Therapeutic Effects of Hyperbaric Oxygen in the Process of Wound Healing

Author(s): Silvia Tejada, Juan M. Batle, Miguel D. Ferrer, Carla Busquets-Cortés, Margalida Monserrat-Mesquida, Seyed M. Nabavi, Maria del Mar Bibiloni, Antoni Pons, Antoni Sureda*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 15 , 2019


Abstract:

Chronic and non-healing wounds, especially diabetic foot ulcers and radiation injuries, imply remarkable morbidity with a significant effect on the quality of life and a high sanitary cost. The management of these wounds requires complex actions such as surgical debris, antibiotic treatment, dressings and even revascularization. These wounds are characterized by poor oxygen supply resulting in inadequate oxygenation of the affected tissue. The adjuvant treatment with hyperbaric oxygen therapy (HBOT) may increase tissue oxygenation favoring the healing of wounds which do not respond to the usual clinical care. The increase in the partial pressure of oxygen contributes to cover the energy demands necessary for the healing process and reduces the incidence of infections. Moreover, the increase in oxygen leads to the production of reactive species with hormetic activity, acting on signaling pathways that modulate the synthesis of inflammation mediators, antioxidants and growth factors which can contribute to the healing process. Studies performed with cell cultures and in animal models seem to demonstrate the beneficial effects of HBOT. However, clinical trials do not show such conclusive results; thus, additional randomized placebo-controlled studies are necessary to determine the real efficacy of HBOT and the mechanism of action for various types of wounds.

Keywords: Chronic wounds, diabetic ulcer, hyperbaric oxygen, reactive species, wound healing, antibiotic treatment.

[1]
Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc 2018; 81(2): 94-101. [http://dx.doi.org/10.1016/j.jcma.2017.11.002]. [PMID: 29169897].
[2]
Frangogiannis NG. The immune system and the remodeling infarcted heart: Cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 2014; 63(3): 185-95. [http://dx.doi.org/10.1097/FJC.0000000000000003]. [PMID: 24072174].
[3]
Tandara AA, Mustoe TA. Oxygen in wound healing--more than a nutrient. World J Surg 2004; 28(3): 294-300. [http://dx.doi.org/10.1007/s00268-003-7400-2]. [PMID: 14961188].
[4]
Shah JB. Correction of hypoxia, a critical element for wound bed preparation guidelines: TIMEO2 principle of wound bed preparation. J Am Col Certif Wound Spec 2011; 3(2): 26-32. [http://dx.doi.org/10.1016/j.jcws.2011.09.001]. [PMID: 24527166].
[5]
Stoekenbroek RM, Santema TB, Legemate DA, Ubbink DT, van den Brink A, Koelemay MJ. Hyperbaric oxygen for the treatment of diabetic foot ulcers: A systematic review. Eur J Vasc Endovasc Surg 2014; 47(6): 647-55. [http://dx.doi.org/10.1016/j.ejvs.2014.03.005]. [PMID: 24726143].
[6]
Game FL, Hinchliffe RJ, Apelqvist J, et al. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev 2012; 28(Suppl. 1): 119-41. [http://dx.doi.org/10.1002/dmrr.2246]. [PMID: 22271737].
[7]
Thackham JA, McElwain DL, Long RJ. The use of hyperbaric oxygen therapy to treat chronic wounds: A review. Wound Repair Regen 2008; 16(3): 321-30. [http://dx.doi.org/10.1111/j.1524-475X.2008.00372.x]. [PMID: 18471250].
[8]
Hayes PD, Alzuhir N, Curran G, Loftus IM. Topical oxygen therapy promotes the healing of chronic diabetic foot ulcers: A pilot study. J Wound Care 2017; 26(11): 652-60. [http://dx.doi.org/10.12968/jowc.2017.26.11.652]. [PMID: 29131746].
