Isatoic Anhydride: A Fascinating and Basic Molecule for the Synthesis of Substituted Quinazolinones and Benzo di/triazepines

Author(s): Zahra Tashrifi, Mohammad Mohammadi-Khanaposhtani, Mahmood Biglar, Bagher Larijani, Mohammad Mahdavi*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

This review article is focused on the synthesis of compounds with quinazolinones and benzo di/triazepine scaffolds. These invaluable derivatives are of great interest in medicinal and pharmaceutical studies because of their important biological properties. Quinazolinones have diverse applications due to their antibacterial, analgesic, antiinflammatory, antifungal, antimalarial, antihypertensive, CNS depressant, anticonvulsant, antihistaminic, antiparkinsonism, antiviraland and anticancer activities. On the other hand, pharmacological properties of benzodiazepines include antianxiety, anticancer, anticonvulsant, antagonists of cholecystokinin receptors (CCK), antileishmanial, sleep-inducing muscle relaxant and several other useful and interesting properties. As an example, three main categories of drugs, namely anxiolytics, sedative hypnotics (sleep inducers) and anticonvulsants are constructed by 1,4-benzodiazepines. Finally, benzotriazepines are believed to possess various pharmacological properties such as antipsychotic and antitumor activities. Hence, this review is divided into three major sections, considering quinazolinones, benzodiazepines and benzotriazepines. In the first section, we take a brief look at various approaches towards synthesis of substituted quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones. Also in this section, we try to give an overview of the synthetic routes and strategies recently reported for the generation of various classes of substituted 4(3H)-quinazolinones and 2,3-dihydroquinazolin-4(1H)-ones. Accordingly, quinazolin-4(3H)-ones, were subdivided into three major classes: 2-substituted, 3-substituted and 2,3-disubstituted-quinazolinones. 2,3- dihydroquinazolin-4(1H)-ones also were subdivided into six sub-categories: 2-monosubstituted, 2,2- disubstituted, 2,3-disubstituted, 1,2,3-trisubstituted, 2,2,3-trisubstituted 2,3-dihydroquinazolin-4(1H)-ones and boron-containing quinazoline-4(1H)-ones. In the other two sections, we cover the literature related to synthesis of benzo di/triazepine. The most recent developments are highlighted with a special emphasis on new synthetic routes based on isatoic anhydride as starting material.

Keywords: Isatoic anhydride, benzodiazepines, benzotriazepines, 2, 3-dihydroquinazoline-4(1H)-ones quinazolin-4(3H)-ones.

[1]
Roy, S.R. Isatoic anhydride. Synlett, 2011, 2011(10), 1479-1480. [http://dx.doi.org/10.1055/s-0030-1260575].
[2]
Deligeorgiev, T.; Vasilev, A.; Vaquero, J.J.; Alvarez-Builla, J. A green synthesis of isatoic anhydrides from isatins with urea-hydrogen peroxide complex and ultrasound. Ultrason. Sonochem., 2007, 14(5), 497-501. [http://dx.doi.org/10.1016/j.ultsonch.2006.12.003]. [PMID: 17258493].
[3]
Brouillette, Y.; Martinez, J.; Lisowski, V. Chemistry of ring‐fused oxazine‐2,4‐diones. Eur. J. Org. Chem., 2009, 2009(21), 3487-3503. [http://dx.doi.org/10.1002/ejoc.200801007].
[4]
Cao, S.L.; Feng, Y.P.; Jiang, Y.Y.; Liu, S.Y.; Ding, G.Y.; Li, R.T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett., 2005, 15(7), 1915-1917. [http://dx.doi.org/10.1016/j.bmcl.2005.01.083]. [PMID: 15780632].
[5]
Giri, R.S.; Thaker, H.M.; Giordano, T.; Williams, J.; Rogers, D.; Sudersanam, V.; Vasu, K.K. Design, synthesis and characterization of novel 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-kB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. Eur. J. Med. Chem., 2009, 44(5), 2184-2189. [http://dx.doi.org/10.1016/j.ejmech.2008.10.031]. [PMID: 19064304].
[6]
Kadi, A.A.; El-Azab, A.S.; Alafeefy, A.M.; Abdel-Hamide, S.G. Synthesis and biological screening of some new substituted 2-mercapto-4(3H) quinazolinone analogues as anticonvulsant agents. Al-Azhar J. Pharm. Sci., 2006, 34, 147-158.
[7]
Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J.P. CNS depressant and anticonvulsant activities of some novel 3- [5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem., 2008, 43(9), 1945-1954. [http://dx.doi.org/10.1016/j.ejmech.2007.12.003]. [PMID: 18222569].
[8]
Xia, Y.; Yang, Z.Y.; Hour, M.J.; Kuo, S.C.; Xia, P.; Bastow, K.F.; Nakanishi, Y.; Namrpoothiri, P.; Hackl, T.; Hamel, E.; Lee, H.K. Antitumor agents. Part 204: Synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg. Med. Chem. Lett., 2001, 11(9), 1193-1196. [http://dx.doi.org/10.1016/S0960-894X(01)00190-1]. [PMID: 11354375].
[9]
Jessy, E.M.; Sambanthan, A.T.; Alex, J.; Sridevi, C.H.; Srinivasan, K.K. Synthesis and biological evaluation of some novel quinazolones. Indian J. Pharm. Sci., 2007, 69, 476-478. [http://dx.doi.org/10.4103/0250-474X.34571].
[10]
Alagarsamy, V.; Thangathiruppathy, A.; Rajasekaran, S.; Vijaykumar, S.; Revathi, R.; Anburaj, J.; Arunkumar, S.; Rajesh, S. Pharmacological evaluation of 2-substituted(1,3,4)thiadiazolo quinazolines. Indian J. Pharm. Sci., 2006, 68, 108-111. [http://dx.doi.org/10.4103/0250-474X.22980].
[11]
Griess, P. Über die einwirkung des cyans auf anthranilsäure. Ber. Dtsch. Chem. Ges., 1869, 2, 415-418. [http://dx.doi.org/10.1002/cber.186900201180].
[12]
Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs. Res. Pharm., 2011, 1, 1-21.
[13]
Koepfli, J.B.; Mead, J.F.; Brockman, J.A., Jr An alkaloid with high antimalarial activity from Dichroa febrifuga. J. Am. Chem. Soc., 1947, 69(7), 1837-1837. [http://dx.doi.org/10.1021/ja01199a513]. [PMID: 20251439].
[14]
Yoshida, S.; Aoyagi, T.; Harada, S.; Matsuda, N.; Ikeda, T.; Naganawa, H.; Hamada, M.; Takeuchi, T. Production of 2-methyl-4[3H]-quinazolinone, an inhibitor of poly(ADP-ribose) synthetase, by bacterium. J. Antibiot. (Tokyo), 1991, 44(1), 111-112. [http://dx.doi.org/10.7164/antibiotics.44.111]. [PMID: 1900501].
[15]
Deng, Y.; Xu, R.; Ye, Y. A new quinazolone alkaloid from leaves of Dichroa febrifuga. J. Chin. Pharm. Sci., 2000, 9, 116-118.
[16]
Fujimoto, H.; Negishi, E.; Yamaguchi, K.; Nishi, N.; Yamazaki, M. Isolation of new tremorgenic metabolites from an Ascomycete, Corynascus setosus. Chem. Pharm. Bull. (Tokyo), 1996, 44, I843-I1848. [http://dx.doi.org/10.1248/cpb.44.1843].
[17]
Joshi, B.S.; Bai, Y.; Puar, M.S.; Dubose, K.K.; Pelletier, S.W. 1H-and 13C-NMR assignments for some pyrrolo2, 1bquinazoline alkaloids of adhatoda vasica. J. Nat. Prod., 1994, 57, 953-962. [http://dx.doi.org/10.1021/np50109a012].
