Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Warfarin Dosing and Outcomes in Chronic Kidney Disease: A Closer Look at Warfarin Disposition

Author(s): Osama Y. Alshogran*

Volume 20, Issue 8, 2019

Page: [633 - 645] Pages: 13

DOI: 10.2174/1389200220666190701095807

Price: $65

Abstract

Background: Chronic Kidney Disease (CKD) is a prevalent worldwide health problem. Patients with CKD are more prone to developing cardiovascular complications such as atrial fibrillation and stroke. This warrants the use of oral anticoagulants, such as warfarin, in this population. While the efficacy and safety of warfarin in this setting remain controversial, a growing body of evidence emphasizes that warfarin use in CKD can be problematic. This review discusses 1) warfarin use, dosing and outcomes in CKD patients; and 2) possible pharmacokinetic mechanisms for altered warfarin dosing and response in CKD.

Methods: Structured search and review of literature articles evaluating warfarin dosing and outcomes in CKD. Data and information about warfarin metabolism, transport, and pharmacokinetics in CKD were also analyzed and summarized.

Results: The literature data suggest that changes in warfarin pharmacokinetics such as protein binding, nonrenal clearance, the disposition of warfarin metabolites may partially contribute to altered warfarin dosing and response in CKD.

Conclusion: Although the evidence to support warfarin use in advanced CKD is still unclear, this synthesis of previous findings may help in improving optimized warfarin therapy in CKD settings.

Keywords: Warfarin, dose, outcomes, chronic kidney disease, metabolism, pharmacokinetics.

Graphical Abstract
[1]
James, M.T.; Hemmelgarn, B.R.; Tonelli, M. Early recognition and prevention of chronic kidney disease. Lancet, 2010, 375(9722), 1296-1309.
[http://dx.doi.org/10.1016/S0140-6736(09)62004-3] [PMID: 20382326]
[2]
Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; De Zeeuw, D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int., 2005, 67(6), 2089-2100.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00365.x] [PMID: 15882252]
[3]
Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant., 2018, 33(Suppl. 3), iii28-iii34.
[http://dx.doi.org/10.1093/ndt/gfy174]
[4]
Fishbane, S.; Spinowitz, B. Update on anemia in ESRD and earlier stages of CKD: Core Curriculum 2018. Am. J. Kidney Dis., 2018, 71(3), 423-435.
[http://dx.doi.org/10.1053/j.ajkd.2017.09.026] [PMID: 29336855]
[5]
Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National kidney foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med., 2003, 139(2), 137-147.
[http://dx.doi.org/10.7326/0003-4819-139-2-200307150-00013] [PMID: 12859163]
[6]
Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of chronic kidney disease in the United States. JAMA, 2007, 298(17), 2038-2047.
[http://dx.doi.org/10.1001/jama.298.17.2038] [PMID: 17986697]
[7]
Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One, 2016, 11(7)e0158765
[http://dx.doi.org/10.1371/journal.pone.0158765] [PMID: 27383068]
[8]
Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet, 2012, 379(9811), 165-180.
[http://dx.doi.org/10.1016/S0140-6736(11)60178-5] [PMID: 21840587]
[9]
Zhang, Q.L.; Rothenbacher, D. Prevalence of chronic kidney disease in population-based studies: Systematic review. BMC Public Health, 2008, 8, 117.
[http://dx.doi.org/10.1186/1471-2458-8-117]
[10]
Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet, 2013, 382(9889), 339-352.
[http://dx.doi.org/10.1016/S0140-6736(13)60595-4] [PMID: 23727170]
[11]
Bansal, N.; Xie, D.; Sha, D.; Appel, L.J.; Deo, R.; Feldman, H.I.; He, J.; Jamerson, K.; Kusek, J.W.; Messe, S.; Navaneethan, S.D.; Rahman, M.; Ricardo, A.C.; Soliman, E.Z.; Townsend, R.; Go, A.S. Cardiovascular events after new-onset atrial fibrillation in adults with CKD: Results from the Chronic Renal Insufficiency Cohort (CRIC) study. J. Am. Soc. Nephrol., 2018, 29(12), 2859-2869.
[http://dx.doi.org/10.1681/ASN.2018050514] [PMID: 30377231]
[12]
Thomas, R.; Kanso, A.; Sedor, J.R. Chronic kidney disease and its complications. Prim. Care, 2008, 35(2), 329-344.
[http://dx.doi.org/10.1016/j.pop.2008.01.008] [PMID: 18486718]
[13]
Matsushita, K.; Van Der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; De Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet, 2010, 375(9731), 2073-2081.
[http://dx.doi.org/10.1016/S0140-6736(10)60674-5] [PMID: 20483451]
[14]
Van Der Velde, M.; Matsushita, K.; Coresh, J.; Astor, B.C.; Woodward, M.; Levey, A.; De Jong, P.; Gansevoort, R.T.; Van Der Velde, M.; Matsushita, K.; Coresh, J.; Astor, B.C.; Woodward, M.; Levey, A.S.; De Jong, P.E.; Gansevoort, R.T.; Levey, A.; El-Nahas, M.; Eckardt, K.U.; Kasiske, B.L.; Ninomiya, T.; Chalmers, J.; Macmahon, S.; Tonelli, M.; Hemmelgarn, B.; Sacks, F.; Curhan, G.; Collins, A.J.; Li, S.; Chen, S.C.; Hawaii Cohort, K.P.; Lee, B.J.; Ishani, A.; Neaton, J.; Svendsen, K.; Mann, J.F.; Yusuf, S.; Teo, K.K.; Gao, P.; Nelson, R.G.; Knowler, W.C.; Bilo, H.J.; Joosten, H.; Kleefstra, N.; Groenier, K.H.; Auguste, P.; Veldhuis, K.; Wang, Y.; Camarata, L.; Thomas, B.; Manley, T. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int., 2011, 79(12), 1341-1352.