[9]
Edwards ML. Hyperbaric oxygen therapy. Part 1: history and principles. J Vet Emerg Crit Care (San Antonio) 2010; 20(3): 284-8. [http://dx.doi.org/10.1111/j.1476-4431.2010.00535.x]. [PMID: 20636980].
[10]
Sureda A, Batle JM, Martorell M, et al. Antioxidant response of chronic wounds to hyperbaric oxygen therapy. PLoS One 2016; 11(9)e0163371 [http://dx.doi.org/10.1371/journal.pone.0163371]. [PMID: 27654305].
[11]
Zgheib C, Xu J, Liechty KW. Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration. Adv Wound Care (New Rochelle) 2014; 3(4): 344-55. [http://dx.doi.org/10.1089/wound.2013.0456]. [PMID: 24757589].
[12]
Aydın F, Kaya A, Savran A, İncesu M, Karakuzu C, Öztürk AM. Diabetic hand infections and hyperbaric oxygen therapy. Acta Orthop Traumatol Turc 2014; 48(6): 649-54. [http://dx.doi.org/10.3944/AOTT.2014.3225]. [PMID: 25637729].
[13]
Barnes RC. Point: Hyperbaric oxygen is beneficial for diabetic foot wounds. Clin Infect Dis 2006; 43(2): 188-92. [http://dx.doi.org/10.1086/505207]. [PMID: 16779745].
[14]
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173(2): 370-8. [http://dx.doi.org/10.1111/bjd.13954]. [PMID: 26175283].
[15]
Ozgok Kangal MK, Regan JP. Wound Healing 2018.
[16]
Yip WL. Influence of oxygen on wound healing. Int Wound J 2015; 12(6): 620-4. [http://dx.doi.org/10.1111/iwj.12324]. [PMID: 24974913].
[17]
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing wound repair and regeneration: Official publication of the Wound Healing Society [and] the European Tissue Repair Society 2008; 16: 585-601.
[18]
Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol Life Sci 2016; 73(20): 3861-85. [http://dx.doi.org/10.1007/s00018-016-2268-0]. [PMID: 27180275].
[19]
Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc Res Tech 2003; 60(1): 107-14. [http://dx.doi.org/10.1002/jemt.10249]. [PMID: 12500267].
[20]
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci 2018; 19(10): 19. [http://dx.doi.org/10.3390/ijms19103217]. [PMID: 30340330].
[21]
Hopf HW, Hunt TK, West JM, et al. Wound tissue oxygen tension predicts the risk of wound infection in surgical patients. Arch Surg 1997; 132(9): 997-1004. [http://dx.doi.org/10.1001/archsurg.1997.01430330063010]. [PMID: 9301613].
[22]
Greif R, Akça O, Horn EP, Kurz A, Sessler DI. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med 2000; 342(3): 161-7. [http://dx.doi.org/10.1056/NEJM200001203420303]. [PMID: 10639541].
[23]
Ruthenborg RJ, Ban JJ, Wazir A, Takeda N, Kim JW. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol Cells 2014; 37(9): 637-43. [http://dx.doi.org/10.14348/molcells.2014.0150]. [PMID: 24957212].
[24]
Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci 2016; 17(12): 17. [http://dx.doi.org/10.3390/ijms17122085]. [PMID: 27973441].
[25]
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2015; 4(9): 560-82. [http://dx.doi.org/10.1089/wound.2015.0635]. [PMID: 26339534].
[26]
Peschen M, Lahaye T, Hennig B, Weyl A, Simon JC, Vanscheidt W. Expression of the adhesion molecules ICAM-1, VCAM-1, LFA-1 and VLA-4 in the skin is modulated in progressing stages of chronic venous insufficiency. Acta Derm Venereol 1999; 79(1): 27-32. [http://dx.doi.org/10.1080/000155599750011651]. [PMID: 10086854].
[27]
Soneja A, Drews M, Malinski T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing Pharmacological reports: PR. 2005; (57 Suppl). 108-9.
