Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds

Author(s): Georgia-Eirini Deligiannidou, Elena Philippou, Melita Vidakovic, Wim V. Berghe, Alexandros Heraclides, Nevena Grdovic, Mirjana Mihailovic, Christos Kontogiorgis*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 15 , 2019


Abstract:

Background: The Mediterranean diet is a healthy eating pattern that protects against the development of Type 2 diabetes mellitus (T2DM), a metabolic disease characterized by elevated blood sugar levels due to pancreatic beta-cell functional impairment and insulin resistance in various tissues. Inspired by the ancient communities, this diet emphasizes eating primarily plant-based foods, including vegetables, legumes, fruits, cereals, and nuts. Importantly, virgin olive oil is used as the principal source of fat. Red meat is consumed in low amounts while wine and fish are consumed moderately.

Objective: Here, we review the most beneficial components of the Mediterranean Diet and tentative mechanisms of action for prevention and/or management of T2DM, based on research conducted within the last decade.

Methods: The references over the last five years have been reviewed and they have been selected properly according to inclusion/ exclusion criteria.

Results: Several bioactive diet components were evaluated to prevent inflammation and cytokine-induced oxidative damage, reduce glucose concentration, carbohydrate absorption and increase insulin sensitivity and related gene expression.

Conclusion: The adherence to a healthy lifestyle, including diet, exercise and habits remains the best approach for the prevention of diabetes as well as frequent check-ups and education. Though diabetes has a strong genetic component, in recent years many reports strongly point to the critical role of lifestyle specific epigenetic modifications in the development of T2DM. It remains to be established how different components of the Mediterranean Diet interact and influence the epigenetic landscape to prevent or treat the disease.

Keywords: Mediterranean diet, diabetes, natural products, glycaemic control, nutri(epi)genetics, pancreatic beta-cell.

[1]
Loghmani E. Diabetes Mellitis : Type 1 And Type 2 In: . Guidelines for Adolescent Nutrition Services 2005.
[2]
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017; 128: 40-50. [http://dx.doi.org/10.1016/j.diabres.2017.03.024]. [PMID: 28437734].
[3]
Sun X, Li P, Yang X, Li W, Qiu X, Zhu S. From genetics and epigenetics to the future of precision treatment for obesity. Gastroenterol Rep (Oxf) 2017; 5(4): 266-70. [http://dx.doi.org/10.1093/gastro/gox033]. [PMID: 29230297].
[4]
Bonàs-Guarch S, Guindo-Martínez M, Miguel-Escalada I, et al. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nat Commun 2018; 9(1): 321.
[5]
Barker DJP. The origins of the developmental origins theory. J Intern Med 2007; 261(5): 412-7. [http://dx.doi.org/10.1111/j.1365-2796.2007.01809.x].
[6]
Berdasco M, Esteller M. Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet 2019; 20(2): 109-27. [http://dx.doi.org/10.1038/s41576-018-0074-2]. [PMID: 30479381].
[7]
Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007; 128(4): 669-81. [http://dx.doi.org/10.1016/j.cell.2007.01.033]. [PMID: 17320505].
[8]
Yuan W, Xia Y, Bell CG, et al. An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nat Commun 2014; 5: 5719. [http://dx.doi.org/10.1038/ncomms6719]. [PMID: 25502755].
[9]
Nilsson E, Jansson PA, Perfilyev A, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 2014; 63(9): 2962-76. [http://dx.doi.org/10.2337/db13-1459]. [PMID: 24812430].
[10]
Volkmar M, Dedeurwaerder S, Cunha DA, et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 2012; 31(6): 1405-26. [http://dx.doi.org/10.1038/emboj.2011.503]. [PMID: 22293752].
[11]
Nitert MD, Dayeh T, Volkov P, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012; 61(12): 3322-32. [http://dx.doi.org/10.2337/db11-1653]. [PMID: 23028138].
[12]
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal macronutrient consumption and the developmental origins of metabolic disease in the offspring. Int J Mol Sci 2017; 18(7)E1451 [http://dx.doi.org/10.3390/ijms18071451]. [PMID: 28684678].
[13]
Gothai S, Ganesan P, Park S-Y, Fakurazi S, Choi D-K, Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 2016; 8(8): 461. [http://dx.doi.org/10.3390/nu8080461]. [PMID: 27527213].
[14]
Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 2015; 4(1): 27-30. [PMID: 28197471].
[15]
Traditional Medicine Strategy WHO. Traditional Medicine Strategy 2002-2005; 2002.
[16]
Haq I. Safety of Medicinal Plants. Pak J Med Res 2004; 43(4)
[17]
Lazarou C, Panagiotakos D, Matalas AL. The role of diet in prevention and management of type 2 diabetes: implications for public Health. Crit Rev Food Sci Nutr 2012; 52(5): 382-9.
[18]
Romagnolo DF, Selmin OI. Mediterranean diet and prevention of chronic diseases. Nutr Today 2017; 52(5): 208-22. [http://dx.doi.org/10.1097/NT.0000000000000228]. [PMID: 29051674].
[19]
Tosti V, Bertozzi B, Fontana L. Health benefits of the mediterranean diet: metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci 2018; 73(3): 318-26. [http://dx.doi.org/10.1093/gerona/glx227]. [PMID: 29244059].
[20]
Billingsley HE, Carbone S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: An in-depth review of the PREDIMED. Nutr Diabetes 2018; 8(1): 13. [http://dx.doi.org/10.1038/s41387-018-0025-1]. [PMID: 29549354].
[21]
Vasantha Rupasinghe HP, Thilakarathna S, Nair S. Polyphenols of apples and their potential health benefitsPolyphenols: Chemistry. Dietary Sources and Health Benefits 2013.
[22]
Denis MC, Furtos A, Dudonné S, et al. Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation. PLoS One 2013; 8(1)e53725 [http://dx.doi.org/10.1371/journal.pone.0053725]. [PMID: 23372666].
[23]
Patel I, Padse O, Ingole Y. Comparative analysis of antioxidant and antidiabetic activity for apple (Malus domestica), banana (Musa paradisiaca) & kiwi (Actinidia deliciosa). Int J Res Adv Tech 2015; pp. 13-4.
[24]
Author C, Adel Moallem S, Iman M, Barahoyee A. Effect of Apple Cider Vinegar on Blood Glucose Level in Diabetic Mice. Pharm Sci 2015; 20: 163-8.
[25]
Williamson G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res 2013; 57(1): 48-57. [http://dx.doi.org/10.1002/mnfr.201200511]. [PMID: 23180627].
[26]
Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 1987; 80(4): 1037-44. [http://dx.doi.org/10.1172/JCI113157]. [PMID: 3308956].