[http://dx.doi.org/10.1038/ki.2010.536] [PMID: 21307840]
[15]
Harlos, J.; Heidland, A. Hypertension as cause and consequence of renal disease in the 19th century. Am. J. Nephrol., 1994, 14(4-6), 436-442.
[http://dx.doi.org/10.1159/000168761] [PMID: 7847482]
[16]
Wattanakit, K.; Cushman, M. Chronic kidney disease and venous thromboembolism: Epidemiology and mechanisms. Curr. Opin. Pulm. Med., 2009, 15(5), 408-412.
[http://dx.doi.org/10.1097/MCP.0b013e32832ee371] [PMID: 19561505]
[17]
Winkelmayer, W.C.; Patrick, A.R.; Liu, J.; Brookhart, M.A.; Setoguchi, S. The increasing prevalence of atrial fibrillation among hemodialysis patients. J. Am. Soc. Nephrol., 2011, 22(2), 349-357.
[http://dx.doi.org/10.1681/ASN.2010050459] [PMID: 21233416]
[18]
Reinecke, H.; Brand, E.; Mesters, R.; Schäbitz, W.R.; Fisher, M.; Pavenstädt, H.; Breithardt, G. Dilemmas in the management of atrial fibrillation in chronic kidney disease. J. Am. Soc. Nephrol., 2009, 20(4), 705-711.
[http://dx.doi.org/10.1681/ASN.2007111207] [PMID: 19092127]
[19]
Winkelmayer, W.C.; Liu, J.; Patrick, A.R.; Setoguchi, S.; Choudhry, N.K. Prevalence of atrial fibrillation and warfarin use in older patients receiving hemodialysis. J. Nephrol., 2012, 25(3), 341-353.
[http://dx.doi.org/10.5301/jn.5000010] [PMID: 22180223]
[20]
Alonso, A.; Lopez, F.L.; Matsushita, K.; Loehr, L.R.; Agarwal, S.K.; Chen, L.Y.; Soliman, E.Z.; Astor, B.C.; Coresh, J. Chronic kidney disease is associated with the incidence of atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Circulation, 2011, 123(25), 2946-2953.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.020982] [PMID: 21646496]
[21]
Ananthapanyasut, W.; Napan, S.; Rudolph, E.H.; Harindhanavudhi, T.; Ayash, H.; Guglielmi, K.E.; Lerma, E.V. Prevalence of atrial fibrillation and its predictors in nondialysis patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2010, 5(2), 173-181.
[http://dx.doi.org/10.2215/CJN.03170509] [PMID: 20007681]
[22]
Hart, R.G.; Pearce, L.A.; Asinger, R.W.; Herzog, C.A. Warfarin in atrial fibrillation patients with moderate chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2011, 6(11), 2599-2604.
[http://dx.doi.org/10.2215/CJN.02400311] [PMID: 21903982]
[23]
Minhas, A.M.; Usman, M.S.; Khan, M.S.; Fatima, K.; Mangi, M.A.; Illovsky, M.A. Link between non-alcoholic fatty liver disease and atrial fibrillation: A systematic review and meta-analysis. Cureus, 2017, 9(4)e1142
[http://dx.doi.org/10.7759/cureus.1142] [PMID: 28484681]
[24]
Chinnadurai, R.; Ritchie, J.; Green, D.; Kalra, P.A. Non-alcoholic fatty liver disease and clinical outcomes in chronic kidney disease. Nephrol. Dial. Transplant., 2019, 34(3), 449-457.
[http://dx.doi.org/10.1093/ndt/gfx381] [PMID: 29390103]
[25]
Olesen, J.B.; Lip, G.Y.; Kamper, A.L.; Hommel, K.; Køber, L.; Lane, D.A.; Lindhardsen, J.; Gislason, G.H.; Torp-Pedersen, C. Stroke and bleeding in atrial fibrillation with chronic kidney disease. N. Engl. J. Med., 2012, 367(7), 625-635.
[http://dx.doi.org/10.1056/NEJMoa1105594] [PMID: 22894575]
[26]
Providência, R.; Marijon, E.; Boveda, S.; Barra, S.; Narayanan, K.; Le Heuzey, J.Y.; Gersh, B.J.; Gonçalves, L. Meta-analysis of the influence of chronic kidney disease on the risk of thromboembolism among patients with nonvalvular atrial fibrillation. Am. J. Cardiol., 2014, 114(4), 646-653.
[http://dx.doi.org/10.1016/j.amjcard.2014.05.048] [PMID: 25001152]
[27]
Mitsuma, W.; Matsubara, T.; Hatada, K.; Imai, S.; Saito, N.; Shimada, H.; Miyazaki, S. Clinical characteristics of hemodialysis patients with atrial fibrillation: The RAKUEN (Registry of atrial fibrillation in chronic kidney disease under hemodialysis from Niigata) study. J. Cardiol., 2016, 68(2), 148-155.
[http://dx.doi.org/10.1016/j.jjcc.2015.08.023] [PMID: 26527113]
[28]
Singer, D.E.; Chang, Y.; Fang, M.C.; Borowsky, L.H.; Pomernacki, N.K.; Udaltsova, N.; Go, A.S. The net clinical benefit of warfarin anticoagulation in atrial fibrillation. Ann. Intern. Med., 2009, 151(5), 297-305.