[18]
Ma, Z.Z.; Hano, Y.; Nomura, T.; Chen, Y.J. Two new pyrroloquinazolinoquinoline alkaloids from Peganum nigellastrum. Heterocycles, 1997, 46, 541-546. [http://dx.doi.org/10.3987/COM-97-S65].
[19]
Sheen, W.S.; Tsai, I.L.; Teng, C.M.; Ko, F.N.; Chen, I.S. Indolopyridoquinazoline alkaloids with antiplatelet aggregation activity from Zanthoxylum integrifoliolum. Planta Med., 1996, 62(2), 175-176. [http://dx.doi.org/10.1055/s-2006-957846]. [PMID: 8657756].
[20]
Takahashi, C.; Matsushita, T.; Doi, M.; Minoura, K.; Shingu, T.; Kumeda, Y.; Numata, A. Fumiquinazolines A–G, novel metabolites of a fungus separated from a Pseudolabrus marine fish. J. Chem. Soc., Perkin Trans. 1, 1995, 2345-2353. [http://dx.doi.org/10.1039/P19950002345].
[21]
Belofsky, G.N.; Anguera, M.; Jensen, P.R.; Fenical, W.; Köck, M. Oxepinamides A-C and fumiquinazolines H--I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chemistry, 2000, 6(8), 1355-1360. [http://dx.doi.org/10.1002/(SICI)1521-3765(20000417)6:8<1355:AID-CHEM1355>3.0.CO;2-S]. [PMID: 10840958].
[22]
Tashrifi, Z.; Rad-Moghadam, K.; Mehrdad, M.; Soheilizad, M.; Larijani, B.; Mahdavi, M. Green synthesis of 2-((2-aryl-3-oxoisoindolin-1-yl) methyl) quinazolin-4 (3H)-ones via sequential condensation, sp3 C-H bond functionalization and cyclization. Tetrahedron Lett., 2018, 59, 1555-1559. [http://dx.doi.org/10.1016/j.tetlet.2018.03.020].
[23]
Abe, T.; Kida, K.; Yamada, K. A copper-catalyzed Ritter-type cascade via iminoketene for the synthesis of quinazolin-4(3H)-ones and diazocines. Chem. Commun. (Camb.), 2017, 53(31), 4362-4365. [http://dx.doi.org/10.1039/C7CC01406F]. [PMID: 28374023].
[24]
Mayer, J.P.; Lewis, G.S.; Curtis, M.J.; Zhang, J. Solid phase synthesis of quinazolinones. Tetrahedron Lett., 1997, 38, 8445-8448. [http://dx.doi.org/10.1016/S0040-4039(97)10276-3].
[25]
Yang, R.Y.; Kaplan, A. A concise and efficient solid-phase synthesis of 2-amino-4(3H)-quinazolinones. Tetrahedron Lett., 2000, 41, 7005-7008. [http://dx.doi.org/10.1016/S0040-4039(00)01201-6].
[26]
Akazome, M.; Kondo, T.; Watanabe, Y. Transition-metal complex-catalyzed reductive N-heterocyclization: synthesis of 4(3H)-quinazolinone derivatives from N-(2-nitrobenzoyl) amides. J. Org. Chem., 1993, 58, 310-312. [http://dx.doi.org/10.1021/jo00054a008].
[27]
Al-Talib, M.; Jochims, J.C.; Hamed, A.; Wang, Q.; Ismail, A.E.H. 4(3H)-Quinazolinones from the reaction of N-arylnitrilium salts with isocyanates. Synthesis, 1992, 1992(7), 697-701. [http://dx.doi.org/10.1055/s-1992-26203].
[28]
Takeuchi, H.; Hagiwara, S.; Eguchi, S. A new efficient synthesis of imidazolinones and quinazolinone by intramolecular aza-Wittig reaction. Tetrahedron, 1989, 45, 6375-6386. [http://dx.doi.org/10.1016/S0040-4020(01)89515-6].
[29]
Khajavi, M. Reaction of anthranilic acid with orthoesters: a new facile one-pot synthesis of 2-substituted 4H-3,1-Benzoxazin-4-ones. J. Chem. Res. Synop., 1997, 8, 286-287. [http://dx.doi.org/10.1039/a700411g].
[30]
Chen, J.; Wu, D.; He, F.; Liu, M.; Wu, H.; Ding, J.; Su, W. Gallium (III) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones. Tetrahedron Lett., 2008, 49, 3814-3818. [http://dx.doi.org/10.1016/j.tetlet.2008.03.127].
[31]
Zhang, J.; Ren, D.; Ma, Y.; Wang, W.; Wu, H. CuO nanoparticles catalyzed simple and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones under ultrasound irradiation in aqueous ethanol under ultrasound irradiation in aqueous ethanol. Tetrahedron, 2014, 70, 5274-5282. [http://dx.doi.org/10.1016/j.tet.2014.05.059].
[32]
Varadi, A.; Horvath, P.; Kurtan, T.; Mandi, A.; Toth, G.; Gergely, A.; Kokosi, J. Synthesis and configurational assignment of 1,2-dihydroimidazo [5,1-b] quinazoline-3,9-diones: novel NMDA receptor antagonists. Tetrahedron, 2012, 68, 10365-10371. [http://dx.doi.org/10.1016/j.tet.2012.09.086].
[33]
Jankowski, F.; Verones, V.; Flouquet, N.; Carato, P.; Berthelot, P.; Lebegue, N. Efficient microwave-assisted two-step procedure for the synthesis of 1,3-disubstituted-imidazo [1,5-a] quinazolin-5-(4H)-ones. Tetrahedron, 2010, 66, 128-133. [http://dx.doi.org/10.1016/j.tet.2009.11.025].
[34]
Witt, A.; Bergman, J. Synthesis and reactions of some 2-vinyl-3H-quinazolin-4-ones. Tetrahedron, 2000, 56, 7245-7253. [http://dx.doi.org/10.1016/S0040-4020(00)00595-0].
[35]
Lopez, S.E.; Rosales, M.E.; Urdaneta, N.; Gody, M.V.; Charris, J.E. The synthesis of substituted 2-aryl-4(3H)-quinazolinones using NaHSO3/DMA. Steric effect upon the cyclisation-dehydrogenation step. J. Chem. Res. Synop., 2000, 6, 258-259. [http://dx.doi.org/10.3184/030823400103167381].
[36]
Deepthi, K.S.; Reddy, D.S.; Reddy, P.P.; Reddy, P.S.N. Microwave induced dry media DDQ oxidation-A one step synthesis of 2-arylquinazolin-4(3H)-ones. Indian J. Chem. Sect. B, 2000, 39, 220-222. [http://dx.doi.org/10.1002/chin.200031171].
[37]
Davoodnia, A.; Allameh, S.; Fakhari, A.R.; Tavakoli-Hoseini, N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chin. Chem. Lett., 2010, 21, 550-553. [http://dx.doi.org/10.1016/j.cclet.2010.01.032].
[38]
Abdel-Jalil, R.J.; Voelter, W.; Saeed, M. A novel method for the synthesis of 4(3H)-quinazolinones. Tetrahedron Lett., 2004, 45, 3475-3476. [http://dx.doi.org/10.1016/j.tetlet.2004.03.003].
[39]
Bakavoli, M.; Shiri, A.; Ebrahimpour, Z.; Rahimizadeh, M. Clean heterocyclic synthesis in water: I2/KI catalyzed one-pot synthesis of quinazolin-4(3H)-ones. Chin. Chem. Lett., 2008, 19, 1403-1406. [http://dx.doi.org/10.1016/j.cclet.2008.07.016].
[40]
Zeng, L.Y.; Cai, C. Iodine: Selectively promote the synthesis of mono substituted quinazolin‐4(3H)‐ones and 2,3‐dihydroquinazolin‐4(1H)‐ones in one‐pot. J. Heterocycl. Chem., 2010, 47, 1035-1039. [http://dx.doi.org/10.1002/jhet.414].