[27]
Zhao H, Yakar S, Gavrilova O, et al. Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes 2004; 53(11): 2901-9. [http://dx.doi.org/10.2337/diabetes.53.11.2901]. [PMID: 15504971].
[28]
Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diabetes Vasc Dis Res 2015.
[29]
Manzano M, Giron MD, Vilchez JD, et al. Apple polyphenol extract improves insulin sensitivity in vitro and in vivo in animal models of insulin resistance. Nutr Metab (Lond) 2016; 13: 32. [http://dx.doi.org/10.1186/s12986-016-0088-8].
[30]
Conceição de Oliveira M, Sichieri R, Sanchez Moura A. Weight loss associated with a daily intake of three apples or three pears among overweight women. Nutrition 2003; 19(3): 253-6. [http://dx.doi.org/10.1016/S0899-9007(02)00850-X]. [PMID: 12620529].
[31]
Castro-Acosta ML, Stone SG, Mok JE, et al. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J Nutr Biochem 2017; 49: 53-62. [http://dx.doi.org/10.1016/j.jnutbio.2017.07.013]. [PMID: 28886437].
[32]
Shoji T, Yamada M, Miura T, et al. Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: A randomised, placebo-controlled trial. Diabetes Res Clin Pract 2017; 129: 43-51. [http://dx.doi.org/10.1016/j.diabres.2017.03.028]. [PMID: 28505543].
[33]
Makarova E, Górnaś P, Konrade I, et al. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: A preliminary study. J Sci Food Agric 2015; 95(3): 560-8. [PMID: 24917557].
[34]
Guo X fei, Yang B, Tang J, Jiang JJ, Li D. Apple and pear consumption and type 2 diabetes mellitus risk: a meta-analysis of prospective cohort studies. Food Funct 2017; 8(3): 927-34.
[35]
El-Beshbishy H, Bahashwan S. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: An in vitro study. Toxicol Ind Health 2012; 28(1): 42-50. [http://dx.doi.org/10.1177/0748233711403193]. [PMID: 21636683].
[36]
Sidana J, Saini V, Dahiya S, Nain P, Bala S. A review on citrus - “The boon of nature. Int J Pharm Sci Rev Res 2013; 18(2): 20-7.
[37]
Pari L, Sankaranarayanan C. Beneficial effects of thymoquinone on hepatic key enzymes in streptozotocin-nicotinamide induced diabetic rats. Life Sci 2009; 85(23-26): 830-4. [http://dx.doi.org/10.1016/j.lfs.2009.10.021]. [PMID: 19903489].
[38]
Akhila S, Bindu AR, Bindu K, Aleykutty NA. Phytochemical and pharmacological evaluation of citrus limon peel. World J Pharm Pharm Sci 2015; 4: 1128-35.
[39]
Rodríguez-Rivera MP, Lugo-Cervantes E, Winterhalter P, Jerz G. Metabolite profiling of polyphenols in peels of Citrus limetta Risso by combination of preparative high-speed countercurrent chromatography and LC-ESI-MS/MS. Food Chem 2014; 158: 139-52. [http://dx.doi.org/10.1016/j.foodchem.2014.02.077]. [PMID: 24731325].
[40]
Flores-Fernández JM, Barragán-Álvarez CP, Díaz-Martínez NE, Villanueva-Rodríguez S, Padilla-Camberos E. In vitro and in vivo postprandial glycemic activity of Citrus limetta peel flour. Pharmacogn Mag 2017; 13(52): 613-6. [doi: 10.4103/pm.pm_158_17]. [PMID: 29200722].
[41]
Ahmad M, Ansari MN, Alam A, Khan TH. Oral dose of citrus peel extracts promotes wound repair in diabetic rats. Pak J Biol Sci 2013; 16(20): 1086-94. [http://dx.doi.org/10.3923/pjbs.2013.1086.1094]. [PMID: 24506007].
[42]
Eidi M, Eidi A, Saeidi A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 2009; 23(3): 404-6.
[43]
Gray AM, Flatt PR. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Br J Nutr 1999; 81(3): 203-9. [http://dx.doi.org/10.1017/S0007114599000392]. [PMID: 10434846].
[44]
Aissaoui A, Zizi S, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J Ethnopharmacol 2011; 137(1): 652-61. [http://dx.doi.org/10.1016/j.jep.2011.06.019]. [PMID: 21718774].
[45]
Waheed A, Miana GA, Ahmad SI, Khan MA. Clinical investigation of hypoglycemic effect of Coriandrum sativum in type-2 (NIDDM) diabetic patients. Pak J Pharmacol 2006; 23(1): 7-11.
[46]
Kontogiorgis C, Deligiannidou G-E, Hadjipavlou-Litina D, Lazari D, Papadopoulos A. Antioxidant protection: The contribution of proper preparation of fennel (Foeniculum vulgare Mill.) beverage. Ind Crops Prod 2016; 79: 57-62. [http://dx.doi.org/10.1016/j.indcrop.2015.10.020].
[47]
Rahimi R, Ardekani MRS. Medicinal properties of Foeniculum vulgare Mill. in traditional Iranian medicine and modern phytotherapy. Chin J Integr Med 2013; 19(1): 73-9. [http://dx.doi.org/10.1007/s11655-013-1327-0]. [PMID: 23275017].
[48]
El-Soud NA, El-Laithy N, El-Saeed G, et al. Antidiabetic activities of Foeniculum vulgare mill. essential oil in streptozotocin-induced diabetic rats. Maced J Med Sci 2011; 4(2): 139-46.
[49]
Anitha T, Balakumar C, Ilango KB, Jose CB, Vetrivel D. Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic rats. Int J Adv Pharm Biol Chem 2014; 3(2): 487-94.
[50]
Mhaidat NM, Abu-Zaiton AS, Alzoubi KH, Alzoubi W, Alazab RS. Antihyperglycemic properties of Foeniculum vulgare extract in streptozocin-induced diabetes in rats. Int J Pharmacol 2015; 11(1): 72-5. [http://dx.doi.org/10.3923/ijp.2015.72.75].
[51]
Prasad K, Dhar A. Flaxseed and diabetes. Curr Pharm Des 2016; 22(2): 141-4. [http://dx.doi.org/10.2174/1381612822666151112151230]. [PMID: 26561065].
[52]
Sęczyk Ł, Świeca M, Dziki D, Anders A, Gawlik-Dziki U. Antioxidant, nutritional and functional characteristics of wheat bread enriched with ground flaxseed hulls. Food Chem 2017; 214: 32-8. [http://dx.doi.org/10.1016/j.foodchem.2016.07.068]. [PMID: 27507444].
[53]
Thakur G, Mitra A, Pal K, Rousseau D. Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. Int J Food Sci Nutr 2009; 60(Suppl. 6): 126-36. [http://dx.doi.org/10.1080/09637480903022735]. [PMID: 19548163].