[http://dx.doi.org/10.7326/0003-4819-151-5-200909010-00003] [PMID: 19721017]
[29]
Hirsh, J.; Dalen, J.; Anderson, D.R.; Poller, L.; Bussey, H.; Ansell, J.; Deykin, D. Oral anticoagulants: Mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest, 2001, 119(Suppl. 1), 8S-21S.
[http://dx.doi.org/10.1378/chest.119.1_suppl.8S] [PMID: 11157640]
[30]
Breckenridge, A.; Orme, M.; Wesseling, H.; Lewis, R.J.; Gibbons, R. Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin. Pharmacol. Ther., 1974, 15(4), 424-430.
[http://dx.doi.org/10.1002/cpt1974154424] [PMID: 4821443]
[31]
Maddison, J.; Somogyi, A.A.; Jensen, B.P.; James, H.M.; Gentgall, M.; Rolan, P.E. The pharmacokinetics and pharmacodynamics of single dose (R)- and (S)-warfarin administered separately and together: Relationship to VKORC1 genotype. Br. J. Clin. Pharmacol., 2013, 75(1), 208-216.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04335.x] [PMID: 22616655]
[32]
Hu, A.; Niu, J.; Winkelmayer, W.C. Oral anticoagulation in patients with end-stage kidney disease on dialysis and atrial fibrillation. Semin. Nephrol., 2018, 38(6), 618-628.
[http://dx.doi.org/10.1016/j.semnephrol.2018.08.006] [PMID: 30413255]
[33]
Kim, M.J.; Huang, S.M.; Meyer, U.A.; Rahman, A.; Lesko, L.J. A regulatory science perspective on warfarin therapy: A pharmacogenetic opportunity. J. Clin. Pharmacol., 2009, 49(2), 138-146.
[http://dx.doi.org/10.1177/0091270008328098] [PMID: 19179293]
[34]
Roetker, N.S.; Lutsey, P.L.; Zakai, N.A.; Alonso, A.; Adam, T.J.; MacLehose, R.F. All-cause mortality risk with direct oral anticoagulants and warfarin in the primary treatment of venous thromboembolism. Thromb. Haemost., 2018, 118(9), 1637-1645.
[http://dx.doi.org/10.1055/s-0038-1668521] [PMID: 30103250]
[35]
Hart, R.G.; Pearce, L.A.; Aguilar, M.I. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann. Intern. Med., 2007, 146(12), 857-867.
[http://dx.doi.org/10.7326/0003-4819-146-12-200706190-00007] [PMID: 17577005]
[36]
Hirsh, J.; Fuster, V.; Ansell, J.; Halperin, J.L. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation, 2003, 107(12), 1692-1711.
[http://dx.doi.org/10.1161/01.CIR.0000063575.17904.4E] [PMID: 12668507]
[37]
Chai-Adisaksopha, C.; Hillis, C.; Isayama, T.; Lim, W.; Iorio, A.; Crowther, M. Mortality outcomes in patients receiving direct oral anticoagulants: A systematic review and meta-analysis of randomized controlled trials. J. Thromb. Haemost., 2015, 13(11), 2012-2020.
[http://dx.doi.org/10.1111/jth.13139] [PMID: 26356595]
[38]
Fang, M.C.; Go, A.S.; Chang, Y.; Borowsky, L.H.; Pomernacki, N.K.; Udaltsova, N.; Singer, D.E. A new risk scheme to predict warfarin-associated hemorrhage: The ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study. J. Am. Coll. Cardiol., 2011, 58(4), 395-401.
[http://dx.doi.org/10.1016/j.jacc.2011.03.031] [PMID: 21757117]
[39]
Baker, W.L.; Cios, D.A.; Sander, S.D.; Coleman, C.I. Meta-analysis to assess the quality of warfarin control in atrial fibrillation patients in the United States. J. Manag. Care Pharm., 2009, 15(3), 244-252.
[http://dx.doi.org/10.18553/jmcp.2009.15.3.244] [PMID: 19326955]
[40]
Jones, M.; McEwan, P.; Morgan, C.L.; Peters, J.R.; Goodfellow, J.; Currie, C.J. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: A record linkage study in a large British population. Heart, 2005, 91(4), 472-477.
[http://dx.doi.org/10.1136/hrt.2004.042465] [PMID: 15772203]
[41]
Weir, M.R.; Berger, J.S.; Ashton, V.; Laliberté, F.; Brown, K.; Lefebvre, P.; Schein, J. Impact of renal function on ischemic stroke and major bleeding rates in nonvalvular atrial fibrillation patients treated with warfarin or rivaroxaban: A retrospective cohort study using real-world evidence. Curr. Med. Res. Opin., 2017, 33(10), 1891-1900.
[http://dx.doi.org/10.1080/03007995.2017.1339674] [PMID: 28590785]
[42]
Gage, B.F.; Eby, C.; Milligan, P.E.; Banet, G.A.; Duncan, J.R.; McLeod, H.L. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb. Haemost., 2004, 91(1), 87-94.
[http://dx.doi.org/10.1160/TH03-06-0379] [PMID: 14691573]
[43]
Klein, T.E.; Altman, R.B.; Eriksson, N.; Gage, B.F.; Kimmel, S.E.; Lee, M.T.; Limdi, N.A.; Page, D.; Roden, D.M.; Wagner, M.J.; Caldwell, M.D.; Johnson, J.A. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med., 2009, 360(8), 753-764.