[28]
Schmidt A, Bekeschus S. Redox for Repair: Cold Physical Plasmas and Nrf2 Signaling Promoting Wound Healing. Antioxidants 2018; 7(10): 7. [http://dx.doi.org/10.3390/antiox7100146]. [PMID: 30347767].
[29]
Kushmakov R, Gandhi J, Seyam O, et al. Ozone therapy for diabetic foot. Med Gas Res 2018; 8(3): 111-5. [http://dx.doi.org/10.4103/2045-9912.241076]. [PMID: 30319766].
[30]
Zhang J, Guan M, Xie C, Luo X, Zhang Q, Xue Y. Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone therapy in diabetic patients with foot ulcers. Oxid Med Cell Longev 2014; 2014273475 [http://dx.doi.org/10.1155/2014/273475]. [PMID: 25089169].
[31]
Xiao W, Tang H, Wu M, et al. Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Biosci Rep 2017; 37(6): 37. [http://dx.doi.org/10.1042/BSR20170658]. [PMID: 28864782].
[32]
Jain KK, Ed. Textbook of Hyperbaric Medicine. 2017. [http://dx.doi.org/10.1007/978-3-319-47140-2]
[33]
Moon RE, Camporesi EM. Hyperbaric oxygen therapy: From the nineteenth to the twenty-first century. Respir Care Clin N Am 1999; 5(1): 1-5. [PMID: 10205810].
[34]
Wunderlich RP, Peters EJ, Lavery LA. Systemic hyperbaric oxygen therapy: Lower-extremity wound healing and the diabetic foot. Diabetes Care 2000; 23(10): 1551-5. [http://dx.doi.org/10.2337/diacare.23.10.1551]. [PMID: 11023151].
[35]
Sahni T, Singh P, John MJ. Hyperbaric oxygen therapy: current trends and applications. J Assoc Physicians India 2003; 51: 280-4. [PMID: 12839352].
[36]
Hess CL, Howard MA, Attinger CE. A review of mechanical adjuncts in wound healing: Hydrotherapy, ultrasound, negative pressure therapy, hyperbaric oxygen, and electrostimulation. Ann Plast Surg 2003; 51(2): 210-8. [http://dx.doi.org/10.1097/01.SAP.0000058513.10033.6B]. [PMID: 12897528].
[37]
Dauwe PB, Pulikkottil BJ, Lavery L, Stuzin JM, Rohrich RJ. Does hyperbaric oxygen therapy work in facilitating acute wound healing: A systematic review. Plast Reconstr Surg 2014; 133(2): 208e-15e. [http://dx.doi.org/10.1097/01.prs.0000436849.79161.a4]. [PMID: 24469192].
[38]
Meligy SS, Shehadat SA, Samsudin AR. Hyperbaric oxygen therapy: A review of possible new era in dentistry. J Dent Health Oral Disord Ther 2018; 9: 174-9. [http://dx.doi.org/10.15406/jdhodt.2018.09.00353].
[39]
Goldman RJ. Hyperbaric oxygen therapy for wound healing and limb salvage: A systematic review. PM R 2009; 1(5): 471-89. [http://dx.doi.org/10.1016/j.pmrj.2009.03.012]. [PMID: 19627935].
[40]
Thom SR. Hyperbaric oxygen: Its mechanisms and efficacy. Plast Reconstr Surg 2011; 127(Suppl. 1): 131S-41S. [http://dx.doi.org/10.1097/PRS.0b013e3181fbe2bf]. [PMID: 21200283].
[41]
de Smet GHJ, Kroese LF, Menon AG, et al. Oxygen therapies and their effects on wound healing. Wound Repair Regen 2017; 25(4): 591-608. [http://dx.doi.org/10.1111/wrr.12561]. [PMID: 28783878].
[42]
Vann RD, Butler FK, Mitchell SJ, Moon RE. Decompression illness. Lancet 2011; 377(9760): 153-64. [http://dx.doi.org/10.1016/S0140-6736(10)61085-9]. [PMID: 21215883].
