Dehydroandrographolide Inhibits Osteosarcoma Cell Growth and Metastasis by Targeting SATB2-mediated EMT

Author(s): Xuefeng Liu, Yonggang Fan, Jing Xie, Li Zhang, Lihua Li*, Zhenyuan Wang*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 14 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The 12-hydroxy-14-dehydroandrographolide (DP) is a predominant component of the traditional herbal medicine Andrographis paniculata (Burm. f.) Nees (Acanthaceae). Recent studies have shown that DP exhibits potent anti-cancer effects against oral and colon cancer cells.

Objective: This investigation examined the potential effects of DP against osteosarcoma cell.

Methods: A cell analyzer was used to measure cell viability. The cell growth and proliferation were performed by Flow cytometry and BrdU incorporation assay. The cell migration and invasion were determined by wound healing and transwell assay. The expression of EMT related proteins was examined by Western blot analysis.

Results: In this study, we found that DP treatment repressed osteosarcoma (OS) cell growth in a dose-dependent manner. DP treatment significantly inhibited OS cell proliferation by arresting the cell cycle at G2/M phase. In addition, DP treatment effectively inhibited the migration and invasion abilities of OS cells through wound healing and Transwell tests. Mechanistic studies revealed that DP treatment effectively rescued the epithelialmesenchymal transition (EMT), while forced expression of SATB2 in OS cells markedly reversed the pharmacological effect of DP on EMT.

Conclusion: Our data demonstrated that DP repressed OS cell growth through inhibition of proliferation and cell cycle arrest; DP also inhibited metastatic capability of OS cells through a reversal of EMT by targeting SATB2. These findings demonstrate DP’s potential as a therapeutic drug for OS treatment.

Keywords: 12-hydroxy-14-dehydroandrographolide, osteosarcoma cells, the nuclear protein special AT-rich sequence-binding protein 2, epithelial-mesenchymal transition, metastasis, anti-cancer.