[54]
Hutchins AM, Brown BD, Cunnane SC, Domitrovich SG, Adams ER, Bobowiec CE. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: A randomized study. Nutr Res 2013; 33(5): 367-75. [http://dx.doi.org/10.1016/j.nutres.2013.02.012]. [PMID: 23684438].
[55]
Repin N, Kay BA, Cui SW, Wright AJ, Duncan AM, Douglas Goff H. Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. Food Funct 2017; 8(6): 2142-54. [http://dx.doi.org/10.1039/C7FO00331E]. [PMID: 28581555].
[56]
Vuksan V, Choleva L, Jovanovski E, et al. Comparison of flax (Linum usitatissimum) and Salba-chia (Salvia hispanica L.) seeds on postprandial glycemia and satiety in healthy individuals: A randomized, controlled, crossover study. Eur J Clin Nutr 2017; 71(2): 234-8. [http://dx.doi.org/10.1038/ejcn.2016.148]. [PMID: 28000689].
[57]
Mani UV, Mani I, Biswas M, Kumar SN. An open-label study on the effect of flax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus. J Diet Suppl 2011; 8(3): 257-65. [http://dx.doi.org/10.3109/19390211.2011.593615]. [PMID: 22432725].
[58]
Cândido FG, Ton W, Alfenas R. Addition of dietary fiber sources to shakes reduces postprandial glycemia and alters food intake. HospNutr 2015.
[59]
Corzo-Martínez M, Corzo N, Villamiel M. Biological properties of onions and garlic. Trends Food Sci Technol 2007; 18(12): 609-25. [http://dx.doi.org/10.1016/j.tifs.2007.07.011].
[60]
Oboh G, Ademiluyi AO, Agunloye OM, Ademosun AO, Ogunsakin BG. Inhibitory Effect of Garlic, Purple Onion, and White Onion on Key Enzymes Linked with Type 2 Diabetes and Hypertension. J Diet Suppl 2019; 16(1): 105-18. [PMID: 29522359].
[61]
Xia E-Q, Deng G-F, Guo Y-J, Li H-B. Biological Activities of Polyphenols from Grapes. Int J Mol Sci 2010; 11(2): 622-46.
[62]
Suwannaphet W, Meeprom A, Yibchok-Anun S, Adisakwattana S. Preventive effect of grape seed extract against high-fructose diet-induced insulin resistance and oxidative stress in rats. Food Chem Toxicol 2010; 48(7): 1853-7. [http://dx.doi.org/10.1016/j.fct.2010.04.021]. [PMID: 20412828].
[63]
Hogan S, Zhang L, Li J, Sun S, Canning C, Zhou K. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase. Nutr Metab (Lond) 2010; 7: 71. [http://dx.doi.org/10.1186/1743-7075-7-71]. [PMID: 20799969].
[64]
Liu L, Wang Y, Lam K, Xu A. Moderate Wine Consumption in the Prevention of Metabolic Syndrome and its Related Medical Complications. Endocr Metab Immune Disord Drug Targets 2008; 8(2): 89-98. [http://dx.doi.org/10.2174/187153008784534385].
[65]
Woerdeman J, Del Rio D, Calani L, Eringa EC, Smulders YM, Serné EH. Red wine polyphenols do not improve obesity-associated insulin resistance: A randomized controlled trial. Diabetes Obes Metab 2018; 20(1): 206-10. [http://dx.doi.org/10.1111/dom.13044]. [PMID: 28643477].
[66]
Urquiaga I, D’Acuña S, Pérez D, et al. Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: A randomized controlled trial. Biol Res 2015; 48: 49. [http://dx.doi.org/10.1186/s40659-015-0040-9]. [PMID: 26337448].
[67]
Tresserra-Rimbau A, Medina-Remón A, Lamuela-Raventós RM, et al. Moderate red wine consumption is associated with a lower prevalence of the metabolic syndrome in the PREDIMED population. Br J Nutr 2015; 113(Suppl. 2): S121-30. [http://dx.doi.org/10.1017/S0007114514003262]. [PMID: 26148915].
[68]
Karadeniz F, Durst RW, Wrolstad RE. Polyphenolic composition of raisins. J Agric Food Chem 2000; 48(11): 5343-50. [http://dx.doi.org/10.1021/jf0009753]. [PMID: 11087484].
[69]
Williamson G, Carughi A. Polyphenol content and health benefits of raisins. Nutr Res 2010; 30(8): 511-9. [http://dx.doi.org/10.1016/j.nutres.2010.07.005]. [PMID: 20851304].
[70]
Anderson JW, Waters AR. Raisin consumption by humans: Effects on glycemia and insulinemia and cardiovascular risk factors. J Food Sci 2013; 78(Suppl. 1): A11-7. [http://dx.doi.org/10.1111/1750-3841.12071]. [PMID: 23789931].
[71]
Kanellos PT, Kaliora AC, Tentolouris NK, et al. A pilot, randomized controlled trial to examine the health outcomes of raisin consumption in patients with diabetes. Nutrition 2014; 30(3): 358-64. [http://dx.doi.org/10.1016/j.nut.2013.07.020]. [PMID: 24262513].
[72]
Bays H, Weiter K, Anderson J. A randomized study of raisins versus alternative snacks on glycemic control and other cardiovascular risk factors in patients with type 2 diabetes mellitus. Phys Sportsmed 2015; 43(1): 37-43. [http://dx.doi.org/10.1080/00913847.2015.998410]. [PMID: 25609549].
[73]
Maganha EG, Halmenschlager R da C, Rosa RM, Henriques JAP, Ramos ALL de P, Saffi J. Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem 2010; 118(1): 1-10. [http://dx.doi.org/10.1016/j.foodchem.2009.04.005].
[74]
Sachdewa A, Khemani LD. A preliminary investigation of the possible hypoglycemic activity of Hibiscus rosa-sinensis. Biomed Environ Sci 1999; 12(3): 222-6. [PMID: 10674186].
[75]
Sachdewa A, Khemani LD. Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J Ethnopharmacol 2003; 89(1): 61-6. [http://dx.doi.org/10.1016/S0378-8741(03)00230-7]. [PMID: 14522433].
[76]
Moqbel FS, Naik PR. Effect of different fractions of Hibiscus rosa sinensis leaf extract on islets of Langerhans and antioxidant activity in non-obese diabetic (NOD) mouse. J Appl Nat Sci 2011; 3(2): 206-10. [http://dx.doi.org/10.31018/jans.v3i2.180].
[77]
Kumar V, Mahdi F, Khanna AK, et al. Antidyslipidemic and antioxidant activities of Hibiscus rosa sinensis root extract in alloxan induced diabetic rats. Indian J Clin Biochem 2013; 28(1): 46-50. [http://dx.doi.org/10.1007/s12291-012-0223-x]. [PMID: 24381420].