[43]
Moon RE. Hyperbaric oxygen treatment for decompression sickness. Undersea Hyperb Med 2014; 41(2): 151-7. [PMID: 24851553].
[44]
Choudhury R. Hypoxia and hyperbaric oxygen therapy: A review. Int J Gen Med 2018; 11: 431-42. [http://dx.doi.org/10.2147/IJGM.S172460]. [PMID: 30538529].
[45]
Davis MC, Shoja MM, Tubbs SR, Griessenauer CJ. Hyperbaric oxygen therapy for chronic post-concussive syndrome. Med Gas Res 2014; 4(1): 8. [http://dx.doi.org/10.1186/2045-9912-4-8]. [PMID: 24717073].
[46]
Roth RN, Weiss LD. Hyperbaric oxygen and wound healing. Clin Dermatol 1994; 12(1): 141-56. [http://dx.doi.org/10.1016/0738-081X(94)90265-8]. [PMID: 8180937].
[47]
Andrade SM, Santos IC. Hyperbaric oxygen therapy for wound care. Rev Gaúcha Enferm 2016; 37(2)e59257 [PMID: 27410674].
[48]
Huang ET, Mansouri J, Murad MH, et al. A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea Hyperb Med 2015; 42(3): 205-47. [PMID: 26152105].
[49]
Knighton DR, Silver IA, Hunt TK. Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery 1981; 90(2): 262-70. [PMID: 6166996].
[50]
Soares Ferreira JM, Monteiro F, Vilela Silva J, Faria de Almeida A, Condé A. Hyperbaric Oxygen Therapy: Clinical Applications in Otorhinolaryngology. Biomed J Sci & Tech Res 2018; 7: 1-2. [http://dx.doi.org/10.26717/BJSTR.2018.07.001543].
[51]
Brismar K, Lind F, Kratz G, Kratz G. Dose-dependent hyperbaric oxygen stimulation of human fibroblast proliferation. Wound Repair Regen 1997; 5(2): 147-50. [http://dx.doi.org/10.1046/j.1524-475X.1997.50206.x]. [PMID: 16984424].
[52]
Lin S, Shyu KG, Lee CC, et al. Hyperbaric oxygen selectively induces angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2002; 296(3): 710-5. [http://dx.doi.org/10.1016/S0006-291X(02)00924-5]. [PMID: 12176040].
[53]
Kendall AC, Whatmore JL, Harries LW, Winyard PG, Smerdon GR, Eggleton P. Changes in inflammatory gene expression induced by hyperbaric oxygen treatment in human endothelial cells under chronic wound conditions. Exp Cell Res 2012; 318(3): 207-16. [http://dx.doi.org/10.1016/j.yexcr.2011.10.014]. [PMID: 22063471].
[54]
Kendall AC, Whatmore JL, Winyard PG, Smerdon GR, Eggleton P. Hyperbaric oxygen treatment reduces neutrophil-endothelial adhesion in chronic wound conditions through S-nitrosation. Wound Repair Regen 2013; 21(6): 860-8. [http://dx.doi.org/10.1111/wrr.12108]. [PMID: 24134224].
[55]
Kairuz E, Upton Z, Dawson RA, Malda J. Hyperbaric oxygen stimulates epidermal reconstruction in human skin equivalents. Wound Repair Regen 2007; 15(2): 266-74. [http://dx.doi.org/10.1111/j.1524-475X.2007.00215.x]. [PMID: 17352760].
[56]
Shyu KG, Hung HF, Wang BW, Chang H. Hyperbaric oxygen induces placental growth factor expression in bone marrow-derived mesenchymal stem cells. Life Sci 2008; 83(1-2): 65-73. [http://dx.doi.org/10.1016/j.lfs.2008.05.005]. [PMID: 18558410].
