Unusual Regularity in GC Retention of Simple Amino Acid Derivatives

Author(s): Igor G. Zenkevich*, Nino G. Todua*, Anzor I. Mikaia*.

Journal Name: Current Chromatography

Volume 6 , Issue 1 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Application of simple regularities and general principles along with direct use of reference gas chromatography retention index data for reliable structure determination of compounds can be enhanced by determination of new regularities that are specific to certain structural elements.

Objective: Revelation and interpretation of an anomaly in the elution order of alkyl esters of alkoxycarbonyl derivatives of glycine and alanine on standard and semi-standard non-polar phases.

Methods: Preliminary derivatization of amino acids to alkyl esters of N-alkoxycarbonyl analogs and interpretation of their gas chromatographic characteristics.

Results: Alkyl esters of N-alkoxycarbonyl derivatives of alanine (Alkyl = C2H5, n- and iso-C3H7) elute prior to the same derivatives of glycine, despite the presence of an additional methyl group at C(2) in the molecule. Elution order is reversed for methyl esters of N-methoxycarbonyl derivatives.

Conclusion: It is established that the peculiar behavior of alkyl esters of N-alkoxycarbonyl derivatives of glycine and alanine agrees with the concepts of gas chromatography and the known retention index regularities of organic compounds. A decrease of retention index values is a result of an introduction of an additional methyl group to a carbon atom connected to two polar fragments in a molecule like CH2XY. The dependence of the difference of retention index values for homologs of the types of CH3-CHXY and CH2XY vs. the total mass of fragments (X + Y) is similar to those for other sub-groups of analytes.

Keywords: Amino acid, glycine, alanine, alkyl ester, N-alkoxycarbonyl derivative, standard non-polar stationary phases, retention index, elution order anomaly, GC-MS.