[41]
Dabiri, M.; Salehi, P.; Bahramnejad, M.; Alizadeh, M. A practical and versatile approach toward a one-pot synthesis of 2,3-disubstituted 4(3H)-quinazolinones. Monatsh. Chem., 2010, 141, 877-881. [http://dx.doi.org/10.1007/s00706-010-0341-1].
[42]
Li, F.; Feng, Y.; Meng, Q.; Li, W.; Li, Z.; Wang, Q.; Tao, F. An efficient construction of quinazolin-4(3H)-ones under microwave irradiation. ARKIVOC, 2007, 1, 40-50.
[43]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Baghbanzadeh, M. A new approach to the facile synthesis of mono-and disubstituted quinazolin-4(3H)-ones under solvent-free conditions. Tetrahedron Lett., 2005, 46, 7051-7053. [http://dx.doi.org/10.1016/j.tetlet.2005.08.043].
[44]
Dabiri, M.; Salehi, P.; Mohammadi, A.A.; Baghbanzadeh, M. One‐pot synthesis of mono‐and disubstituted (3H) quinazolin‐4‐ones in dry media under microwave irradiation. Synth. Commun., 2005, 35, 279-287. [http://dx.doi.org/10.1081/SCC-200048462].
[45]
Dabiri, M.; Baghbanzadeh, M.; Delbari, A.S. Novel and efficient one-pot tandem synthesis of 2-styryl-substituted 4(3H)-quinazolinones. J. Comb. Chem., 2008, 10(5), 700-703. [http://dx.doi.org/10.1021/cc800067g]. [PMID: 18671434].
[46]
Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia, S.; Chakraborti, A.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: Applications towards the synthesis of drugs. RSC Advances, 2015, 5, 30819-30825. [http://dx.doi.org/10.1039/C5RA03888J].
[47]
Priego, J.; Flores, P.; Ortiz-Nava, C.; Escalante, J. Synthesis of enantiopure cis-and trans-2-aminocyclohexane-1-carboxylic acids from octahydroquinazolin-4-ones. Tetrahedron Asymmetry, 2004, 15, 3545-3549. [http://dx.doi.org/10.1016/j.tetasy.2004.08.032].
[48]
Rad-Moghadam, K.; Mamghani, M.; Samavi, L. Convergent one‐pot synthesis of 3‐substituted quinazolin‐4(3H)‐ones under solvent‐free conditions. Synth. Commun., 2006, 36, 2245-2252. [http://dx.doi.org/10.1080/00397910600639257].
[49]
Rao, K.R.; Raghunadh, A.; Mekala, R.; Meruva, S.B.; Pratap, T.V.; Krishna, T.; Kalita, D.; Laxminarayana, E.; Prasad, B.; Pal, M. Glyoxylic acid in the reaction of isatoic anhydride with amines: A rapid synthesis of 3-(un)substituted quinazolin-4(3H)-ones leading to rutaecarpine and evodiamine. Tetrahedron Lett., 2014, 55, 6004-6006. [http://dx.doi.org/10.1016/j.tetlet.2014.09.011].
[50]
Farzipour, S.; Saeedi, M.; Mahdavi, M.; Yavari, H.; Mirzahekmati, M.; Ghaemi, N.; Foroumadi, A.; Shafiee, A. Vilsmeier reagent: An efficient reagent for the transformation of 2-aminobenzamides into quinazolin-4(3H)-one derivatives. Synth. Commun., 2014, 44, 481-487. [http://dx.doi.org/10.1080/00397911.2013.811528].
[51]
Bakavoli, M.; Sabzevari, O.; Rahimizadeh, M. HY-zeolites induced heterocyclization: Highly efficient synthesis of substituted-quinazolin-4(3H)ones under microwave irradiation. Chin. Chem. Lett., 2007, 18, 533-535. [http://dx.doi.org/10.1016/j.cclet.2007.03.029].
[52]
Lingaiah, B.V.; Ezikiel, G.; Yakaiah, T.; Reddy, G.V.; Rao, P.S. Nafion-H: An efficient and recyclable heterogeneous catalyst for the one-pot synthesis of 2,3-disubstituted 4-(3H)-quinazolinones under solvent-free microwave irradiation conditions. Synlett, 2006, 2006(15), 2507-2509. [http://dx.doi.org/10.1055/s-2006-950428].
[53]
Mohammadi, A.A.; Ahdenov, R.; Sooki, A.A. Design, synthesis and antibacterial evaluation of 2-alkyl-and 2-aryl-3-(phenylamino)quinazolin-4(3H)-one derivatives. Heterocycl. Commun., 2017, 23, 105-108. [http://dx.doi.org/10.1515/hc-2016-0201].
[54]
Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2663-2669. [http://dx.doi.org/10.1016/j.bmcl.2016.04.012]. [PMID: 27095514].
[55]
Yang, W.; Qiao, R.; Chen, J.; Huang, X.; Liu, M.; Gao, W.; Ding, J.; Wu, H. Palladium-catalyzed cascade reaction of 2-amino-N′-arylbenzohydrazides with triethyl orthobenzoates to construct indazolo[3,2-b]quinazolinones. J. Org. Chem., 2015, 80(1), 482-489. [http://dx.doi.org/10.1021/jo5024848]. [PMID: 25437529].
[56]
Baghbanzadeh, M.; Dabiri, M.; Salehi, P. A new efficient method for the three-component synthesis of 4(3H)-quinazolinones. Heterocycles, 2008, 75, 2809-2815. [http://dx.doi.org/10.3987/COM-08-11437].
[57]
Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Baghersad, S.; Mirjafari, A. Efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones from aromatic aldehydes and their one-pot oxidation to quinazolin-4(3H)-ones catalyzed by Bi(NO3)3•5H2O: investigating the role of the catalyst. C. R. Chim., 2011, 14, 944-952. [http://dx.doi.org/10.1016/j.crci.2011.05.003].
[58]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: an efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374, 102-110. [http://dx.doi.org/10.1016/j.molcata.2013.04.002].
[59]
Mehta, H.B.; Dixit, B.C.; Dixit, R.B. L-Proline catalyzed one-pot multi-component synthesis of 2-(1,3-diphenyl-1H-pyrazol-4-yl) quinazolin-4(3H)-one derivatives and their biological studies. Chin. Chem. Lett., 2014, 25, 741-744. [http://dx.doi.org/10.1016/j.cclet.2014.03.015].
[60]
Adib, M.; Sheikhi, E.; Bijanzadeh, H.R. One-pot three-component synthesis of 4(3H)-quinazolinones from benzyl halides, isatoic anhydride, and primary amines. Synlett, 2012, 2012(1), 85-88. [http://dx.doi.org/10.1055/s-0031-1290098].
[61]
Asadi, M.; Ebrahimi, M.; Mahdavi, M.; Saeedi, M.; Ranjbar, P.R.; Yazdani, F.; Shafiee, A.; Foroumadi, A. Reaction of isatoic anhydride, amine, and N,N′-dialkyl carbodiimides under solvent-free conditions: New and efficient synthesis of 3-alkyl-2-(alkylamino)quinazolin-4(3H)-ones. Synth. Commun., 2013, 43, 2385-2392. [http://dx.doi.org/10.1080/00397911.2012.714042].
[62]
Asadi, M.; Masoomi, S.; Ebrahimi, S.M.; Mahdavi, M.; Saeedi, M.; Shafiee, A.; Foroumadi, A. Convenient and sequential one-pot route for synthesis of 2-thioxoquinazolinone and quinazolinobenzothiazinedione derivatives. Monatsh. Chem., 2014, 145, 497-504. [http://dx.doi.org/10.1007/s00706-013-1110-8].
[63]
Heidary, M.; Khoobi, M.; Ghasemi, S.; Habibi, Z.; Faramarzi, M.A. Synthesis of quinazolinones from alcohols via laccase‐mediated tandem oxidation. Adv. Synth. Catal., 2014, 356, 1789-1794. [http://dx.doi.org/10.1002/adsc.201400103].