[57]
Lin HI, Chu SJ, Perng WC, Wu CP, Lin ZY, Huang KL. Hyperbaric oxygen attenuates cell growth in skin fibroblasts cultured in a high-glucose medium. Wound Repair Regen 2008; 16(4): 513-9. [http://dx.doi.org/10.1111/j.1524-475X.2008.00398.x]. [PMID: 18638270].
[58]
Yuan J, Handy RD, Moody AJ, Bryson P. Response of blood vessels in vitro to hyperbaric oxygen (HBO): Modulation of VEGF and NO(x) release by external lactate or arginine. Biochim Biophys Acta 2009; 1787(7): 828-34. [http://dx.doi.org/10.1016/j.bbabio.2009.03.009]. [PMID: 19298791].
[59]
Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 2010; 15(4): 431-42. [http://dx.doi.org/10.1007/s12192-009-0159-0]. [PMID: 19949909].
[60]
Tra WM, Spiegelberg L, Tuk B, Hovius SE, Perez-Amodio S. Hyperbaric oxygen treatment of tissue-engineered mucosa enhances secretion of angiogenic factors in vitro. Tissue Eng Part A 2014; 20(9-10): 1523-30. [http://dx.doi.org/10.1089/ten.tea.2012.0629]. [PMID: 24320751].
[61]
Almzaiel AJ, Billington R, Smerdon G, Moody AJ. Hyperbaric oxygen enhances neutrophil apoptosis and their clearance by monocyte-derived macrophages. Biochem Cell Biol 2015; 93(4): 405-16. [http://dx.doi.org/10.1139/bcb-2014-0157]. [PMID: 26194051].
[62]
Benincasa JC, de Freitas Filho LH, Carneiro GD, et al. Hyperbaric oxygen affects endothelial progenitor cells proliferation in vitro. Cell Biol Int 2019; 43(2): 136-46. [http://dx.doi.org/10.1002/cbin.11070]. [PMID: 30362212].
[63]
Sanford NE, Wilkinson JE, Nguyen H, Diaz G, Wolcott R. Efficacy of hyperbaric oxygen therapy in bacterial biofilm eradication. J Wound Care 2018; 27(Sup1). : S20-8. [http://dx.doi.org/10.12968/jowc.2018.27.Sup1.S20] [PMID: 29334015]
[64]
Larsen PE, Stronczek MJ, Beck FM, Rohrer M. Osteointegration of implants in radiated bone with and without adjunctive hyperbaric oxygen. J Oral Maxillofac Surg 1993; 51(3): 280-7. [http://dx.doi.org/10.1016/S0278-2391(10)80176-4]. [PMID: 8383193].
[65]
Helmers R, Milstein DM, van Hulst RA, de Lange J. Hyperbaric oxygen therapy accelerates vascularization in keratinized oral mucosal surgical flaps. Head Neck 2014; 36(9): 1241-7. [PMID: 23913629].
[66]
Bonomo SR, Davidson JD, Tyrone JW, Lin X, Mustoe TA. Enhancement of wound healing by hyperbaric oxygen and transforming growth factor beta3 in a new chronic wound model in aged rabbits. Arch Surg 2000; 135(10): 1148-53. [http://dx.doi.org/10.1001/archsurg.135.10.1148]. [PMID: 11030870].
[67]
Gungor A, Poyrazoglu E, Cincik H, Sali M, Candan H, Ay H. The effectiveness of hyperbaric oxygen treatment in tracheal reconstruction with auricular cartilage grafts (experimental study). Am J Otolaryngol 2003; 24(6): 390-4. [http://dx.doi.org/10.1016/S0196-0709(03)00091-7]. [PMID: 14608571].
[68]
Gorur R, Hahoglu A, Uzun G, et al. Effects of hyperbaric oxygen therapy on wound healing after tracheal resection and end-to-end anastomoses in rats: Results of early observations. Thorac Cardiovasc Surg 2008; 56(6): 359-62. [http://dx.doi.org/10.1055/s-2008-1038671]. [PMID: 18704859].