[http://dx.doi.org/10.1056/NEJMoa0809329] [PMID: 19228618]
[44]
Lenzini, P.; Wadelius, M.; Kimmel, S.; Anderson, J.L.; Jorgensen, A.L.; Pirmohamed, M.; Caldwell, M.D.; Limdi, N.; Burmester, J.K.; Dowd, M.B.; Angchaisuksiri, P.; Bass, A.R.; Chen, J.; Eriksson, N.; Rane, A.; Lindh, J.D.; Carlquist, J.F.; Horne, B.D.; Grice, G.; Milligan, P.E.; Eby, C.; Shin, J.; Kim, H.; Kurnik, D.; Stein, C.M.; McMillin, G.; Pendleton, R.C.; Berg, R.L.; Deloukas, P.; Gage, B.F. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin. Pharmacol. Ther., 2010, 87(5), 572-578.
[http://dx.doi.org/10.1038/clpt.2010.13] [PMID: 20375999]
[45]
Makar-Aušperger, K.; Krželj, K.; Lovrić Benčić, M.; Radačić Aumiler, M.; Erdeljić Turk, V.; Božina, N. Warfarin dosing according to the genotype-guided algorithm is most beneficial in patients with atrial fibrillation: A randomized parallel group trial. Ther. Drug Monit., 2018, 40(3), 362-368.
[http://dx.doi.org/10.1097/FTD.0000000000000501] [PMID: 29494423]
[46]
Kasner, S.E.; Wang, L.; French, B.; Messé, S.R.; Ellenberg, J.; Kimmel, S.E. Warfarin dosing algorithms and the need for human intervention. Am. J. Med., 2016, 129(4), 431-437.
[http://dx.doi.org/10.1016/j.amjmed.2015.11.012] [PMID: 26642907]
[47]
White, P.J. Patient factors that influence warfarin dose response. J. Pharm. Pract., 2010, 23(3), 194-204.
[http://dx.doi.org/10.1177/0897190010362177] [PMID: 21507814]
[48]
Fohner, A.E.; Robinson, R.; Yracheta, J.; Dillard, D.A.; Schilling, B.; Khan, B.; Hopkins, S.; Boyer, B.; Black, J.; Wiener, H.; Tiwari, H.K.; Gordon, A.; Nickerson, D.; Tsai, J.M.; Farin, F.M.; Thornton, T.A.; Rettie, A.E.; Thummel, K.E. Variation in genes controlling warfarin disposition and response in American Indian and Alaska native people: CYP2C9, VKORC1, CYP4F2, CYP4F11, GGCX. Pharmacogenet. Genomics, 2015, 25(7), 343-353.
[http://dx.doi.org/10.1097/FPC.0000000000000143] [PMID: 25946405]
[49]
McDonald, M.G.; Rieder, M.J.; Nakano, M.; Hsia, C.K.; Rettie, A.E. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol. Pharmacol., 2009, 75(6), 1337-1346.
[http://dx.doi.org/10.1124/mol.109.054833] [PMID: 19297519]
[50]
Gong, I.Y.; Schwarz, U.I.; Crown, N.; Dresser, G.K.; Lazo-Langner, A.; Zou, G.; Roden, D.M.; Stein, C.M.; Rodger, M.; Wells, P.S.; Kim, R.B.; Tirona, R.G. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLoS One, 2011, 6(11)e27808
[http://dx.doi.org/10.1371/journal.pone.0027808] [PMID: 22114699]
[51]
Ohara, M.; Takahashi, H.; Lee, M.T.; Wen, M.S.; Lee, T.H.; Chuang, H.P.; Luo, C.H.; Arima, A.; Onozuka, A.; Nagai, R.; Shiomi, M.; Mihara, K.; Morita, T.; Chen, Y.T. Determinants of the over-anticoagulation response during warfarin initiation therapy in Asian patients based on population pharmacokinetic-pharmacodynamic analyses. PLoS One, 2014, 9(8)e105891
[http://dx.doi.org/10.1371/journal.pone.0105891] [PMID: 25148255]
[52]
Alshogran, O.Y. Characterization of the Effects of the Chronic Kidney Disease on Hepatic Reduction: In Vitro and In Vivo Studies of Warfarin; PhD Thesis. University of Pittsburgh: Pittsburgh, PA, 2014.
[53]
Pisters, R.; Lane, D.A.; Nieuwlaat, R.; De Vos, C.B.; Crijns, H.J.; Lip, G.Y. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The euro heart survey. Chest, 2010, 138(5), 1093-1100.
[http://dx.doi.org/10.1378/chest.10-0134] [PMID: 20299623]
[54]
Schwartz, J.B.; Kane, L.; Moore, K.; Wu, A.H. Failure of pharmacogenetic-based dosing algorithms to identify older patients requiring low daily doses of warfarin. J. Am. Med. Dir. Assoc., 2011, 12(9), 633-638.
[http://dx.doi.org/10.1016/j.jamda.2010.12.006] [PMID: 21450231]
[55]
Chan, K.E.; Giugliano, R.P.; Patel, M.R.; Abramson, S.; Jardine, M.; Zhao, S.; Perkovic, V.; Maddux, F.W.; Piccini, J.P.; Nonvitamin, K. Nonvitamin K anticoagulant agents in patients with advanced chronic kidney disease or on dialysis with AF. J. Am. Coll. Cardiol., 2016, 67(24), 2888-2899.
[http://dx.doi.org/10.1016/j.jacc.2016.02.082] [PMID: 27311528]
[56]
Elliott, M.J.; Zimmerman, D.; Holden, R.M. Warfarin anticoagulation in hemodialysis patients: A systematic review of bleeding rates. Am. J. Kidney Dis., 2007, 50(3), 433-440.