[78]
Pethe M, Yelwatkar S, Manchalwar S, Gujar V. Evaluation of Biological Effects of Hydroalcoholic Extract of Hibiscus Rosa Sinensis Flowers on Alloxan Induced Diabetes in Rats. Drug Res (Stuttg) 2017; 67(8): 485-92. [http://dx.doi.org/10.1055/s-0043-109434].
[79]
Afiune LAF, Leal-Silva T, Sinzato YK, et al. Beneficial effects of Hibiscus rosa-sinensis L. flower aqueous extract in pregnant rats with diabetes. PLoS One 2017; 12(6)e0179785 [http://dx.doi.org/10.1371/journal.pone.0179785]. [PMID: 28644857].
[80]
Yadav SS, McNeil DL, Stevenson PC. Lentil: An ancient crop for modern times Lentil: An Ancient Crop for Modern Times 2007.
[81]
Ganesan K, Xu B. Polyphenol-rich lentils and their health promoting effects. Int J Mol Sci 2017; 18(11)E2390 [http://dx.doi.org/10.3390/ijms18112390]. [PMID: 29125587].
[82]
Mudryj AN, Yu N, Aukema HM. Nutritional and health benefits of pulses. Appl Physiol Nutr Metab 2014; 39(11): 1197-204. [http://dx.doi.org/10.1139/apnm-2013-0557]. [PMID: 25061763].
[83]
Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit Rev Food Sci Nutr 2013; 53(8): 818-36. [http://dx.doi.org/10.1080/10408398.2011.561379]. [PMID: 23768145].
[84]
Al-Tibi AMH Jr, Takruri HR, Ahmad MN. Effect of dehulling and cooking of lentils (Lens culinaris, L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays J Nutr 2010; 16(3): 409-18. [PMID: 22691994].
[85]
Shams H, Tahbaz F, Entezari MH, Abadi A. Effects of cooked lentils on glycemic control and blood lipids of patients with type 2 diabetes. ARYA Atheroscler J 2008; 4(1): 1-5.
[86]
Hosseinpour-Niazi S, Mirmiran P, Hedayati M, Azizi F. Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: A cross-over randomized clinical trial. Eur J Clin Nutr 2015; 69(5): 592-7. [http://dx.doi.org/10.1038/ejcn.2014.228]. [PMID: 25351652].
[87]
Thompson SV, Winham DM, Hutchins AM. Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: A cross-over study. Nutr J 2012; 11: 23. [http://dx.doi.org/10.1186/1475-2891-11-23]. [PMID: 22494488].
[88]
Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch Intern Med 2012; 172(21): 1653-60. [http://dx.doi.org/10.1001/2013.jamainternmed.70]. [PMID: 23089999].
[89]
Saraf-Bank S, Esmaillzadeh A, Faghihimani E, Azadbakht L. Effect of non-soy legume consumption on inflammation and serum adiponectin levels among first-degree relatives of patients with diabetes: A randomized, crossover study. Nutrition 2015; 31(3): 459-65. [http://dx.doi.org/10.1016/j.nut.2014.09.015]. [PMID: 25701335].
[90]
Arpón A, Milagro FI, Razquin C, et al. Impact of consuming extra-virgin olive oil or nuts within a mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-navarra randomized controlled trial: A role for dietary lipids. Nutrients 2017; 10(1)E15 [PMID: 29295516].
[91]
Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog Cardiovasc Dis 2015; 58(1): 50-60.
[92]
Storniolo CE, Roselló-Catafau J, Pintó X, Mitjavila MT, Moreno JJ. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol 2014; 2: 971-7. [http://dx.doi.org/10.1016/j.redox.2014.07.001]. [PMID: 25460732].
[93]
Risérus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 2009; 48(1): 44-51. [http://dx.doi.org/10.1016/j.plipres.2008.10.002]. [PMID: 19032965].
[94]
Moon JH, Lee JY, Kang SB, et al. Dietary monounsaturated fatty acids but not saturated fatty acids preserve the insulin signaling pathway via IRS-1/PI3K in rat skeletal muscle. Lipids 2010; 45(12): 1109-16. [http://dx.doi.org/10.1007/s11745-010-3475-3]. [PMID: 20960069].
[95]
Collado-González J, Grosso C, Valentão P, et al. Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chem 2017; 235: 298-307. [http://dx.doi.org/10.1016/j.foodchem.2017.04.171]. [PMID: 28554640].
[96]
Figueiredo-González M, Reboredo-Rodríguez P, González-Barreiro C, et al. Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Res Int 2018; 106: 558-67. [http://dx.doi.org/10.1016/j.foodres.2018.01.026]. [PMID: 29579961].
[97]
Cumaoğlu A, Rackova L, Stefek M, Kartal M, Maechler P, Karasu C. Effects of olive leaf polyphenols against H2O2 toxicity in insulin secreting β-cells. Acta Biochim Pol 2011; 58(1): 45-50. [http://dx.doi.org/10.18388/abp.2011_2284]. [PMID: 21383995].
[98]
Jemai H, El Feki A, Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J Agric Food Chem 2009; 57(19): 8798-804. [http://dx.doi.org/10.1021/jf901280r]. [PMID: 19725535].
[99]
Murotomi K, Umeno A, Yasunaga M, et al. Oleuropein-Rich Diet Attenuates Hyperglycemia and Impaired Glucose Tolerance in Type 2 Diabetes Model Mouse. J Agric Food Chem 2015; 63(30): 6715-22. [http://dx.doi.org/10.1021/acs.jafc.5b00556]. [PMID: 26165358].
[100]
Carnevale R, Loffredo L, Del Ben M, et al. Extra virgin olive oil improves post-prandial glycemic and lipid profile in patients with impaired fasting glucose. Clin Nutr 2017; 36(3): 782-7. [http://dx.doi.org/10.1016/j.clnu.2016.05.016]. [PMID: 27289163].
[101]
Wainstein J, Ganz T, Boaz M, et al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food 2012; 15(7): 605-10. [http://dx.doi.org/10.1089/jmf.2011.0243]. [PMID: 22512698].
[102]
de Bock M, Derraik JGB, Brennan CM, et al. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: A randomized, placebo-controlled, crossover trial. PLoS One 2013; 8(3)e57622 [http://dx.doi.org/10.1371/journal.pone.0057622]. [PMID: 23516412].
[103]
Lasa A, Miranda J, Bulló M, et al. Comparative effect of two Mediterranean diets versus a low-fat diet on glycaemic control in individuals with type 2 diabetes. Eur J Clin Nutr 2014; 68(7): 767-72. [http://dx.doi.org/10.1038/ejcn.2014.1]. [PMID: 24518752].
[104]
Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes 2017; 7(4)e262 [http://dx.doi.org/10.1038/nutd.2017.12]. [PMID: 28394365].