[69]
Quirinia A, Viidik A. The impact of ischemia on wound healing is increased in old age but can be countered by hyperbaric oxygen therapy. Mech Ageing Dev 1996; 91(2): 131-44. [http://dx.doi.org/10.1016/0047-6374(96)01782-4]. [PMID: 8905610].
[70]
Tuk B, Tong M, Fijneman EM, van Neck JW. Hyperbaric oxygen therapy to treat diabetes impaired wound healing in rats. PLoS One 2014; 9(10)e108533 [http://dx.doi.org/10.1371/journal.pone.0108533]. [PMID: 25329176].
[71]
van Neck JW, Tuk B, Fijneman EMG, Redeker JJ, Talahatu EM, Tong M. Hyperbaric oxygen therapy for wound healing in diabetic rats: Varying efficacy after a clinically-based protocol. PLoS One 2017; 12(5)e0177766 [http://dx.doi.org/10.1371/journal.pone.0177766]. [PMID: 28545109].
[72]
Yümün G, Kahaman C, Kahaman N, et al. Effects of hyperbaric oxygen therapy combined with platelet-rich plasma on diabetic wounds: An experimental rat model. Arch Med Sci 2016; 12(6): 1370-6. [http://dx.doi.org/10.5114/aoms.2016.62905]. [PMID: 27904531].
[73]
Peña-Villalobos I, Casanova-Maldonado I, Lois P, et al. Hyperbaric Oxygen Increases Stem Cell Proliferation, Angiogenesis and Wound-Healing Ability of WJ-MSCs in Diabetic Mice. Front Physiol 2018; 9: 995. [http://dx.doi.org/10.3389/fphys.2018.00995]. [PMID: 30104981].
[74]
Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ. Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J Invest Dermatol 2008; 128(8): 2102-12. [http://dx.doi.org/10.1038/jid.2008.53]. [PMID: 18337831].
[75]
Sunkari VG, Lind F, Botusan IR, et al. Hyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic mice. Wound Repair Regen 2015; 23(1): 98-103. [http://dx.doi.org/10.1111/wrr.12253]. [PMID: 25532619].
[76]
Milovanova TN, Bhopale VM, Sorokina EM, et al. Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 2008; 28(20): 6248-61. [http://dx.doi.org/10.1128/MCB.00795-08]. [PMID: 18710947].
[77]
Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol 2009; 106(3): 988-95. [http://dx.doi.org/10.1152/japplphysiol.91004.2008]. [PMID: 18845776].
[78]
Sander AL, Henrich D, Muth CM, Marzi I, Barker JH, Frank JM. In vivo effect of hyperbaric oxygen on wound angiogenesis and epithelialization. Wound Repair Regen 2009; 17(2): 179-84. [http://dx.doi.org/10.1111/j.1524-475X.2009.00455.x]. [PMID: 19320885].
[79]
Demirtas A, Azboy I, Bulut M, Ucar BY, Alabalik U, Ilgezdi S. Effect of hyperbaric oxygen therapy on healing in an experimental model of degloving injury in tails of nicotine-treated rats. J Hand Surg Eur Vol 2013; 38(4): 405-11. [http://dx.doi.org/10.1177/1753193412469130]. [PMID: 23221280].
[80]
Latimer CR, Lux CN, Roberts S, Drum MG, Braswell C, Sula MJM. Effects of hyperbaric oxygen therapy on uncomplicated incisional and open wound healing in dogs. Vet Surg 2018; 47(6): 827-36. [http://dx.doi.org/10.1111/vsu.12931]. [PMID: 30051475].
[81]
Paniello RC, Fraley PL, O’Bert R. Effect of hyperbaric oxygen therapy on a murine squamous cell carcinoma model. Head Neck 2014; 36(12): 1743-6. [http://dx.doi.org/10.1002/hed.23528]. [PMID: 24166929].