[1]
Kovats’ retention index system.Cazes, J., Ed.; Encyclopedia of Chromatography, 3rd ed.; Taylor & Francis. N.Y.,, 2010, 2, pp.1304-1310.
[2]
The NIST 17 Mass Spectral Library (NIST17/2017/EPA/NIH). Software/DataVersion (NIST17); NIST Standard Reference Database, Number 69, June 2017. National Institute of Standards and Technology, Gaithersburg, MD 20899: [Available at: https://www.nist.gov/srd/nist-standard-reference-database-1a-v17http://webbook.nist.gov.
[3]
Kovats, E. Gas chromatographische characterisierung organischer verbindungen. Helv. Chim. Acta, 1958, 41, 1915-1931.
[4]
Fieser, L.F.; Fieser, M. Advanced Organic Chemistry, 1st ed; Reinhold Publ. Corp.: N.Y., USA, 1961.
[5]
Zenkevich, I.G. Dependence of gas chromatographic retention indices on dynamics characteristics of molecules. J. Phys. Chem. A (Rus.), 1999, 73(5), 905-910.
[6]
Zenkevich, I.G.; Marinichev, A.N. Comparison of the topological and dynamic characteristics of molecules for calculating retention indices of organic compounds. Rus. J. Struct. Chem., 2001, 42(5), 747-754.
[7]
Zenkevich, I.G.; Kostikov, R.R. Prediction of gas-chromatographic elution sequence of diastereomers and enantiomers using the molecular dynamics methods. Russ. J. Org. Chem., 2003, 39(8), 1057-1063.
[8]
Todua, N.G.; Camara, J.E.; Murray, J.A.; Mikaia, A.I. Stepwise extraction, chemical modification, GC-MS separation, and determination of amino acids in human plasma. Sep. Sci. Plus, 2018, 1, 177-189.
[9]
Todua, N.G.; Zenkevich, I.G.; Mikaia, A.I. In: Peculiar behavior of N-alkoxycarbonyl derivatives of simplest amino acid methyl esters under GC-MS analysis, 66th ASMS Conference on Mass Spectrom& Allied Topics, San-Diego, USA, July 3-7; , 2018.
[10]
Zaikin, V.; Halket, J. A Handbook of Derivatives for Mass Spectrometry; IM Publ.: Chichester, 2009.
[11]
Zampolli, M.G.; Basaglia, G.; Dondi, F.; Sternberg, R.; Szopa, C.; Pietrogrande, M.C. Gas chromatography - mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: Application to space analysis. J. Chromatogr. A, 2007, 1150, 162-172.
[12]
Villas-Boas, S.G.; Delicado, D.G.; Akesson, M.; Nielsen, J. Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography - mass spectrometry. Anal. Biochem., 2003, 322, 134-138.
[13]
Van den Dool, W.A.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. , 1963, 11, 463-471.
[14]
Handbook of Chemistry and PhysicsCRC Press; Taylor & Francis Group: Boca Raton, 2018.
[15]
Pavlovskii, A.A.; Heberger, K.; Zenkevich, I.G. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on non-polar phases. J. Chromatogr. A, 2016, 1445, 126-134.
[16]
Gamerith, G. Gas chromatography of various N(O,S)-acyl esters of amino acids. J. Chromatogr. A, 1983, 268, 403-415.
[17]
Schneider, K.; Neupert, M.; Spiteller, G.; Henning, H.V.; Matthaei, D.; Scheler, F. Gas chromatography of amino acids in urine and haemofiltrate. J. Chromatogr. A, 1985, 345(1), 19-31.
[18]
Todua, N.G.; Tretyakov, K.V.; Mikaia, A.I. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N- alkyl-N-perfluoroacyl- α-amino acids and their methyl esters. Eur. J. Mass. Spectrom. (Chichester), 2015, 21(3), 183-190.
[19]
Paik, M-J.; Lee, H-L.; Kim, K-R. Simultaneous retention index analysis of urinary amino acids and carboxylic acids for graphic recognition of abnormal state. J. Chromatogr. B , 2005, 82, 94-104.
[20]
Analysis of amino acids using fast-GC/MS and metabolite database. Application News. Shimadzu Corp. 2011, No M246. [Accessed at: c3162802.workcast.net/10211_GCMS246_201110 5145013.pdf.
[21]
Zenkevich, I.G.; Pushkareva, T.I. Chromatographic and chromato-mass-spectral characterization of amino acids derivatives formed via the interaction with dimethyl acetal of dimethylformamide. Russ. J. Gen. Chem., 2015, 85(8), 1918-1926.
[22]
Héberger, K.; Zenkevich, I.G. Comparison of physicochemical and gas chromatographic polarity measures for simple organic compounds. J. Chromatogr. A, 2010, 1217(17), 2895-2902.
[23]
Alabugin, I.V.; Bresch, S.; Gomes, J.P. Orbital hybridization: a key electronic factor in control of structure and reactivity. J. Phys. Org. Chem., 2015, 28, 147-162.
[24]
Ramek, M. Intramolecular hydrogen bonding in neutral glycine, β-alanine, γ-aminobutyric acid, and δ-aminopentane acid. Int. J. Quantum Chem., 1990, 38(17), 45-53.
[25]
Pakari, A.H.; Jamshidi, Z. Intramolecular dihydrogen bond in the amino acid. J. Mol. Struct. THEOCHEM, 2004, 685(1), 155-161.
[26]
Ramaniah, L.M.; Kamal, C.; Kshirsagar, R.J. How universal are hydrogen bond correlations? A density functional study of intramolecular hydrogen bonding in low-energy conformers of α-amino acids. J. Mol. Phys., 2013, 111(20), 3067-3076.
[27]
Dake, Yu.; Armstrong, D.A.; Rauk, A. Hydrogen bonding and internal rotation barriers of glycine and its zwitterions (hypothetical) in the gas phase. Can. J. Chem., 1992, 72(6), 1762-1772.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 1
Year: 2019
Page: [3 - 14]
Pages: 12
DOI: 10.2174/2213240606666190709100858

Article Metrics

PDF: 12
HTML: 7
EPUB: 1
PRC: 1