[64]
Murthy, V.N.; Nikumbh, S.P.; Kumar, S.P.; Rao, L.V.; Raghunadh, A. An efficient one pot synthesis of 2-amino quinazolin-4(3H)-one derivative via MCR strategy. Tetrahedron Lett., 2015, 56, 5767-5770. [http://dx.doi.org/10.1016/j.tetlet.2015.08.040].
[65]
Mahdavi, M.; Pedrood, K.; Safavi, M.; Saeedi, M.; Pordeli, M.; Ardestani, S.K.; Emami, S.; Adib, M.; Foroumadi, A.; Shafiee, A. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold. Eur. J. Med. Chem., 2015, 95, 492-499. [http://dx.doi.org/10.1016/j.ejmech.2015.03.057]. [PMID: 25847767].
[66]
Ma, Y.G.; Li, C.; Yao, C.S.; Wang, X.S. Copper-catalyzed synthesis of 1-amino-5-arylindazolo[3,2-b]quinazolin-7(5H)-ones via a ring-opening reaction of 4-halogenated isatin. Tetrahedron, 2016, 72, 3844-3850. [http://dx.doi.org/10.1016/j.tet.2016.05.013].
[67]
Mahdavi, M.; Asadi, M.; Khoshbakht, M.; Saeedi, M.; Bayat, M.; Foroumadi, A.; Shafiee, A. CuBr/Et3N‐Promoted reactions of 2‐aminobenzamides and isothiocyanates: efficient synthesis of novel quinazolin‐4(3H)‐ones. Helv. Chim. Acta, 2016, 99, 378-383. [http://dx.doi.org/10.1002/hlca.201500273].
[68]
Dadgar, M.; Milani Kalkhorani, N. [γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-quinazolinones. Int. J. Nanodimens., 2015, 6, 473-478.
[69]
Mirza, B. An efficient metal-free synthesis of 2-amino-substituted-4(3H)-quinazolinones. Tetrahedron Lett., 2016, 57, 146-147. [http://dx.doi.org/10.1016/j.tetlet.2015.11.085].
[70]
Salehi, P.; Dabiri, M.; Zolfigol, M.A.; Baghbanzadeh, M. A novel method for the one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Synlett, 2005, 2005, 1155-1157. [http://dx.doi.org/10.1055/s-2005-865200].
[71]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Zolfigol, M.A.; Agheb, M.; Heydari, S. Silica sulfuric acid: An efficient reusable heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water and under solvent-free conditions. Catal. Commun., 2008, 9, 785-788. [http://dx.doi.org/10.1016/j.catcom.2007.08.019].
[72]
Salehi, P.; Dabiri, M.; Baghbanzadeh, M.; Bahramnejad, M. One‐pot, three‐component synthesis of 2,3‐dihydro‐4(1H)‐quinazolinones by montmorillonite K‐10 as an efficient and reusable catalyst. Synth. Commun., 2006, 36, 2287-2292. [http://dx.doi.org/10.1080/00397910600639752].
[73]
Roopan, S.M.; Khan, F.N.; Jin, J.S.; Kumar, R.S. An efficient one pot–three component cyclocondensation in the synthesis of 2-(2-chloroquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-ones: Potential antitumor agents. Res. Chem. Intermed., 2011, 37, 919-927. [http://dx.doi.org/10.1007/s11164-011-0301-3].
[74]
Chen, J.; Su, W.; Wu, H.; Liu, M.; Jin, C. Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid–water without additional catalyst. Green Chem., 2007, 9, 972-975. [http://dx.doi.org/10.1039/b700957g].
[75]
Khaksar, S.; Talesh, S.M. Three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in 2,2,2-trifluoroethanol. C. R. Chim., 2012, 15, 779-783. [http://dx.doi.org/10.1016/j.crci.2012.05.019].
[76]
Darvatkar, N.B.; Bhilare, S.V.; Deorukhkar, A.R.; Raut, D.G.; Salunkhe, M.M. [bmim] HSO4: An efficient and reusable catalyst for one-pot three-component synthesis of 2,3-dihydro-4(1H)-quinazolinones. Green Chem. Lett. Rev., 2010, 3, 301-306. [http://dx.doi.org/10.1080/17518253.2010.485581].
[77]
Alinezhad, H.; Tajbakhsh, M.; Ghobadi, N. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones using Brønsted acidic ionic liquid. Res. Rev. Mat. Sci. Chem., 2014, 3, 123-135.
[78]
Fard, M.A.B.; Mobinikhaledi, A.; Hamidinasab, M. An efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in green media. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 44, 567-571. [http://dx.doi.org/10.1080/15533174.2013.776605].
[79]
Rostamizadeh, S.; Amani, A.M.; Aryan, R.; Ghaieni, H.R.; Shadjou, N. Synthesis of new 2-aryl-substituted 2,3-dihydroquinazoline-4(1H)-ones under solvent-free conditions, using molecular iodine as a mild and efficient catalyst. Synth. Commun., 2008, 38, 3567-3576. [http://dx.doi.org/10.1080/00397910802178427].
[80]
Rostamizadeh, S.; Amani, A.M.; Mahdavinia, G.H.; Sepehrian, H.; Ebrahimi, S. Synthesis of some novel 2-aryl-substituted 2,3-dihydroquinazolin-4(1H)-ones under solvent-free conditions using MCM-41-SO3H as a highly efficient sulfonic acid. Synthesis, 2010, 1356-1360. [http://dx.doi.org/10.1055/s-0029-1218676].
[81]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Nano-indium oxide: An efficient catalyst for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones with a greener prospect. Catal. Commun., 2014, 49, 52-57. [http://dx.doi.org/10.1016/j.catcom.2014.01.032].
[82]
Safari, J.; Gandomi-Ravandi, S. Application of the ultrasound in the mild synthesis of substituted 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heterogeneous metal–MWCNTs nanocomposites. J. Mol. Catal. Chem., 2014, 1072, 173-178.
[83]
Majid, G.; Kobra, A.; Hamed, M.P.; Hamid Reza, S. Eco‐friendly and Efficient synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones. Chin. J. Chem., 2011, 29, 1617-1623. [http://dx.doi.org/10.1002/cjoc.201180290].
[84]
Song, Z.; Liu, L.; Wang, Y.; Sun, X. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using aluminum methanesulfonate as a reusable catalyst. Res. Chem. Intermed., 2012, 38, 1091-1099. [http://dx.doi.org/10.1007/s11164-011-0445-1].
[85]
Saffar-Teluri, A.; Bolouk, S. One-pot, three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones using p-toluenesulfonic acid–paraformaldehyde copolymer as an efficient and reusable catalyst. Monatsh. Chem., 2010, 141, 1113-1115. [http://dx.doi.org/10.1007/s00706-010-0376-3].
[86]
Ghashang, M. Silica supported zinc (II) chloride (SiO2-ZnCl2) as an efficient catalyst for the eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Orient. J. Chem., 2012, 28, 1213-1218. [http://dx.doi.org/10.13005/ojc/280317].
[87]
Safari, J.; Gandomi-Ravandi, S. Microwave-accelerated three components cyclocondensation in the synthesis of 2,3-dihydroquinazolin-4(1H)-ones promoted by Cu-CNTs. J. Mol. Catal. Chem., 2013, 371, 135-140. [http://dx.doi.org/10.1016/j.molcata.2013.01.031].
[88]
Wang, M.; Zhang, T.T.; Gao, J.J.; Liang, Y. Cation-exchange resin as an efficient hetero-geneous catalyst for one-pot three-component synthesis of 2,3-dihydro-4(1H)-quinazolinones. Chem. Heterocycl. Compd., 2012, 48, 897-902. [http://dx.doi.org/10.1007/s10593-012-1073-4].