[82]
Perrins DJ. Influence of hyperbaric oxygen on the survival of split skin grafts. Lancet 1967; 1(7495): 868-71. [http://dx.doi.org/10.1016/S0140-6736(67)91428-6]. [PMID: 4164367].
[83]
Wang C, Schwaitzberg S, Berliner E, Zarin DA, Lau J. Hyperbaric oxygen for treating wounds: A systematic review of the literature. Arch Surg 2003; 138(3): 272-9. [http://dx.doi.org/10.1001/archsurg.138.3.272]. [PMID: 12611573].
[84]
Fedorko L, Bowen JM, Jones W, et al. Hyperbaric Oxygen Therapy Does Not Reduce Indications for Amputation in Patients With Diabetes With Nonhealing Ulcers of the Lower Limb: A Prospective, Double-Blind, Randomized Controlled Clinical Trial. Diabetes Care 2016; 39(3): 392-9. [http://dx.doi.org/10.2337/dc15-2001]. [PMID: 26740639].
[85]
Chen CY, Wu RW, Hsu MC, Hsieh CJ, Chou MC. Adjunctive hyperbaric oxygen therapy for healing of chronic diabetic foot ulcers: A randomized controlled trial. J Wound Ostomy Continence Nurs 2017; 44(6): 536-45. [http://dx.doi.org/10.1097/WON.0000000000000374]. [PMID: 28968346].
[86]
Kaplan ST, Hemsinli D, Kaplan S, Arslan A. Amputation predictors in diabetic foot ulcers treated with hyperbaric oxygen. J Wound Care 2017; 26(7): 361-6. [http://dx.doi.org/10.12968/jowc.2017.26.7.361]. [PMID: 28704149].
[87]
Santema KTB, Stoekenbroek RM, Koelemay MJW, et al. Hyperbaric Oxygen Therapy in the Treatment of Ischemic Lower- Extremity Ulcers in Patients With Diabetes: Results of the DAMO2CLES Multicenter Randomized Clinical Trial. Diabetes Care 2018; 41(1): 112-9. [PMID: 29074815].
[88]
Ennis WJ, Huang ET, Gordon H. Impact of Hyperbaric Oxygen on More Advanced Wagner Grades 3 and 4 Diabetic Foot Ulcers: Matching Therapy to Specific Wound Conditions. Adv Wound Care (New Rochelle) 2018; 7(12): 397-407. [http://dx.doi.org/10.1089/wound.2018.0855]. [PMID: 30671282].
[89]
Erdoğan A, Düzgün AP, Erdoğan K, Özkan MB, Coşkun F. Efficacy of Hyperbaric Oxygen Therapy in Diabetic Foot Ulcers Based on Wagner Classification. J Foot Ankle Surg 2018; 57(6): 1115-9. [http://dx.doi.org/10.1053/j.jfas.2018.05.011]. [PMID: 30368425].
[90]
Perren S, Gatt A, Papanas N, Formosa C. Hyperbaric Oxygen Therapy in Ischaemic Foot Ulcers in Type 2 Diabetes: A Clinical Trial. Open Cardiovasc Med J 2018; 12: 80-5. [http://dx.doi.org/10.2174/1874192401812010080]. [PMID: 30258500].
[91]
Thistlethwaite KR, Finlayson KJ, Cooper PD, et al. The effectiveness of hyperbaric oxygen therapy for healing chronic venous leg ulcers: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen 2018; 26(4): 324-31. [http://dx.doi.org/10.1111/wrr.12657]. [PMID: 30129080].
[92]
Irawan H, Semadi IN, Widiana IGR. A Pilot Study of Short-Duration Hyperbaric Oxygen Therapy to Improve HbA1c, Leukocyte, and Serum Creatinine in Patients with Diabetic Foot Ulcer Wagner 3-4. ScientificWorldJournal 2018; 20186425857 [http://dx.doi.org/10.1155/2018/6425857]. [PMID: 30158840].