[105]
Banihani S, Swedan S, Alguraan Z. Pomegranate and type 2 diabetes. Nutr Res 2013; 33(5): 341-8. [http://dx.doi.org/10.1016/j.nutres.2013.03.003]. [PMID: 23684435].
[106]
Syed DN, Afaq F, Mukhtar H. Pomegranate derived products for cancer chemoprevention. Semin Cancer Biol 2007; 17(5): 377-85. [http://dx.doi.org/10.1016/j.semcancer.2007.05.004]. [PMID: 17613245].
[107]
Jain V, Viswanatha GL, Manohar D, Shivaprasad HN. Isolation of antidiabetic principle from fruit rinds of Punica granatum. Evid Based Complement Alternat Med 2012; 2012147202
[108]
Garachh D, Patel A, Manodeep C, Kamath Jagdish V. Phytochemical and pharmacological profile of punica granatum: An overview. Int Res J Pharm 2012; 3(2): 65-8.
[109]
Gómez-Caravaca AM, Verardo V, Toselli M, Segura-Carretero A, Fernández-Gutiérrez A, Caboni MF. Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS. J Agric Food Chem 2013; 61(22): 5328-37. [http://dx.doi.org/10.1021/jf400684n]. [PMID: 23656584].
[110]
Poyrazoǧlu E, Gökmen V, Artik N. Organic acids and phenolic compounds in pomegranates (Punica granatum L.) grown in Turkey. J Food Compos Anal 2002; 15(5): 567-75. [http://dx.doi.org/10.1016/S0889-1575(02)91071-9].
[111]
Kerimi A, Nyambe-Silavwe H, Gauer JS, Tomás-Barberán FA, Williamson G. Pomegranate juice, but not an extract, confers a lower glycemic response on a high-glycemic index food: Randomized, crossover, controlled trials in healthy subjects. Am J Clin Nutr 2017; 106(6): 1384-93. [http://dx.doi.org/10.3945/ajcn.117.161968]. [PMID: 29021286].
[112]
Das S, Barman S. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non-insulin-dependent diabetes mellitus albino rats. Indian J Pharmacol 2012; 44(2): 219-24. [http://dx.doi.org/10.4103/0253-7613.93853]. [PMID: 22529479].
[113]
Aboonabi A, Rahmat A, Othman F. Antioxidant effect of pomegranate against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Toxicol Rep 2014; 1: 915-22. [http://dx.doi.org/10.1016/j.toxrep.2014.10.022]. [PMID: 28962304].
[114]
Ankita P, Deepti B, Nilam M. Flavonoid rich fraction of Punica granatum improves early diabetic nephropathy by ameliorating proteinuria and disturbed glucose homeostasis in experimental animals. Pharm Biol 2015; 53(1): 61-71. [http://dx.doi.org/10.3109/13880209.2014.910533]. [PMID: 25289530].
[115]
Banihani SA, Makahleh SM, El-Akawi Z, et al. Fresh pomegranate juice ameliorates insulin resistance, enhances β-cell function, and decreases fasting serum glucose in type 2 diabetic patients. Nutr Res 2014; 34(10): 862-7. [http://dx.doi.org/10.1016/j.nutres.2014.08.003]. [PMID: 25223711].
[116]
Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic (Amsterdam) 2016; 210: 57-64.
[117]
Rao HJ. Lakshmi. Therapeutic applications of almonds (Prunus amygdalus L): A review. J Clin Diagn Res 2012; 6(1): 130-5.
[118]
Frison-Norrie S, Sporns P. Identification and quantification of flavonol glycosides in almond seedcoats using MALDI-TOF MS. J Agric Food Chem 2002; 50(10): 2782-7. [http://dx.doi.org/10.1021/jf0115894]. [PMID: 11982399].
[119]
Jabeen Q, Naveed A. The pharmacological activities of prunes: The dried plums. J Med Plants Res 2011; 5(9)
[120]
Muraki I, Imamura F, Manson JE, et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ 2013; 347: f5001. [http://dx.doi.org/10.1136/bmj.f5001]. [PMID: 23990623].
[121]
Shahidi F, Alasalvar C. Dried Fruits. In:Functional Food Science & Technology. 2013.
[122]
Shah KH, Patel JB, Shrma VJ, Shrma RM, Patel RP, Chaunhan UM. Evaluation of antidiabetic activity of Prunus amygdalus Batsch in streptozotocin induced diabetic mice. Res J Pharm Biol Chem Sci 2011; 2(2): 429-34.
[123]
Gulati S, Misra A, Pandey RM. Effect of Almond Supplementation on Glycemia and Cardiovascular Risk Factors in Asian Indians in North India with Type 2 Diabetes Mellitus: A 24-Week Study. Metab Syndr Relat Disord 2017; 15(2): 98-105. [http://dx.doi.org/10.1089/met.2016.0066]. [PMID: 28051354].
[124]
Saleh FA, El-Darra N, Raafat K. Hypoglycemic effects of Prunus cerasus L. pulp and seed extracts on Alloxan-Induced Diabetic Mice with histopathological evaluation. Biomed Pharmacother 2017; 88: 870-7. [http://dx.doi.org/10.1016/j.biopha.2017.01.155]. [PMID: 28178616].
[125]
Ataie-Jafari A, Hosseini S, Karimi F, Pajouhi M. Effects of sour cherry juice on blood glucose and some cardiovascular risk factors improvements in diabetic women A pilot study. Nutr Food Sci 2008; 38(4): 355-60. [http://dx.doi.org/10.1108/00346650810891414].
[126]
Putta S, Yarla NS, Peluso I, et al. Anthocyanins: Multi-Target Agents for Prevention and Therapy of Chronic Diseases. Curr Pharm Des 2017; 23(41): 6321-46. [http://dx.doi.org/10.2174/1381612823666170519151801]. [PMID: 28741457].
[127]
Igwe EO, Charlton KE. A Systematic Review on the Health Effects of Plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30(5): 701-31. [http://dx.doi.org/10.1002/ptr.5581]. [PMID: 26992121].
[128]
Mishra N, Gill NS, Mishra A, Mishra S, Shukla A, Upadhayay A. Evaluation of antioxidant and antiulcer potentials of Prunus domestica fruit methanolic and extract on wistar albino rats. J Pharmacol Toxicol 2012; 7(6): 305-11.
[129]
Tung NH, Shoyama Y. New minor glycoside components from saffron. J Nat Med 2013; 67(3): 672-6. [http://dx.doi.org/10.1007/s11418-012-0721-4]. [PMID: 23179314].
[130]
Rahimi M. Chemical and Medicinal Properties of Saffron. Bull Env Pharmacol Life Sci 2015; 4(3): 69-81.