[89]
Sharma, R.; Pandey, A.K.; Chauhan, P.M. A greener protocol for accessing 2,3-dihydro/spiroquinazolin-4(1H)-ones: natural acid-SDS catalyzed three-component reaction. Synlett, 2012, 23, 2209-2214. [http://dx.doi.org/10.1055/s-0032-1317014].
[90]
Niknam, K.; Jafarpour, N.; Niknam, E. Silica-bonded N-propylsulfamic acid as a recyclable catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Chin. Chem. Lett., 2011, 22, 69-72. [http://dx.doi.org/10.1016/j.cclet.2010.09.013].
[91]
Song, Z.; Wan, X.; Zhao, S. A novel catalyst cobalt m-nitrobenzenesulfonate-catalyzed highly efficient synthesis of substituted-quinazolin-4(1H)-ones. Indian J. Chem. Technol., 2012, 19, 118-123.
[92]
Surpur, M.P.; Singh, P.R.; Patil, S.B.; Samant, S.D. Expeditious one‐pot and solvent‐free synthesis of dihydroquinazolin‐4(1H)‐ones in the presence of microwaves. Synth. Commun., 2007, 37, 1965-1970. [http://dx.doi.org/10.1080/00397910701354699].
[93]
Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A.A. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2•12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett., 2005, 46, 6123-6126. [http://dx.doi.org/10.1016/j.tetlet.2005.06.157].
[94]
Ramesh, K.; Karnakar, K.; Satish, G.; Harsha, K.; Reddy, V.; Nageswar, Y.V.D. Tandem supramolecular synthesis of substituted 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of β-cyclodextrin in water. Tetrahedron Lett., 2012, 53, 6095-6099. [http://dx.doi.org/10.1016/j.tetlet.2012.08.141].
[95]
Wu, J.; Du, X.; Ma, J.; Zhang, Y.; Shi, Q.; Luo, L.; Song, B.; Yang, S.; Hu, D. Preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media with β-cyclodextrin-SO3H as a recyclable catalyst. Green Chem., 2014, 16, 3210-3217. [http://dx.doi.org/10.1039/C3GC42400F].
[96]
Wang, M.; Zhang, T.T.; Liang, Y.; Gao, J. Efficient synthesis of mono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using copper benzenesulfonate as a reusable catalyst in aqueous solution. Monatsh. Chem., 2012, 43, 835-839. [http://dx.doi.org/10.1007/s00706-011-0648-6].
[97]
Kassaee, M.Z.; Rostamizadeh, S.; Shadjou, N.; Motamedi, E.; Esmaeelzadeh, M. An efficient one‐pot solvent‐free synthesis of 2,3‐dihydroquinazoline‐4(1H)‐ones via Al/Al2O3 nanoparticles. J. Heterocycl. Chem., 2010, 47, 1421-1424. [http://dx.doi.org/10.1002/jhet.506].
[98]
Wang, M.; Zhang, T.T.; Liang, Y.; Gao, J.J. Strontium chloride-catalyzed one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in protic media. Chin. Chem. Lett., 2011, 22, 1423-1426. [http://dx.doi.org/10.1016/j.cclet.2011.06.002].
[99]
Niknam, K.; Mohammadizadeh, M.R.; Mirzaee, S. Silica‐bonded S‐sulfonic acid as a recyclable catalyst for synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones. Chin. J. Chem., 2011, 29, 1417-1422. [http://dx.doi.org/10.1002/cjoc.201180261].
[100]
Chen, Y.; Shan, W.; Lei, M.; Hua, L. Thiamine hydrochloride (VB1) as an efficient promoter for the one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Lett., 2012, 53, 5923-5925. [http://dx.doi.org/10.1016/j.tetlet.2012.08.090].
[101]
Kumari, K.; Raghuvanshi, D.S.; Singh, K.N. Microwave assisted eco-friendly protocol for one pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water. Indian J. Chem., 2012, 51B, 860-865.
[102]
Shaterian, H.R.; Oveisi, A.R.; Honarmand, M. Synthesis of 2,3-dihydroquinazoline-4(1H)-ones. Synth. Commun., 2010, 40, 1231-1242. [http://dx.doi.org/10.1080/00397910903064831].
[103]
Baghbanzadeh, M.; Salehi, P.; Dabiri, M.; Kozehgarya, G. Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4(1H)-one derivatives. Synthesis, 2006, 2, 344-348.
[104]
Deng, T.; Wang, H.; Cai, C. Highly enantioselective synthesis of dihydroquinazolinones through Sc(OTf)3-catalyzed intramolecular amidation of imines. J. Fluor. Chem., 2015, 169, 72-77. [http://dx.doi.org/10.1016/j.jfluchem.2014.11.008].
[105]
Choghamarani, A.; Taghipour, T.G. Green and one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones promoted by citric acid as recoverable catalyst in water. Lett. Org. Chem., 2011, 8, 470-476. [http://dx.doi.org/10.2174/157017811796505025].
[106]
Ghorbani-Choghamarani, A.; Zamani, P. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction catalyzed by L-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate (supported on silica gel) as novel and recoverable catalyst. J. Indian Chem. Soc., 2012, 9, 607-613. [http://dx.doi.org/10.1007/s13738-012-0074-7].
[107]
Nikpassand, M.; Zare Fkri, L.; Ziafatdoust, S. Trichlorotriazine promoted microwave induced three-component synthesis of quinazolinones in aqueous media. Int. J. Latest Res. Sci. Technol., 2014, 3, 201-204.
[108]
Razavi, N.; Akhlaghinia, B. Hydroxyapatite nanoparticles (HAP NPs): A green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in aqueous media. New J. Chem., 2016, 40, 447-457. [http://dx.doi.org/10.1039/C5NJ02123E].
[109]
Zhang, Z.H.; Lü, H.Y.; Yang, S.H.; Gao, J.W. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. J. Comb. Chem., 2010, 12(5), 643-646. [http://dx.doi.org/10.1021/cc100047j]. [PMID: 20684507].
[110]
Sharma, M.; Pandey, S.; Chauhan, K.; Sharma, D.; Kumar, B.; Chauhan, P.M. Cyanuric chloride catalyzed mild protocol for synthesis of biologically active dihydro/spiro quinazolinones and quinazolinone-glycoconjugates. J. Org. Chem., 2012, 77(2), 929-937. [http://dx.doi.org/10.1021/jo2020856]. [PMID: 22181712].
[111]
Shaterian, H.R.; Oveisi, A.R. PPA‐SiO2 as a Heterogeneous catalyst for efficient synthesis of 2‐Substituted‐1,2,3,4‐tetrahydro‐4‐quinazolinones under solvent‐free conditions. Chin. J. Chem., 2009, 27, 2418-2422. [http://dx.doi.org/10.1002/cjoc.201090018].
[112]
Wang, X.S.; Yang, K.; Zhou, J.; Tu, S.J. Facile method for the combinatorial synthesis of 2,2-disubstituted quinazolin-4(1H)-one derivatives catalyzed by iodine in ionic liquids. J. Comb. Chem., 2010, 12(4), 417-421. [http://dx.doi.org/10.1021/cc900174p]. [PMID: 20334422].
[113]
Rambabu, D.; Kumar, S.K.; Sreenivas, B.Y.; Sandra, S.; Kandale, A.; Misra, P.; Rao, M.B.; Pal, M. Ultrasound-based approach to spiro-2,3-dihydroquinazolin-4(1H)-ones: their in vitro evaluation against chorismate mutase. Tetrahedron Lett., 2013, 54, 495-501. [http://dx.doi.org/10.1016/j.tetlet.2012.11.057].
[114]
Bharathi, A.; Roopan, S.M.; Kajbafvala, A.; Padmaja, R.D.; Darsana, M.S.; Nandhini Kumari, G. Catalytic activity of TiO2 nanoparticles in the synthesis of some 2,3-disubstituted dihydroquinazolin-4(1H)-ones. Chin. Chem. Lett., 2014, 25, 324-326. [http://dx.doi.org/10.1016/j.cclet.2013.11.040].