[http://dx.doi.org/10.1053/j.ajkd.2007.06.017] [PMID: 17720522]
[57]
Miller, L.M.; Hopman, W.M.; Garland, J.S.; Yeates, K.E.; Pilkey, R.M. Cardioprotective medication use in hemodialysis patients. Can. J. Cardiol., 2006, 22(9), 755-760.
[http://dx.doi.org/10.1016/S0828-282X(06)70291-4] [PMID: 16835669]
[58]
Potpara, T.S.; Ferro, C.J.; Lip, G.Y.H. Use of oral anticoagulants in patients with atrial fibrillation and renal dysfunction. Nat. Rev. Nephrol., 2018, 14(5), 337-351.
[http://dx.doi.org/10.1038/nrneph.2018.19] [PMID: 29578207]
[59]
Bansal, N. The debate on warfarin use in dialysis patients with atrial fibrillation: More fuel for the fire. Am. J. Kidney Dis., 2014, 64(5), 677-680.
[http://dx.doi.org/10.1053/j.ajkd.2014.04.017] [PMID: 24833202]
[60]
Winkelmayer, W.C.; Turakhia, M.P. Warfarin treatment in patients with atrial fibrillation and advanced chronic kidney disease: Sins of omission or commission? JAMA, 2014, 311(9), 913-915.
[http://dx.doi.org/10.1001/jama.2014.1781] [PMID: 24595773]
[61]
Johnson, J.A.; Gong, L.; Whirl-Carrillo, M.; Gage, B.F.; Scott, S.A.; Stein, C.M.; Anderson, J.L.; Kimmel, S.E.; Lee, M.T.; Pirmohamed, M.; Wadelius, M.; Klein, T.E.; Altman, R.B. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther., 2011, 90(4), 625-629.
[http://dx.doi.org/10.1038/clpt.2011.185] [PMID: 21900891]
[62]
Limdi, N.A.; Beasley, T.M.; Baird, M.F.; Goldstein, J.A.; McGwin, G.; Arnett, D.K.; Acton, R.T.; Allon, M. Kidney function influences warfarin responsiveness and hemorrhagic complications. J. Am. Soc. Nephrol., 2009, 20(4), 912-921.
[http://dx.doi.org/10.1681/ASN.2008070802] [PMID: 19225037]
[63]
Limdi, N.A.; Limdi, M.A.; Cavallari, L.; Anderson, A.M.; Crowley, M.R.; Baird, M.F.; Allon, M.; Beasley, T.M. Warfarin dosing in patients with impaired kidney function. Am. J. Kidney Dis., 2010, 56(5), 823-831.
[http://dx.doi.org/10.1053/j.ajkd.2010.05.023] [PMID: 20709439]
[64]
Kleinow, M.E.; Garwood, C.L.; Clemente, J.L.; Whittaker, P. Effect of chronic kidney disease on warfarin management in a pharmacist-managed anticoagulation clinic. J. Manag. Care Pharm., 2011, 17(7), 523-530.
[http://dx.doi.org/10.18553/jmcp.2011.17.7.523] [PMID: 21870893]
[65]
Sakaan, S.A.; Hudson, J.Q.; Oliphant, C.S.; Tolley, E.A.; Cummings, C.; Alabdan, N.A.; Self, T.H. Evaluation of warfarin dose requirements in patients with chronic kidney disease and end-stage renal disease. Pharmacotherapy, 2014, 34(7), 695-702.
[http://dx.doi.org/10.1002/phar.1445] [PMID: 24851819]
[66]
Yang, F.; Hellyer, J.A.; Than, C.; Ullal, A.J.; Kaiser, D.W.; Heidenreich, P.A.; Hoang, D.D.; Winkelmayer, W.C.; Schmitt, S.; Frayne, S.M.; Phibbs, C.S.; Turakhia, M.P. Warfarin utilisation and anticoagulation control in patients with atrial fibrillation and chronic kidney disease. Heart, 2017, 103(11), 818-826.
[http://dx.doi.org/10.1136/heartjnl-2016-309266] [PMID: 27852694]
[67]
Ichihara, N.; Ishigami, T.; Umemura, S. Effect of impaired renal function on the maintenance dose of warfarin in Japanese patients. J. Cardiol., 2015, 65(3), 178-184.
[http://dx.doi.org/10.1016/j.jjcc.2014.08.008] [PMID: 25442049]
[68]
Dahal, K.; Kunwar, S.; Rijal, J.; Schulman, P.; Lee, J. Stroke, major bleeding, and mortality outcomes in warfarin users with atrial fibrillation and chronic kidney disease: A meta-analysis of observational studies. Chest, 2016, 149(4), 951-959.
[http://dx.doi.org/10.1378/chest.15-1719] [PMID: 26378611]
[69]
Harel, Z.; Chertow, G.M.; Shah, P.S.; Harel, S.; Dorian, P.; Yan, A.T.; Saposnik, G.; Sood, M.M.; Molnar, A.O.; Perl, J.; Wald, R.M.; Silver, S.; Wald, R. Warfarin and the risk of stroke and bleeding in patients with atrial fibrillation receiving dialysis: A systematic review and meta-analysis. Can. J. Cardiol., 2017, 33(6), 737-746.