[131]
Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 2011; 219(2): 197-204. [http://dx.doi.org/10.1016/j.bbr.2011.01.007]. [PMID: 21238492].
[132]
Farkhondeh T, Samarghandian S. The effect of saffron (Crocus sativus L.) and its ingredients on the management of diabetes mellitus and dislipidemia. Afr J Plant Sci 2014; 8(20): 541-9.
[133]
Mohajeri D, Tabrizi BA, Mousavi G, Mesgari M. Anti-diabetic activity of Crocus sativus L. (Saffron) stigma ethanolic extract in alloxan-induced diabetic rats. Res J Biol Sci 2008; 3.
[134]
Samarghandian S, Azimi-Nezhad M, Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. BioMed Res Int 2014; 2014920857 [http://dx.doi.org/10.1155/2014/920857]. [PMID: 25114929].
[135]
Dehghan F, Hajiaghaalipour F, Yusof A, et al. Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo. Sci Rep 2016; 6: 25139. [http://dx.doi.org/10.1038/srep25139]. [PMID: 27122001].
[136]
Milajerdi A, Jazayeri S, Bitarafan V, et al. The effect of saffron (Crocus sativus L.) hydro-alcoholic extract on liver and renal functions in type 2 diabetic patients: A double-blinded randomized and placebo control trial. J Nutr Intermed Metab 2017; 9: 6-11. [http://dx.doi.org/10.1016/j.jnim.2017.07.002].
[137]
Hamidpour M, Hamidpour R, Hamidpour S, Shahlari M. Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. J Tradit Complement Med 2014; 4(2): 82-8. [http://dx.doi.org/10.4103/2225-4110.130373]. [PMID: 24860730].
[138]
Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22(3): 321-6. [http://dx.doi.org/10.1016/j.nut.2005.06.010]. [PMID: 16500558].
[139]
Alchalabi S, Shukri M, Mahmood R, Khalid LB. Effect of Salvia officinalis L. (Sage) Aqueous extract on Liver and Testicular Function of Diabetic Albino Male Rats. J Babylon Univ Appl Sci 2016; 24(2): 390-9.
[140]
Behradmanesh S, Derees F, Rafieian-Kopaei M. Effect of Salvia officinalis on diabetic patients. J Renal Inj Prev 2013; 2(2): 51-4.
[141]
Kianbakht S, Nabati F, Abasi B. Salvia officinalis (Sage) Leaf Extract as Add-on to Statin Therapy in Hypercholesterolemic Type 2 Diabetic Patients: A Randomized Clinical Trial. Int J Mol Cell Med 2016; 5(3): 141-8. [PMID: 27942500].
[142]
Ullah R, Nadeem M, Khalique A, et al. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol 2016; 53(4): 1750-8. [http://dx.doi.org/10.1007/s13197-015-1967-0]. [PMID: 27413203].
[143]
Vuksan V, Jenkins AL, Brissette C, et al. Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial. Nutr Metab Cardiovasc Dis 2017; 27(2): 138-46. [http://dx.doi.org/10.1016/j.numecd.2016.11.124]. [PMID: 28089080].
[144]
Tavafi M, Ahmadvand H, Tamjidipoor A, Delfan B, Khalatbari AR. Satureja khozestanica essential oil ameliorates progression of diabetic nephropathy in uninephrectomized diabetic rats. Tissue Cell 2011; 43(1): 45-51. [http://dx.doi.org/10.1016/j.tice.2010.11.004]. [PMID: 21185580].
[145]
Ahmadvand H, Tavafi M, Khosrowbeygi A, et al. Amelioration of lipid peroxidation in vivo and in vitro by Satureja khozestanica essential oil in alloxan-induced diabetic rats. J Diabetes Metab Disord 2014; 13(1): 119. [http://dx.doi.org/10.1186/s40200-014-0119-9]. [PMID: 25551101].
[146]
Mirazi N, Rezaei M, Mirhoseini M. Hypoglycemic effect of Satureja montanum L. hydroethanolic extract on diabetic rats. J HerbMed Pharmacol 2016; 5: 17-22.
[147]
Priyanka Subhash G, Rajkumar Virbhadrappa S, Otari K. Spinacia oleracea Linn: A pharmacognostic and pharmacological overview Int J Res Ayur Pharm 2010; 78-84.
[148]
Roberts JL, Moreau R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct 2016; 7(8): 3337-53. [http://dx.doi.org/10.1039/C6FO00051G]. [PMID: 27353735].
[149]
Sah AK, Raj S, Khatik GL, Vyas M. Nutritional profile of spinach and its antioxidant & antidiabetic evaluation Int J Green Pharm 2017; 11(3)
[150]
Shaheen SM. Phytochemical profiling and evaluation of antioxidant and antidiabetic activity of methanol extract of spinach (spinacia oleracea l.) Leaves. Int J Pharm Sci Sci Res 2018; 4(2): 24-7.
[151]
Montelius C, Osman N, Weström B, et al. Feeding spinach thylakoids to rats modulates the gut microbiota, decreases food intake and affects the insulin response. J Nutr Sci 2013; 2e20 [http://dx.doi.org/10.1017/jns.2012.29]. [PMID: 25191569].
[152]
Montelius C, Gustafsson K, Weström B, et al. Chloroplast thylakoids reduce glucose uptake and decrease intestinal macromolecular permeability. Br J Nutr 2011; 106(6): 836-44. [http://dx.doi.org/10.1017/S0007114511001267]. [PMID: 21736841].
[153]
Köhnke R, Lindbo A, Larsson T, et al. Thylakoids promote release of the satiety hormone cholecystokinin while reducing insulin in healthy humans. Scand J Gastroenterol 2009; 44(6): 712-9. [http://dx.doi.org/10.1080/00365520902803499]. [PMID: 19308799].
[154]
Borugă O, Jianu C, Mişcă C, Goleţ I, Gruia AT, Horhat FG. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J Med Life 2014; 7Spec No. 3:. : 56-60. [PMID: 25870697]
[155]
Yaghmaie P, Heydarian E, Poorbahman N. 2011; The regenerative effects of Thymus vulgaris extract on beta cells of pancreas of streptozotocin induced diabetic Wistar rats. Med Sci 2011; 21(3): 162-7.http://iau-tmuj.ir/article-1-493-en.html
[156]
Koohi-Hosseinabadi O, Moini M, Safarpoor A, Derakhshanfar A, Sepehrimanesh M. Effects of dietary Thymus vulgaris extract alone or with atorvastatin on the liver, kidney, heart, and brain histopathological features in diabetic and hyperlipidemic male rats. Comp Clin Pathol 2015; 24(6): 1311-5. [http://dx.doi.org/10.1007/s00580-015-2070-7].