[115]
Yavari, I.; Beheshti, S. ZnO nanoparticles catalyzed efficient one-pot three-component synthesis of 2,3-disubstituted quinalolin-4(1H)-ones under solvent-free conditions. J. Indian Chem. Soc., 2011, 8, 1030-1035. [http://dx.doi.org/10.1007/BF03246559].
[116]
Chen, B.H.; Li, J.T.; Chen, G.F. Efficient synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-ones catalyzed by dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation. Ultrason. Sonochem., 2015, 23, 59-65. [http://dx.doi.org/10.1016/j.ultsonch.2014.08.024]. [PMID: 25224856].
[117]
Wang, L.M.; Hu, L.; Shao, J.H.; Yu, J.; Zhang, L. A novel catalyst zinc (II) perfluorooctanoate [Zn(PFO)2]-catalyzed three-component one-pot reaction: Synthesis of quinazolinone derivatives in aqueous micellar media. J. Fluor. Chem., 2008, 129, 1139-1145. [http://dx.doi.org/10.1016/j.jfluchem.2008.08.005].
[118]
Narasimhulu, M.; Lee, Y.R. Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivatives. Tetrahedron, 2011, 67, 9627-9634. [http://dx.doi.org/10.1016/j.tet.2011.08.018].
[119]
Mohammadpoor‐Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Soltani, M.; Mirjafari, A. One‐pot synthesis of 2,3‐disubstituted‐2,3‐dihydroquinazolin‐4(1H)‐ones using [Hmim][NO3]: An eco‐friendly protocol. J. Heterocycl. Chem., 2011, 48, 1419-1427. [http://dx.doi.org/10.1002/jhet.721].
[120]
Karimi-Jaberi, Z.; Arjmandi, R. Acetic acid-promoted, efficient, one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2011, 142, 631-635.
[121]
Carney, D.W.; Nelson, C.D.S.; Ferris, B.D.; Stevens, J.P.; Lipovsky, A.; Kazakov, T.; DiMaio, D.; Atwood, W.J.; Sello, J.K. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. Bioorg. Med. Chem., 2014, 22(17), 4836-4847. [http://dx.doi.org/10.1016/j.bmc.2014.06.053]. [PMID: 25087050].
[122]
Prakash, M.; Kesavan, V. Highly enantioselective synthesis of 2,3-dihydroquinazolinones through intramolecular amidation of imines. Org. Lett., 2012, 14(7), 1896-1899. [http://dx.doi.org/10.1021/ol300518m]. [PMID: 22458670].
[123]
Takacs, A.; Fodor, A.; Nemeth, J.; Hell, Z. Zeolite-catalyzed method for the preparation of 2,3-dihydroquinazolin-4(1H)-ones. Synth. Commun., 2014, 44, 2269-2275. [http://dx.doi.org/10.1080/00397911.2014.894525].
[124]
Wang, S.; Yin, S.; Xia, S.; Shi, Y.; Tu, S.; Rong, L. An efficient synthesis of 3-benzylquinazolin-4(1H)-one derivatives under catalyst-free and solvent-free conditions. Green Chem. Lett. Rev., 2012, 5, 603-607. [http://dx.doi.org/10.1080/17518253.2012.685184].
[125]
Shaabani, A.; Rahmati, A.; Rad, J.M. Ionic liquid promoted synthesis of 3-(2′-benzothiazolo)-2,3-dihydroquinazolin-4(1H)-ones. C. R. Chim., 2008, 11, 759-764. [http://dx.doi.org/10.1016/j.crci.2007.11.007].
[126]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M. Ionic liquid promoted eco-friendly and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2007, 138, 1191-1194. [http://dx.doi.org/10.1007/s00706-007-0635-0].
[127]
Zhang, J.; Cheng, P.; Ma, Y.; Liu, J.; Miao, Z.; Ren, D.; Fan, C.; Liang, M.; Liu, L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett., 2016, 57, 5271-5277. [http://dx.doi.org/10.1016/j.tetlet.2016.10.047].
[128]
Arasteh‐Fard, Z.; Dilmaghani, K.A.; Saeedi, M.; Mahdavi, M.; Shafiee, A. Synthesis of novel phthalazino[1,2‐b]quinazolinedione derivatives: efficient and practical reaction of 2‐amino‐N′‐Arylbenzohydrazides and 2‐Formylbenzoic Acids. Helv. Chim. Acta, 2016, 99, 539-542. [http://dx.doi.org/10.1002/hlca.201600025].
[129]
Hatamjafari, F.; Alijanichakoli, F.; Mohammadmohtasham, M. KF/Al2O3 catalyzed one-pot three-component process for the synthesis of some 2-thioxoquinazolin-4(1H)-one derivatives. Asian J. Chem., 2013, 25, 5975-5977. [http://dx.doi.org/10.14233/ajchem.2013.14214].
[130]
Rezanejade Bardajee, G.; Ghaedi, A.; Hekmat, S.; Abarashi, G.; Mahdavi, M.; Akbarzadeh, T. A green and efficient synthesis of 2-thioxoquinazolinone derivatives in water using potassium thiocyanate. J. Sulfur Chem., 2017, 38, 519-529. [http://dx.doi.org/10.1080/17415993.2017.1325891].
[131]
Farjadmand, F.; Arshadi, H.; Moghimi, S.; Nadri, H.; Moradi, A.; Eghtedari, M.; Jafarpour, F.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. Synthesis and evaluation of novel quinazolinone-1,2,3-triazoles as inhibitors of lipoxygenase. J. Chem. Res., 2016, 40, 188-191. [http://dx.doi.org/10.3184/174751916X14558913889738].
[132]
Dominic, E.J.; Lopez, M.; Thomas, B. Microwave-assisted addition of azomethines to isatoic anhydride. J. Chem. Sci., 2007, 119, 47-51. [http://dx.doi.org/10.1007/s12039-007-0008-6].
[133]
Verma, A.; Giridhar, R.; Modh, P.; Yadav, M.R. A facile IL–DMSO assisted synthesis of 5-, 6-, and 7-membered benzo-annelated cyclic guanidines. Tetrahedron Lett., 2012, 53, 2954-2958. [http://dx.doi.org/10.1016/j.tetlet.2012.03.060].
[134]
Sayahi, M.H.; Baghersaei, S.; Goli, F.; Moghimi, S.; Mahdavi, M.; Firoozpour, L.; Shafiee, A.; Foroumadi, A. An efficient four-step approach toward fused triazino[1,6-a]quinazolines. Comb. Chem. High, 2016, 19(3), 189-192. [http://dx.doi.org/10.2174/1386207319666160202120802]. [PMID: 26830360].
[135]
Shafii, B.; Saeedi, M.; Mahdavi, M.; Foroumadi, A.; Shafiee, A. Novel four-step synthesis of thioxo-quinazolino[3,4-a]quinazolinone derivatives. Synth. Commun., 2014, 44, 215-221. [http://dx.doi.org/10.1080/00397911.2013.800211].
[136]
Mohammadhosseini, N.; Saeedi, M.; Moradi, S.; Mahdavi, M.; Firuzi, O.; Foroumadi, A.; Shafiee, A. Synthesis and cytotoxicity of novel thioxo-quinazolino[3,4-a]quinazolinones. Turk. J. Chem., 2017, 41, 125-134. [http://dx.doi.org/10.3906/kim-1512-80].
[137]
Mahdavi, M.; Foroughi, N.; Saeedi, M.; Karimi, M.; Alinezhad, H.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Letter synthesis of novel benzo[6,7][1,4]oxazepino[4,5-a]quinazolinone derivatives via transition-metal-free intramolecular hydroamination. Synlett, 2014, 25, 385-388.
[138]
Madhubabu, M.V.; Shankar, R.; Reddy, G.R.; Rao, T.S.; Rao, M.V.B.; Akula, R. Metal–Catalyst-free green and efficient synthesis of five and six membered fused N-heterocyclic quinazoline derivatives. Tetrahedron Lett., 2016, 57, 5033-5037. [http://dx.doi.org/10.1016/j.tetlet.2016.09.094].