[http://dx.doi.org/10.1016/j.cjca.2017.02.004] [PMID: 28545622]
[70]
Hussain, S.; Siddiqui, A.N.; Baxi, H.; Habib, A.; Hussain, M.S.; Najmi, A.K. Warfarin use increases bleeding risk in hemodialysis patients with atrial fibrillation: A meta-analysis of cohort studies. J. Gastroenterol. Hepatol., 2019, 34(6), 975-984.
[http://dx.doi.org/10.1111/jgh.14601] [PMID: 30614083]
[71]
Lee, M.; Saver, J.L.; Hong, K.S.; Wu, Y.L.; Huang, W.H.; Rao, N.M.; Ovbiagele, B. Warfarin use and risk of stroke in patients with atrial fibrillation undergoing hemodialysis: A meta-analysis. Medicine (Baltimore), 2016, 95(6)e2741
[http://dx.doi.org/10.1097/MD.0000000000002741] [PMID: 26871818]
[72]
Lei, H.; Yu, L.T.; Wang, W.N.; Zhang, S.G. Warfarin and the risk of death, stroke, and major bleeding in patients with atrial fibrillation receiving hemodialysis: A systematic review and meta-analysis. Front. Pharmacol., 2018, 9, 1218.
[73]
Li, J.; Wang, L.; Hu, J.; Xu, G. Warfarin use and the risks of stroke and bleeding in hemodialysis patients with atrial fibrillation: A systematic review and a meta-analysis. Nutr. Metab. Cardiovasc. Dis., 2015, 25(8), 706-713.
[http://dx.doi.org/10.1016/j.numecd.2015.03.013] [PMID: 26026205]
[74]
Liu, G.; Long, M.; Hu, X.; Hu, C.H.; Liao, X.X.; Du, Z.M.; Dong, Y.G. Effectiveness and safety of warfarin in dialysis patients with atrial fibrillation: A meta-analysis of observational studies. Medicine (Baltimore), 2015, 94(50)e2233
[http://dx.doi.org/10.1097/MD.0000000000002233] [PMID: 26683937]
[75]
Nochaiwong, S.; Ruengorn, C.; Awiphan, R.; Dandecha, P.; Noppakun, K.; Phrommintikul, A. Efficacy and safety of warfarin in dialysis patients with atrial fibrillation: A systematic review and meta-analysis. Open Heart, 2016, 3(1)e000441
[http://dx.doi.org/10.1136/openhrt-2016-000441] [PMID: 27386140]
[76]
Tan, J.; Liu, S.; Segal, J.B.; Alexander, G.C.; McAdams-DeMarco, M. Warfarin use and stroke, bleeding and mortality risk in patients with end stage renal disease and atrial fibrillation: A systematic review and meta-analysis. BMC Nephrol., 2016, 17(1), 157.
[http://dx.doi.org/10.1186/s12882-016-0368-6] [PMID: 27769175]
[77]
Wong, C.X.; Odutayo, A.; Emdin, C.A.; Kinnear, N.J.; Sun, M.T. Meta-analysis of anticoagulation use, stroke, thromboembolism, bleeding, and mortality in patients with atrial fibrillation on dialysis. Am. J. Cardiol., 2016, 117(12), 1934-1941.
[http://dx.doi.org/10.1016/j.amjcard.2016.03.042] [PMID: 27237624]
[78]
Shah, M.; Avgil Tsadok, M.; Jackevicius, C.A.; Essebag, V.; Eisenberg, M.J.; Rahme, E.; Humphries, K.H.; Tu, J.V.; Behlouli, H.; Guo, H.; Pilote, L. Warfarin use and the risk for stroke and bleeding in patients with atrial fibrillation undergoing dialysis. Circulation, 2014, 129(11), 1196-1203.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.004777] [PMID: 24452752]
[79]
Hirai, T.; Hamada, Y.; Geka, Y.; Kuwana, S.; Hirai, K.; Ishibashi, M.; Fukaya, Y.; Kimura, T. A retrospective study on the risk factors for bleeding events in warfarin therapy, focusing on renal function. Eur. J. Clin. Pharmacol., 2017, 73(11), 1491-1497.
[http://dx.doi.org/10.1007/s00228-017-2316-1] [PMID: 28795244]
[80]
Jun, M.; James, M.T.; Manns, B.J.; Quinn, R.R.; Ravani, P.; Tonelli, M.; Perkovic, V.; Winkelmayer, W.C.; Ma, Z.; Hemmelgarn, B.R. The association between kidney function and major bleeding in older adults with atrial fibrillation starting warfarin treatment: Population based observational study. BMJ, 2015, 350, h246.
[http://dx.doi.org/10.1136/bmj.h246]
[81]
Kooiman, J.; van Rein, N.; Spaans, B.; van Beers, K.A.; Bank, J.R.; van de Peppel, W.R.; del Sol, A.I.; Cannegieter, S.C.; Rabelink, T.J.; Lip, G.Y.; Klok, F.A.; Huisman, M.V. Efficacy and safety of Vitamin K-antagonists (VKA) for atrial fibrillation in non-dialysis dependent chronic kidney disease. PLoS One, 2014, 9(5)e94420
[http://dx.doi.org/10.1371/journal.pone.0094420] [PMID: 24817475]
[82]
Chan, K.E.; Lazarus, J.M.; Thadhani, R.; Hakim, R.M. Warfarin use associates with increased risk for stroke in hemodialysis patients with atrial fibrillation. J. Am. Soc. Nephrol., 2009, 20(10), 2223-2233.
[http://dx.doi.org/10.1681/ASN.2009030319] [PMID: 19713308]
[83]
Garg, L.; Chen, C.; Haines, D.E. Atrial fibrillation and chronic kidney disease requiring hemodialysis - Does warfarin therapy improve the risks of this lethal combination? Int. J. Cardiol., 2016, 222, 47-50.