[157]
Saravanan S, Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice. Chem Biol Interact 2016; 245: 1-11. [http://dx.doi.org/10.1016/j.cbi.2015.11.033]. [PMID: 26680107].
[158]
Gaikwad SB, Mohan GK, Rani MS. Phytochemicals for Diabetes Management Pharm Crops 2014; 5(Suppl 1: M2). : 11-28.
[http://dx.doi.org/10.2174/2210290601405010011]
[159]
Li Z, Jiang H, Xu C, Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll 2015; 43: 153-64. [http://dx.doi.org/10.1016/j.foodhyd.2014.05.010].
[160]
Szkudelski T, Szkudelska K. Resveratrol and diabetes: From animal to human studies. Biochim Biophys Acta 2015; 1852(6): 1145-54. [http://dx.doi.org/10.1016/j.bbadis.2014.10.013]. [PMID: 25445538].
[161]
Oyenihi OR, Oyenihi AB, Adeyanju AA, Oguntibeju OO. Antidiabetic Effects of Resveratrol: The Way Forward in Its Clinical Utility. J Diabetes Res 2016; 20169737483 [http://dx.doi.org/10.1155/2016/9737483]. [PMID: 28050570].
[162]
Sharma S, Misra CS, Arumugam S, et al. Antidiabetic activity of resveratrol, a known SIRT1 activator in a genetic model for type-2 diabetes. Phytother Res 2011; 25(1): 67-73. [http://dx.doi.org/10.1002/ptr.3221]. [PMID: 20623590].
[163]
Zhu X, Wu C, Qiu S, Yuan X, Li L. Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: Systematic review and meta-analysis. Nutr Metab (Lond) 2017; 14: 60. [http://dx.doi.org/10.1186/s12986-017-0217-z]. [PMID: 29018489].
[165]
Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J 2004; 3 [http://dx.doi.org/10.1186/1475-2891-3-5]. [PMID: 15140261].
[166]
Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 2005; 51(2): 117-23. [http://dx.doi.org/10.1016/j.phrs.2004.06.002]. [PMID: 15629256].
[167]
Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 2008; 16(9): 2081-7. [http://dx.doi.org/10.1038/oby.2008.315]. [PMID: 18551111].
[168]
Kim IS, Yang M, Lee OH, Kang SN. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. Lebensm Wiss Technol 2011; 44(5): 1328-32. [http://dx.doi.org/10.1016/j.lwt.2010.12.003].
[169]
Kwon O, Eck P, Chen S, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 2007; 21(2): 366-77. [http://dx.doi.org/10.1096/fj.06-6620com]. [PMID: 17172639].
[170]
Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats. Indian J Clin Biochem 2010; 25(2): 188-92. [http://dx.doi.org/10.1007/s12291-010-0034-x].
[171]
Yang DK, Kang H-S. Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats. Biomol Ther (Seoul) 2018; 26(2): 130-8. [http://dx.doi.org/10.4062/biomolther.2017.254].
[172]
Choi H, Kim J, Kim J, Joo H, Kang Y. Hypoglycemic effect of quercetin in animal models of diabetes 2010.https://www.fasebj.org/doi/abs/10.1096/fasebj.24.1_supplement.722.22
[173]
Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96: 305-12. [http://dx.doi.org/10.1016/j.biopha.2017.10.001]. [PMID: 29017142].
[174]
Niture NT, Ansari AA, Naik SR. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 2014; 52(7): 720-7. [PMID: 25059040].
[175]
Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 2006; 98(1): 97-103. [http://dx.doi.org/10.1111/j.1742-7843.2006.pto_241.x]. [PMID: 16433898].
[176]
Pashikanti S, de Alba DR, Boissonneault GA, Cervantes-Laurean D. Rutin metabolites: Novel inhibitors of nonoxidative advanced glycation end products. Free Radic Biol Med 2010; 48(5): 656-63. [http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.019]. [PMID: 19969069].
[177]
Fernandes AAH, Novelli ELB, Okoshi K, et al. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother 2010; 64(3): 214-9. [http://dx.doi.org/10.1016/j.biopha.2009.08.007]. [PMID: 19932588].
[178]
Semwal DK, Semwal RB, Combrinck S, Viljoen A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016; 8(2): 90. [http://dx.doi.org/10.3390/nu8020090]. [PMID: 26891321].
[179]
Yao Y, Lin G, Xie Y, et al. Preformulation studies of myricetin: A natural antioxidant flavonoid. Pharmazie 2014; 69(1): 19-26. [PMID: 24601218].
[180]
Li Y, Ding Y. Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Sci Hum Wellness 2012; 1(1): 19-25. [http://dx.doi.org/10.1016/j.fshw.2012.08.002].
[181]
Li Y, Zheng X, Yi X, et al. Myricetin: A potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. FASEB J 2017; 31(6): 2603-11. [http://dx.doi.org/10.1096/fj.201601339R]. [PMID: 28270518].
[182]
Zelus C, Fox A, Calciano A, Faridian BS, Nogaj LA, Moffet DA. Myricetin Inhibits Islet Amyloid Polypeptide (IAPP) Aggregation and Rescues Living Mammalian Cells from IAPP Toxicity. Open Biochem J 2012; 6: 66-70.
[183]
Lakshmi A, Subramanian SP. Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7,12-dimethylbenz[a]anthracene. Toxicol Lett 2014; 229(2): 333-48. [http://dx.doi.org/10.1016/j.toxlet.2014.06.845]. [PMID: 24995432].
[184]
Sundaram R, Shanthi P, Sachdanandam P. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats. Phytomedicine 2014; 21(6): 793-9. [http://dx.doi.org/10.1016/j.phymed.2014.01.007]. [PMID: 24629597].
[185]
Kim MS, Hur HJ, Kwon DY, Hwang J-T. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol 2012; 358(1): 127-34. [http://dx.doi.org/10.1016/j.mce.2012.03.013]. [PMID: 22476082].
[186]
Giménez-Bastida JA, González-Sarrías A, Vallejo F, Espín JC, Tomás-Barberán FA. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels. Food Funct 2016; 7(1): 118-26. [http://dx.doi.org/10.1039/C5FO00771B]. [PMID: 26456097].
[187]
Visnagri A, Kandhare AD, Chakravarty S, Ghosh P, Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm Biol 2014; 52(7): 814-28. [http://dx.doi.org/10.3109/13880209.2013.870584]. [PMID: 24559476].
[188]
Akiyama S, Katsumata S-I, Suzuki K, Ishimi Y, Wu J, Uehara M. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J Clin Biochem Nutr 2010; 46(1): 87-92.
[189]
Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications 2012; 26(6): 483-90. [http://dx.doi.org/10.1016/j.jdiacomp.2012.06.001]. [PMID: 22809898].
[190]
Mulvihill EE, Allister EM, Sutherland BG, et al. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 2009; 58(10): 2198-210. [http://dx.doi.org/10.2337/db09-0634]. [PMID: 19592617].