[139]
Esmaeili‐Marandi, F.; Saeedi, M.; Yavari, I.; Mahdavi, M.; Shafiee, A. Synthesis of novel isoindolo[2,1‐a]quinazolinedione derivatives containing a 1,2,3‐triazole ring system. Helv. Chim. Acta, 2016, 99, 37-40. [http://dx.doi.org/10.1002/hlca.201500122].
[140]
Mohammadi, A.A.; Dabiri, M.; Qaraat, H. A regioselective three-component reaction for synthesis of novel 1′H-spiro[isoindoline-1, 2′-quinazoline]-3,4′(3′ H)-dione derivatives. Tetrahedron, 2009, 65, 3804-3808. [http://dx.doi.org/10.1016/j.tet.2009.02.037].
[141]
Abdi, M.; Rostamizadeh, S.; Zekri, N. An Efficient and green synthesis of 1′H-spiro[isoindoline-1,2′-quinazoline]-3,4′(3′ H)-dione derivatives in the presence of nano Fe3O4–GO–SO3H. Polycycl. Aromat. Compd., 2017, 1-12. [http://dx.doi.org/10.1080/10406638.2017.1340313].
[142]
Zhu, X.; Kang, S.R.; Xia, L.; Lee, J.; Basavegowda, N.; Lee, Y.R. Efficient Cu(OTf)2-catalyzed synthesis of novel and diverse 2,3-dihydroquinazolin-4(1H)-ones. Mol. Divers., 2015, 19(1), 67-75. [http://dx.doi.org/10.1007/s11030-014-9557-z]. [PMID: 25403260].
[143]
Nahavandian, S.; Allameh, S.; Saeedi, M.; Ansari, S.; Mahdavi, M.; Foroumadi, A.; Shafiee, A. Novel 1,2,3,4-tetrahydroquinazolinones via reaction of 2‐amino‐N‐substituted benzamides and dimethyl acetylenedicarboxylate. Helv. Chim. Acta, 2015, 98, 1028-1033. [http://dx.doi.org/10.1002/hlca.201500015].
[144]
Sadat-Ebrahimi, S.E.; Irannezhad, S.; Moghimi, S.; Yahya-Meymandi, A.; Mahdavi, M.; Shafiee, A.; Foroumadi, A. A highly efficient method for the synthesis of novel 1‘H-spiro[indene-2,2’-quinazoline]-1,3,4‘(3’H)-trione derivatives. J. Chem. Res., 2015, 39, 495-498. [http://dx.doi.org/10.3184/174751915X14394002808669].
[145]
Ramezanpour, S.; Balalaie, S.; Rominger, F. Stereoselective synthesis of tetrazolo-spiroquinazolinone derivatives through one-pot pseudo six-component reaction. Tetrahedron, 2016, 72, 6409-6414. [http://dx.doi.org/10.1016/j.tet.2016.08.046].
[146]
Yale, H.L. Novel buron heterocycles. I. 2,3‐dihydro‐1,3,2‐benzodiazaborin‐4(III)‐ones and 1,2‐dihydro‐1,3,2‐benzodiazaborines. J. Heterocycl. Chem., 1971, 8, 193-204. [http://dx.doi.org/10.1002/jhet.5570080203].
[147]
Mahdavi, M.; Asadi, M.; Saeedi, M.; Tehrani, M.H.; Mirfazli, S.S.; Shafiee, A.; Foroumadi, A. Green synthesis of new boron-containing quinazolines: preparation of benzo[d][1,3,2]diazaborinin-4(1H)-one derivatives. Synth. Commun., 2013, 43, 2936-2942. [http://dx.doi.org/10.1080/00397911.2012.751612].
[148]
Adib, M.; Shabanibalajadeh, S.; Sheikhi, E.; Rahimi‐Nasrabadi, M.; Zhu, L.G. Bridgehead bicyclo[4.4.0]boron heterocycles: A one‐pot four‐component synthesis of dibenzo[e,i][1,3,7,2]oxadiazaborecin‐8(7H)‐ones. Helv. Chim. Acta, 2016, 99, 659-664. [http://dx.doi.org/10.1002/hlca.201500534].
[149]
Li, S.; Zhang, Q.; Peng, Y. Powdered diethylaminoethyl cellulose as biomass-derived support for phosphotungstic acid: NEw solid acidic catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem., 2015, 146, 1859-1864. [http://dx.doi.org/10.1007/s00706-015-1475-y].
[150]
Wright, W.B., Jr; Brabander, H.J.; Greenblatt, E.N.; Day, I.P.; Hardy, R.A. Jr Derivatives of 1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H)-dione as anxiolytic agents. J. Med. Chem., 1978, 21(10), 1087-1089. [http://dx.doi.org/10.1021/jm00208a017]. [PMID: 31475].
[151]
Parks, D.J.; LaFrance, L.V.; Calvo, R.R.; Milkiewicz, K.L.; Marugán, J.J.; Raboisson, P.; Schubert, C.; Koblish, H.K.; Zhao, S.; Franks, C.F.; Lattanze, J.; Carver, T.E.; Cummings, M.D.; Maguire, D.; Grasberger, B.L.; Maroney, A.C.; Lu, T. Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein-protein interaction through structure-based drug design. Bioorg. Med. Chem. Lett., 2006, 16(12), 3310-3314. [http://dx.doi.org/10.1016/j.bmcl.2006.03.055]. [PMID: 16600594].
[152]
Osman, A.N.; el-Gendy, A.A.; Omar, R.H.; Wagdy, L.; Omar, A.H. Synthesis and pharmacological activity of 1,4-benzodiazepine derivatives. Boll. Chim. Farm., 2002, 141(1), 8-14. [PMID: 12064063].
[153]
Ursini, A.; Capelli, A.M.; Carr, R.A.; Cassarà, P.; Corsi, M.; Curcuruto, O.; Curotto, G.; Dal Cin, M.; Davalli, S.; Donati, D.; Feriani, A.; Finch, H.; Finizia, G.; Gaviraghi, G.; Marien, M.; Pentassuglia, G.; Polinelli, S.; Ratti, E.; Reggiani, A.M.; Tarzia, G.; Tedesco, G.; Tranquillini, M.E.; Trist, D.G.; Van Amsterdam, F.T. Synthesis and SAR of new 5-phenyl-3-ureido-1,5-benzodiazepines as cholecystokinin-B receptor antagonists. J. Med. Chem., 2000, 43(20), 3596-3613. [http://dx.doi.org/10.1021/jm990967h]. [PMID: 11020274].
[154]
Clark, R.L.; Carter, K.C.; Mullen, A.B.; Coxon, G.D.; Owusu-Dapaah, G.; McFarlane, E.; Duong Thi, M.D.; Grant, M.H.; Tettey, J.N.; Mackay, S.P. Identification of the benzodiazepines as a new class of antileishmanial agent. Bioorg. Med. Chem. Lett., 2007, 17(3), 624-627. [http://dx.doi.org/10.1016/j.bmcl.2006.11.004]. [PMID: 17113290].
[155]
Sternbach, L.H. The benzodiazepine story. J. Med. Chem., 1979, 22(1), 1-7. [http://dx.doi.org/10.1021/jm00187a001]. [PMID: 34039].
[156]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89. [http://dx.doi.org/10.1021/cr0505728]. [PMID: 16402771].
[157]
Gunawan, S.; Ayaz, M.; De Moliner, F.; Frett, B.; Kaiser, C.; Patrick, N.; Xu, Z.; Hulme, C. Synthesis of tetrazolo-fused benzodiazepines and benzodiazepinones by a two-step protocol using an Ugi-azide reaction for initial diversity generation. Tetrahedron, 2012, 68(27-28), 5606-5611. [http://dx.doi.org/10.1016/j.tet.2012.04.068]. [PMID: 22923851].