[93]
Litwinowicz R, Bryndza M, Chrapusta A, Kobielska E, Kapelak B, Grudzień G. Hyperbaric oxygen therapy as additional treatment in deep sternal wound infections - a single center’s experience. Kardiochir Torakochirurgia Pol 2016; 13(3): 198-202. [http://dx.doi.org/10.5114/kitp.2016.62604]. [PMID: 27785131].
[94]
Yildiz H, Senol L, Ercan E, Bilgili ME, Karabudak Abuaf O. A prospective randomized controlled trial assessing the efficacy of adjunctive hyperbaric oxygen therapy in the treatment of hidradenitis suppurativa. Int J Dermatol 2016; 55(2): 232-7. [http://dx.doi.org/10.1111/ijd.12936]. [PMID: 26267600].
[95]
Zhou BC, Liu LJ, Liu B. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: Not by immediately improving cerebral oxygen saturation and oxygen partial pressure. Neural Regen Res 2016; 11(9): 1445-9. [http://dx.doi.org/10.4103/1673-5374.191218]. [PMID: 27857747].
[96]
Wiser I, Roni AS, Ziv E, et al. Is There an Association Between Hyperbaric Oxygen Therapy and Improved Outcome of Deep Chemical Peeling? A Randomized Pilot Clinical Study. Plast Surg (Oakv) 2018; 26(4): 250-5. [http://dx.doi.org/10.1177/2292550317749511]. [PMID: 30450343].
[97]
Hollander MHJ, Boonstra O, Timmenga NM, Schortinghuis J. Hyperbaric Oxygen Therapy for Wound Dehiscence After Intraoral Bone Grafting in the Nonirradiated Patient: A Case Series. J Oral Maxillofac Surg 2017; 75(11): 2334-9. [http://dx.doi.org/10.1016/j.joms.2017.07.146]. [PMID: 28784587].
[98]
Griffiths C, Howell RS, Boinpally H, et al. Using advanced wound care and hyperbaric oxygen to manage wound complications following treatment of vulvovaginal carcinoma. Gynecol Oncol Rep 2018; 24: 90-3. [http://dx.doi.org/10.1016/j.gore.2018.04.002]. [PMID: 29915804].
[99]
Jenwitheesuk K, Mahakkanukrauh A, Punjaruk W, et al. Efficacy of Adjunctive Hyperbaric Oxygen Therapy in Osteoradionecrosis Biores Open Access 2018; 7: 145-9.
[http://dx.doi.org/10.1089/biores.2018.0019]
[100]
Aghajan Y, Grover I, Gorsi H, Tumblin M, Crawford JR. Use of hyperbaric oxygen therapy in pediatric neuro-oncology: A single institutional experience. J Neurooncol 2019; 141(1): 151-8. [http://dx.doi.org/10.1007/s11060-018-03021-x]. [PMID: 30426388].
[101]
Lambertsen CJ, Dough RH, Cooper DY, Emmel GL, Loeschcke HH, Schmidt CF. Oxygen toxicity; effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism. J Appl Physiol 1953; 5(9): 471-86. [http://dx.doi.org/10.1152/jappl.1953.5.9.471]. [PMID: 13034675].
[102]
Al-Waili NS, Butler GJ. Effects of hyperbaric oxygen on inflammatory response to wound and trauma: Possible mechanism of action. ScientificWorldJournal 2006; 6: 425-41. [http://dx.doi.org/10.1100/tsw.2006.78]. [PMID: 16604253].
[103]
Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci 2010; 1197: 178-83. [http://dx.doi.org/10.1111/j.1749-6632.2009.05393.x]. [PMID: 20536847].
[104]
Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 2001; 98(5): 2604-9. [http://dx.doi.org/10.1073/pnas.041359198]. [PMID: 11226286].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 15
Year: 2019
Page: [1682 - 1693]
Pages: 12
DOI: 10.2174/1381612825666190703162648
Price: $58

Article Metrics

PDF: 26
HTML: 4
EPUB: 2
PRC: 2

Special-new-year-discount