[191]
Priscilla DH, Jayakumar M, Thirumurugan K. Flavanone naringenin: An effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. J Funct Foods 2015; 14: 363-73. [http://dx.doi.org/10.1016/j.jff.2015.02.005].
[192]
Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience 2012; 226: 62-72. [http://dx.doi.org/10.1016/j.neuroscience.2012.09.026]. [PMID: 22999973].
[193]
Carnesecchi S, Schneider Y, Ceraline J, et al. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. J Pharmacol Exp Ther 2001; 298(1): 197-200. [PMID: 11408542].
[194]
Chen W, Viljoen AM. Geraniol - A review of a commercially important fragrance material. S Afr J Bot 2010; 76(4): 643-51. [http://dx.doi.org/10.1016/j.sajb.2010.05.008].
[195]
El-Bassossy HM, Elberry AA, Ghareib SA. Geraniol improves the impaired vascular reactivity in diabetes and metabolic syndrome through calcium channel blocking effect. J Diabetes Complications 2016; 30(6): 1008-16. [http://dx.doi.org/10.1016/j.jdiacomp.2016.04.006]. [PMID: 27131411].
[196]
Zeković Z, Adamović D, Ćetković G, Radojković M, Vidovića S. Essential oil and extract of coriander (Coriandrum sativum L.). Acta Period Technol 2011; (42): 281-8. [http://dx.doi.org/10.2298/APT1142281Z].
[197]
Babukumar S, Vinothkumar V, Sankaranarayanan C, Srinivasan S. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm Biol 2017; 55(1): 1442-9. [http://dx.doi.org/10.1080/13880209.2017.1301494]. [PMID: 28330423].
[198]
El-Bassossy HM, Ghaleb H, Elberry AA, et al. Geraniol alleviates diabetic cardiac complications: Effect on cardiac ischemia and oxidative stress. Biomed Pharmacother 2017; 88: 1025-30. [http://dx.doi.org/10.1016/j.biopha.2017.01.131]. [PMID: 28178614].
[199]
Park JB, Velasquez MT. Potential effects of lignan-enriched flaxseed powder on bodyweight, visceral fat, lipid profile, and blood pressure in rats. Fitoterapia 2012; 83(5): 941-6. [http://dx.doi.org/10.1016/j.fitote.2012.04.010]. [PMID: 22542959].
[200]
Adolphe JL, Whiting SJ, Juurlink BHJ, Thorpe LU, Alcorn J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr 2010; 103(7): 929-38. [http://dx.doi.org/10.1017/S0007114509992753]. [PMID: 20003621].
[201]
Prasad K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J Lab Clin Med 2001; 138(1): 32-9. [http://dx.doi.org/10.1067/mlc.2001.115717]. [PMID: 11433226].
[202]
Moree SS, Kavishankar GB, Rajesha J. Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats. Phytomedicine 2013; 20(3-4): 237-45. [http://dx.doi.org/10.1016/j.phymed.2012.11.011]. [PMID: 23271000].
[203]
Szarc vel Szic K, Ndlovu MN, Haegeman G, Vanden Berghe W. Nature or nurture: Let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 2010; 80(12): 1816-32. [http://dx.doi.org/10.1016/j.bcp.2010.07.029]. [PMID: 20688047].
[204]
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7: 33. [http://dx.doi.org/10.1186/s13148-015-0068-2]. [PMID: 25861393].
[205]
Vanden Berghe W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012; 65(6): 565-76. [http://dx.doi.org/10.1016/j.phrs.2012.03.007]. [PMID: 22465217].
[206]
Guo Y, Su ZY, Kong ANT. Current Perspectives on Epigenetic Modifications by Dietary Chemopreventive and Herbal Phytochemicals. Curr Pharmacol Rep 2015; 1(4): 245-57. [http://dx.doi.org/10.1007/s40495-015-0023-0]. [PMID: 26328267].
[207]
Barrès R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 2012; 15(3): 405-11. [http://dx.doi.org/10.1016/j.cmet.2012.01.001]. [PMID: 22405075].
[208]
Rönn T, Volkov P, Davegårdh C, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 2013; 9(6)e1003572 [http://dx.doi.org/10.1371/journal.pgen.1003572]. [PMID: 23825961].
[209]
Jacobsen SC, Brøns C, Bork-Jensen J, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 2012; 55(12): 3341-9. [http://dx.doi.org/10.1007/s00125-012-2717-8]. [PMID: 22961225].
[210]
Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 991-1000. [http://dx.doi.org/10.3945/ajcn.116.143164]. [PMID: 28275132].
[211]
Declerck K, Vanden Berghe W. Back to the future: Epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 2018; 174: 18-29. [http://dx.doi.org/10.1016/j.mad.2018.01.002]. [PMID: 29337038].
[212]
Remely M, Lovrecic L, de la Garza AL, et al. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 2015; 172(11): 2756-68. [http://dx.doi.org/10.1111/bph.12854]. [PMID: 25046997].
[213]
Arpon A, Riezu-Boj JI, Milagro FI, et al. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells. J Physiol Biochem 2016; 73(3): 445-55. [PMID: 28181167].
[214]
Arpón A, Milagro FI, Razquin C, et al. Impact of consuming extra-virgin olive oil or nuts within a mediterranean diet on DNA methylation in peripheral white blood cells within the PREDIMED-navarra randomized controlled trial: A role for dietary lipids. Nutrients 2017; 10(1)E15 [PMID: 29295516].
[215]
Postler TS, Ghosh S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab 2017; 26(1): 110-30. [http://dx.doi.org/10.1016/j.cmet.2017.05.008]. [PMID: 28625867].
[216]
Thorburn AN, Macia L, Mackay CR. Diet, Metabolites, and “western-lifestyle” inflammatory diseases. Immunity 2014; 40(6): 833-42.
[217]
Yap YA, Mariño E. An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation. Front Immunol 2018; 9: 2617.https://www.ncbi.nlm.nih.gov/pubmed/30532751 [Internet]. [http://dx.doi.org/10.3389/fimmu.2018.02617]. [PMID: 30532751].
[218]
Gerhauser C. Impact of dietary gut microbial metabolites on the epigenome Philos Trans R Soc Lond B Biol Sci 2018; 373(1748) 20170359 [http://dx.doi.org/10.1098/rstb.2017.0359] [PMID: 29685968]
[219]
Mariño E, Richards JL, McLeod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 2017; 18(5): 552-62.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 15
Year: 2019
Page: [1760 - 1782]
Pages: 23
DOI: 10.2174/1381612825666190705191000
Price: $65

Article Metrics

PDF: 21
HTML: 3
EPUB: 1
PRC: 1

Special-new-year-discount