[158]
Donald, J.R.; Wood, R.R.; Martin, S.F. Application of a sequential multicomponent assembly process/huisgen cycloaddition strategy to the preparation of libraries of 1,2,3-triazole-fused 1,4-benzodiazepines. ACS Comb. Sci., 2012, 14(2), 135-143. [http://dx.doi.org/10.1021/co2002087]. [PMID: 22273436].
[159]
Mahdavi, M.; Lijan, H.; Bahadorikhalili, S.; Ma’mani, L.; Ranjbar, P.R.; Shafiee, A. Copper supported β-cyclodextrin grafted magnetic nanoparticles as an efficient recyclable catalyst for one-pot synthesis of 1-benzyl-1H-1,2,3-triazoldibenzodiazepinone derivatives via click reaction. RSC Advances, 2016, 6, 28838-28843. [http://dx.doi.org/10.1039/C5RA27275K].
[160]
Al-Said, N.H.; Ishtaiwi, Z.N. Synthesis of N-substituted quinazolino[1,4]benzodiazepine: A facial route to N-benzylsclerotigenin. Acta Chim. Slov., 2005, 52, 328-331.
[161]
Cheng, M.F.; Yu, H.M.; Ko, B.W.; Chang, Y.; Chen, M.Y.; Ho, T.I.; Tsai, Y.M.; Fang, J.M. Practical synthesis of potential endothelin receptor antagonists of 1,4-benzodiazepine-2,5-dione derivatives bearing substituents at the C3-, N1- and N4-positions. Org. Biomol. Chem., 2006, 4(3), 510-518. [http://dx.doi.org/10.1039/B514937A]. [PMID: 16446809].
[162]
Mahdavi, M.; Asadi, M.; Saeedi, M.; Rezaei, Z.; Moghbel, H.; Foroumadi, A.; Shafiee, A. Synthesis of novel 1,4-benzodiazepine-3,5-dione derivatives: Reaction of 2-aminobenzamides under Bargellini reaction conditions. Synlett, 2012, 23, 2521-2525. [http://dx.doi.org/10.1055/s-0032-1317297].
[163]
Noushini, S.; Mahdavi, M.; Firoozpour, L.; Moghimi, S.; Shafiee, A.; Foroumadi, A. Efficient multi-component synthesis of 1,4-benzodiazepine-3,5-diones: a petasis-based approach. Tetrahedron, 2015, 71, 6272-6275. [http://dx.doi.org/10.1016/j.tet.2015.06.060].
[164]
Seydey, M.K.; Rezaei, Z.; Homami, S.S. Solvent-free synthesis of novel benzodiazepine derivatives by a threecomponent base-catalysed reaction of isatoic anhydride, a primary amine and chloroacetyl chloride. J. Chem. Res., 2015, 39, 286-288. [http://dx.doi.org/10.3184/174751915X14304939994023].
[165]
Kamal, A. Howard, P.W.; Reddy, B.N.; Reddy, B.P.; Thurston, D.E. Synthesis of pyrrolo[2,1-c] [1,4]benzodiazepine antibiotics: Oxidation of cyclic secondary amine with TPAP. Tetrahedron, 1997, 53, 3223-3230. [http://dx.doi.org/10.1016/S0040-4020(97)00033-1].
[166]
Jadidi, K.; Aryan, R.; Mehrdad, M.; Lügger, T.; Hahn, F.E.; Ng, S.W. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones. J. Mol. Struct., 2004, 692, 37-42. [http://dx.doi.org/10.1016/j.molstruc.2003.12.024].
[167]
Al-Said, N.H.; Shawakfeh, K.Q.; Ibrahim, M.I.; Tayyem, S.H. A facile synthesis of quinazolino[1,4]benzodiazepine alkaloids via reductive N-heterocyclization of N-(2-nitrobenzoyl) amides: Total synthesis of asperlicin C, circumdatin H, and analogues. ARKIVOC, 2010, 9, 282-292.
[168]
Cruz, A.D.L.; Vega-Acevedo, C.A.; Rivero, I.A.; Chávez, D. Improved method for microwave-assisted synthesis of benzodiazepine-2,5-diones from isatoic anhydrides mediated by glacial acetic acid. J. Braz. Chem. Soc., 2018, 29, 1607-1611.
[169]
Thomas, A.W. A concise route to triazolobenzodiazepine derivatives via a one-pot alkyne-azide cycloaddition reaction. Bioorg. Med. Chem. Lett., 2002, 12(14), 1881-1884. [http://dx.doi.org/10.1016/S0960-894X(02)00262-7]. [PMID: 12086839].
[170]
Hradil, P.; Grepl, M.; Hlavác, J.; Soural, M.; Maloň, M.; Bertolasi, V. Some new routes for the preparation of 3-amino-2-phenyl-4(1H)-quinolinones from anthranilamides. J. Org. Chem., 2006, 71(2), 819-822. [http://dx.doi.org/10.1021/jo051303k]. [PMID: 16409002].
[171]
D’Souza, A.M.; Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L.S.; Meyer, A.G.; Holmes, A.B.; White, J.M.; Ryan, J.H. 1,3-Dipolar cycloaddition-decarboxylation reactions of an azomethine ylide with isatoic anhydrides: formation of novel benzodiazepinones. Org. Lett., 2011, 13(3), 486-489. [http://dx.doi.org/10.1021/ol102824k]. [PMID: 21175141].
[172]
Sun, H.H.; Barrow, C.J.; Cooper, R. Benzomalvin D, a new 1,4-benzodiazepine atropisomer. J. Nat. Prod., 1995, 58, 1575-1580. [http://dx.doi.org/10.1021/np50124a015].
[173]
Taher, D.; Ishtaiwi, Z.N.; Al-Said, N.H. Efficient protocol to quinazolino[3,2-d][1,4]benzodiazepine-6,9-dione via Staudinger-aza-Wittig cyclization: application to synthesis of Asperlicin D. ARKIVOC, 2008, 16, 154-164.
[174]
Guggenheim, K.G.; Toru, H.; Kurth, M.J. One-pot, two-step cascade synthesis of quinazolinotriazolobenzodiazepines. Org. Lett., 2012, 14(14), 3732-3735. [http://dx.doi.org/10.1021/ol301592z]. [PMID: 22746550].
[175]
Ibrahim, S.M.; Baraka, M.M.; El-Sabbagh, O.I.; Kothayer, H. Synthesis of new benzotriazepin-5(2H)-one derivatives of expected antipsychotic activity. Med. Chem. Res., 2013, 22, 1488-1496. [http://dx.doi.org/10.1007/s00044-012-0102-2].
[176]
Taher, A.T.; Mohammed, L.W. Synthesis of new 1,3,4-benzotriazepin-5-one derivatives and their biological evaluation as antitumor agents. Arch. Pharm. Res., 2013, 36(6), 684-693. [http://dx.doi.org/10.1007/s12272-013-0081-y]. [PMID: 23504247].
[177]
Peet, N.P.; Sunder, S. Synthesis of 3,4-dihydro-1H-1,3,4-benzotriazepine-2,5-diones. J. Org. Chem., 1975, 40, 1909-1914. [http://dx.doi.org/10.1021/jo00901a008].
[178]
Hromatka, O.; Krenmüller, F.; Knollmüller, M. Über die Synthese von 1,3,4-Benzotriazepin-2,5-dionen. Monatsh. Chem., 1969, 100, 934-940.
[179]
Sunder, S.; Peet, N.P.; Trepanier, D.L. Synthesis of 3,4-dihydro-5H-1,3,4-benzotriazepin-5-ones. J. Org. Chem., 1976, 41, 2732-2733. [http://dx.doi.org/10.1021/jo00878a017].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 10
Year: 2019
Page: [1090 - 1130]
Pages: 41
DOI: 10.2174/1385272823666190701142930
Price: $58

Article Metrics

PDF: 18
HTML: 2
EPUB: 1
PRC: 1