[84]
Wang, T.K.; Sathananthan, J.; Marshall, M.; Kerr, A.; Hood, C. Relationships between Anticoagulation, risk scores and adverse outcomes in dialysis patients with atrial fibrillation. Heart Lung Circ., 2016, 25(3), 243-249.
[http://dx.doi.org/10.1016/j.hlc.2015.08.012] [PMID: 26481398]
[85]
Yoon, C.Y.; Noh, J.; Jhee, J.H.; Chang, T.I.; Kang, E.W.; Kee, Y.K.; Kim, H.; Park, S.; Yun, H.R.; Jung, S.Y.; Oh, H.J.; Park, J.T.; Han, S.H.; Kang, S.W.; Kim, C.; Yoo, T.H. Warfarin use in patients with atrial fibrillation undergoing hemodialysis: A nationwide population-based study. Stroke, 2017, 48(9), 2472-2479.
[http://dx.doi.org/10.1161/STROKEAHA.117.017114] [PMID: 28801476]
[86]
Chan, K.E.; Lazarus, J.M.; Thadhani, R.; Hakim, R.M. Anticoagulant and antiplatelet usage associates with mortality among hemodialysis patients. J. Am. Soc. Nephrol., 2009, 20(4), 872-881.
[http://dx.doi.org/10.1681/ASN.2008080824] [PMID: 19297555]
[87]
Lin, M.C.; Streja, E.; Soohoo, M.; Hanna, M.; Savoj, J.; Kalantar-Zadeh, K.; Lau, W.L. Warfarin use and increased mortality in end-stage renal disease. Am. J. Nephrol., 2017, 46(4), 249-256.
[http://dx.doi.org/10.1159/000481207] [PMID: 28910806]
[88]
Carrero, J.J.; Evans, M.; Szummer, K.; Spaak, J.; Lindhagen, L.; Edfors, R.; Stenvinkel, P.; Jacobson, S.H.; Jernberg, T. Warfarin, kidney dysfunction, and outcomes following acute myocardial infarction in patients with atrial fibrillation. JAMA, 2014, 311(9), 919-928.
[http://dx.doi.org/10.1001/jama.2014.1334] [PMID: 24595776]
[89]
Kai, B.; Bogorad, Y.; Nguyen, L.N.; Yang, S.J.; Chen, W.; Spencer, H.T.; Shen, A.Y.; Lee, M.S. Warfarin use and the risk of mortality, stroke, and bleeding in hemodialysis patients with atrial fibrillation. Heart Rhythm, 2017, 14(5), 645-651.
[http://dx.doi.org/10.1016/j.hrthm.2017.01.047] [PMID: 28185918]
[90]
Friberg, L.; Benson, L.; Lip, G.Y. Balancing stroke and bleeding risks in patients with atrial fibrillation and renal failure: The Swedish atrial fibrillation cohort study. Eur. Heart J., 2015, 36(5), 297-306.
[http://dx.doi.org/10.1093/eurheartj/ehu139] [PMID: 24722803]
[91]
Lai, H.M.; Aronow, W.S.; Kalen, P.; Adapa, S.; Patel, K.; Goel, A.; Vinnakota, R.; Chugh, S.; Garrick, R. Incidence of thromboembolic stroke and of major bleeding in patients with atrial fibrillation and chronic kidney disease treated with and without warfarin. Int. J. Nephrol. Renovasc. Dis., 2009, 2, 33-37.
[92]
Kaminsky, L.S.; Zhang, Z.Y. Human P450 metabolism of warfarin. Pharmacol. Ther., 1997, 73(1), 67-74.
[http://dx.doi.org/10.1016/S0163-7258(96)00140-4] [PMID: 9014207]
[93]
Kim, S.Y.; Kang, J.Y.; Hartman, J.H.; Park, S.H.; Jones, D.R.; Yun, C.H.; Boysen, G.; Miller, G.P. Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins. Drug Metab. Lett., 2012, 6(3), 157-164.
[http://dx.doi.org/10.2174/1872312811206030002] [PMID: 23331088]
[94]
Jones, D.R.; Kim, S.Y.; Boysen, G.; Yun, C.H.; Miller, G.P. Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin. Drug Metab. Lett., 2010, 4(4), 213-219.
[http://dx.doi.org/10.2174/187231210792928242] [PMID: 20615193]
[95]
Wadelius, M.; Chen, L.Y.; Eriksson, N.; Bumpstead, S.; Ghori, J.; Wadelius, C.; Bentley, D.; McGinnis, R.; Deloukas, P. Association of warfarin dose with genes involved in its action and metabolism. Hum. Genet., 2007, 121(1), 23-34.
[http://dx.doi.org/10.1007/s00439-006-0260-8] [PMID: 17048007]
[96]
Wienkers, L.C.; Wurden, C.J.; Storch, E.; Kunze, K.L.; Rettie, A.E.; Trager, W.F. Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab. Dispos., 1996, 24(5), 610-614.
[PMID: 8723744]
[97]
Zhang, Z.; Fasco, M.J.; Huang, Z.; Guengerich, F.P.; Kaminsky, L.S. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab. Dispos., 1995, 23(12), 1339-1346.
[PMID: 8689941]
[98]
Kaminsky, L.S.; De Morais, S.M.; Faletto, M.B.; Dunbar, D.A.; Goldstein, J.A. Correlation of human cytochrome P4502C substrate specificities with primary structure: Warfarin as a probe. Mol. Pharmacol., 1993, 43(2), 234-239.