[1]
Thomas, D.; Kansara, M. Epigenetic modifications in osteogenic differentiation and transformation. J. Cell. Biochem., 2006, 98(4), 757-769.
[2]
Wang, L.L. Biology of osteogenic sarcoma. Cancer J., 2005, 11(4), 294-305.
[3]
Nakagomi, K.; Kohwi, Y.; Dickinson, L.A.; Kohwi-Shigematsu, T. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol. Cell. Biol., 1994, 14(3), 1852-1860.
[4]
Dobreva, G.; Dambacher, J.; Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev., 2003, 17(24), 3048-3061.
[5]
Alcamo, E.A.; Chirivella, L.; Dautzenberg, M.; Dobreva, G.; Fariñas, I.; Grosschedl, R.; McConnell, S.K. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron, 2008, 57(3), 364-377.
[6]
Dobreva, G.; Chahrour, M.; Dautzenberg, M.; Chirivella, L.; Kanzler, B.; Fariñas, I.; Karsenty, G.; Grosschedl, R. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell, 2006, 125(5), 971-986.
[7]
Wang, S.; Zhou, J.; Wang, X.Y.; Hao, J.M.; Chen, J.Z.; Zhang, X.M.; Jin, H.; Liu, L.; Zhang, Y.F.; Liu, J.; Ding, Y.Q.; Li, J.M. Down-regulated expression of SATB2 is associated with metastasis and poor prognosis in colorectal cancer. J. Pathol., 2009, 219(1), 114-122.
[8]
Mansour, M.A.; Asano, E.; Hyodo, T.; Akter, K.A.; Takahashi, M.; Hamaguchi, M.; Senga, T. Special AT-rich sequence-binding protein 2 suppresses invadopodia formation in HCT116 cells via palladin inhibition. Exp. Cell Res., 2015, 332(1), 78-88.
[9]
Yang, M.H.; Yu, J.; Jiang, D.M.; Li, W.L.; Wang, S.; Ding, Y.Q. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J. Transl. Med., 2014, 12, 109.
[10]
Chung, J.; Lau, J.; Cheng, L.S.; Grant, R.I.; Robinson, F.; Ketela, T.; Reis, P.P.; Roche, O.; Kamel-Reid, S.; Moffat, J.; Ohh, M.; Perez-Ordonez, B.; Kaplan, D.R.; Irwin, M.S. SATB2 augments ΔNp63α in head and neck squamous cell carcinoma. EMBO Rep., 2010, 11(10), 777-783.
[11]
Aprelikova, O.; Yu, X.; Palla, J.; Wei, B.R.; John, S.; Yi, M.; Stephens, R.; Simpson, R.M.; Risinger, J.I.; Jazaeri, A.; Niederhuber, J. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle, 2010, 9(21), 4387-4398.
[12]
Seong, B.K.A.; Lau, J.; Adderley, T.; Kee, L.; Chaukos, D.; Pienkowska, M.; Malkin, D.; Thorner, P.; Irwin, M.S. SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene, 2015, 34(27), 3582-3592.
[13]
Iwano, M.; Plieth, D.; Danoff, T.M.; Xue, C.; Okada, H.; Neilson, E.G. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest., 2002, 110(3), 341-350.
[14]
Zhang, S.; Wang, X.; Osunkoya, A.O.; Iqbal, S.; Wang, Y.; Chen, Z.; Müller, S.; Chen, Z.; Josson, S.; Coleman, I.M.; Nelson, P.S.; Wang, Y.A.; Wang, R.; Shin, D.M.; Marshall, F.F.; Kucuk, O.; Chung, L.W.; Zhau, H.E.; Wu, D. EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene, 2011, 30(50), 4941-4952.
[15]
Thisoda, P.; Rangkadilok, N.; Pholphana, N.; Worasuttayangkurn, L.; Ruchirawat, S.; Satayavivad, J. Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation. Eur. J. Pharmacol., 2006, 553(1-3), 39-45.
[16]
Li, J.; Huang, W.; Zhang, H.; Wang, X.; Zhou, H. Synthesis of andrographolide derivatives and their TNF-alpha and IL-6 expression inhibitory activities. Bioorg. Med. Chem. Lett., 2007, 17(24), 6891-6894.
[17]
Sui, Y.; Wu, F.; Lv, J.; Li, H.; Li, X.; Du, Z.; Sun, M.; Zheng, Y.; Yang, L.; Zhong, L.; Zhang, X.; Zhang, G. Identification of the novel TMEM16A inhibitor dehydroandrographolide and its anticancer activity on SW620 cells. PLoS One, 2015, 10(12) e0144715
[18]
Hsieh, M.J.; Lin, C.W.; Chiou, H.L.; Yang, S.F.; Chen, M.K. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells. Oncotarget, 2015, 6(31), 30831-30849.
[19]
Fan, Y.; Weng, Z.; Gao, H.; Hu, J.; Wang, H.; Li, L.; Liu, H. Isoalantolactone enhances the radiosensitivity of UMSCC-10A cells via specific inhibition of Erk1/2 phosphorylation. PLoS One, 2015, 10(12) e0145790
[20]
Pabla, N.; Dong, G.; Jiang, M.; Huang, S.; Kumar, M.V.; Messing, R.O.; Dong, Z. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer. J. Clin. Invest., 2011, 121(7), 2709-2722.
[21]
Kucuksayan, H.; Ozes, O.N.; Akca, H. Downregulation of SATB2 is critical for induction of epithelial-to-mesenchymal transition and invasion of NSCLC cells. Lung Cancer, 2016, 98, 122-129.
[22]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[23]
Pines, J.; Hunter, T. Cyclins A and B1 in the human cell cycle. Ciba Found. Symp., 1992, 170, 187-196.
[24]
Santamaria, D.; Ortega, S. Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front. Biosci., 2006, 11, 1164-1188.
[25]
Bendris, N.; Lemmers, B.; Blanchard, J.M. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle, 2015, 14(12), 1786-1798.
[26]
Han, H.J.; Russo, J.; Kohwi, Y.; Kohwi-Shigematsu, T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature, 2008, 452(7184), 187-193.
[27]
Xiang, J.; Zhou, L.; Li, S.; Xi, X.; Zhang, J.; Wang, Y.; Yang, Y.; Liu, X.; Wan, X. AT-rich sequence binding protein 1: Contribution to tumor progression and metastasis of human ovarian carcinoma. Oncol. Lett., 2012, 3(4), 865-870.
[28]
Conner, J.R.; Hornick, J.L. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours. Histopathology, 2013, 63(1), 36-49.
[29]
Luo, L.J.; Yang, F.; Ding, J.J.; Yan, D.L.; Wang, D.D.; Yang, S.J.; Ding, L.; Li, J.; Chen, D.; Ma, R.; Wu, J.Z.; Tang, J.H. MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene, 2016, 594(1), 47-58.
[30]
Wei, J.; Shi, Y.; Zheng, L.; Zhou, B.; Inose, H.; Wang, J.; Guo, X.E.; Grosschedl, R.; Karsenty, G. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J. Cell Biol., 2012, 197(4), 509-521.
[31]
Hassan, M.Q.; Gordon, J.A.; Beloti, M.M.; Croce, C.M.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 19879-19884.
[32]
Zhang, J.; Tu, Q.; Grosschedl, R.; Kim, M.S.; Griffin, T.; Drissi, H.; Yang, P.; Chen, J. Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng. Part A, 2011, 17(13-14), 1767-1776.
[33]
Ge, C.; Xiao, G.; Jiang, D.; Yang, Q.; Hatch, N.E.; Roca, H.; Franceschi, R.T. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J. Biol. Chem., 2009, 284(47), 32533-32543.
[34]
Artigas, N.; Ureña, C.; Rodríguez-Carballo, E.; Rosa, J.L.; Ventura, F. Mitogen-activated protein kinase (MAPK)-regulated interactions between Osterix and Runx2 are critical for the transcriptional osteogenic program. J. Biol. Chem., 2014, 289(39), 27105-27117.
[35]
Evdokimova, V.; Tognon, C.E.; Sorensen, P.H. On translational regulation and EMT. Semin. Cancer Biol., 2012, 22(5-6), 437-445.
[36]
Sung, J.Y.; Park, S.Y.; Kim, J.H.; Kang, H.G.; Yoon, J.H.; Na, Y.S.; Kim, Y.N.; Park, B.K. Interferon consensus sequence-binding protein (ICSBP) promotes epithelial-to-mesenchymal transition (EMT)-like phenomena, cell-motility, and invasion via TGF-β signaling in U2OS cells. Cell Death Dis., 2014, 5e1224.
[37]
Tang, J.; Shen, L.; Yang, Q.; Zhang, C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif., 2014, 47(5), 427-434.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 14
Year: 2019
Page: [1728 - 1736]
Pages: 9
DOI: 10.2174/1871520619666190705121614
Price: $58

Article Metrics

PDF: 27
HTML: 2
EPUB: 1
PRC: 1