://dx.doi.org/10.1002/adsc.201801431]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 12
Year: 2019
Page: [1284 - 1306]
Pages: 23
DOI: 10.2174/1385272823666190709113758
Price: $58

Article Metrics

PDF: 19