[PMID: 8429826]
[99]
Ngui, J.S.; Chen, Q.; Shou, M.; Wang, R.W.; Stearns, R.A.; Baillie, T.A.; Tang, W. In vitro stimulation of warfarin metabolism by quinidine: increases in the formation of 4′- and 10-hydroxywarfarin. Drug Metab. Dispos., 2001, 29(6), 877-886.
[PMID: 11353757]
[100]
Rettie, A.E.; Korzekwa, K.R.; Kunze, K.L.; Lawrence, R.F.; Eddy, A.C.; Aoyama, T.; Gelboin, H.V.; Gonzalez, F.J.; Trager, W.F. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: A role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem. Res. Toxicol., 1992, 5(1), 54-59.
[http://dx.doi.org/10.1021/tx00025a009] [PMID: 1581537]
[101]
Lawrence, R.F.; Rettie, A.E.; Eddy, A.C.; Trager, W.F. Chemical synthesis, absolute configuration, and stereochemistry of formation of 10-hydroxywarfarin: A major oxidative metabolite of (+)-(R)-warfarin from hepatic microsomal preparations. Chirality, 1990, 2(2), 96-105.
[http://dx.doi.org/10.1002/chir.530020207] [PMID: 2400642]
[102]
Dreisbach, A.W.; Japa, S.; Gebrekal, A.B.; Mowry, S.E.; Lertora, J.J.; Kamath, B.L.; Rettie, A.E. Cytochrome P4502C9 activity in end-stage renal disease. Clin. Pharmacol. Ther., 2003, 73(5), 475-477.
[http://dx.doi.org/10.1016/S0009-9236(03)00015-8] [PMID: 12732848]
[103]
Locatelli, I.; Kmetec, V.; Mrhar, A.; Grabnar, I. Determination of warfarin enantiomers and hydroxylated metabolites in human blood plasma by liquid chromatography with achiral and chiral separation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 818(2), 191-198.
[http://dx.doi.org/10.1016/j.jchromb.2004.12.024] [PMID: 15734158]
[104]
Yang, J.; Chen, Y.; Li, X.; Wei, X.; Chen, X.; Zhang, L.; Zhang, Y.; Xu, Q.; Wang, H.; Li, Y.; Lu, C.; Chen, W.; Zeng, C.; Yin, T. Influence of CYP2C9 and VKORC1 genotypes on the risk of hemorrhagic complications in warfarin-treated patients: A systematic review and meta-analysis. Int. J. Cardiol., 2013, 168(4), 4234-4243.
[http://dx.doi.org/10.1016/j.ijcard.2013.07.151] [PMID: 23932037]
[105]
Flora, D.R.; Rettie, A.E.; Brundage, R.C.; Tracy, T.S. CYP2C9 genotype-dependent warfarin pharmacokinetics: Impact of CYP2C9 genotype on R- and S-warfarin and their oxidative metabolites. J. Clin. Pharmacol., 2017, 57(3), 382-393.
[http://dx.doi.org/10.1002/jcph.813] [PMID: 27539372]
[106]
Lewis, R.J.; Trager, W.F.; Chan, K.K.; Breckenridge, A.; Orme, M.; Roland, M.; Schary, W. Warfarin. Stereochemical aspects of its metabolism and the interaction with phenylbutazone. J. Clin. Invest., 1974, 53(6), 1607-1617.
[http://dx.doi.org/10.1172/JCI107711] [PMID: 4830225]
[107]
Barnette, D.A.; Johnson, B.P.; Pouncey, D.L.; Nshimiyimana, R.; Desrochers, L.P.; Goodwin, T.E.; Miller, G.P. Stereospecific metabolism of R- and S-warfarin by human hepatic cytosolic reductases. Drug Metab. Dispos., 2017, 45(9), 1000-1007.
[http://dx.doi.org/10.1124/dmd.117.075929] [PMID: 28646078]
[108]
Chan, K.K.; Lewis, R.J.; Trager, W.F. Absolute configurations of the four warfarin alcohols. J. Med. Chem., 1972, 15(12), 1265-1270.
[http://dx.doi.org/10.1021/jm00282a016] [PMID: 4635971]
[109]
Moreland, T.A.; Hewick, D.S. Studies on a ketone reductase in human and rat liver and kidney soluble fraction using warfarin as a substrate. Biochem. Pharmacol., 1975, 24(21), 1953-1957.
[http://dx.doi.org/10.1016/0006-2952(75)90381-0] [PMID: 1212245]
[110]
Malatkova, P.; Sokolova, S.; Chocholousova Havlikova, L.; Wsol, V. Carbonyl reduction of warfarin: Identification and characterization of human warfarin reductases. Biochem. Pharmacol., 2016, 109, 83-90.
[111]
Hermans, J.J.; Thijssen, H.H. Stereoselective acetonyl side chain reduction of warfarin and analogs. Partial characterization of two cytosolic carbonyl reductases. Drug Metab. Dispos., 1992, 20(2), 268-274.
[PMID: 1352220]
[112]
Hermans, J.J.; Thijssen, H.H. Properties and stereoselectivity of carbonyl reductases involved in the ketone reduction of warfarin and analogues. Adv. Exp. Med. Biol., 1993, 328, 351-360.
[http://dx.doi.org/10.1007/978-1-4615-2904-0_37]
[113]
Chan, E.; McLachlan, A.J.; Pegg, M.; MacKay, A.D.; Cole, R.B.; Rowland, M. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin. Br. J. Clin. Pharmacol., 1994, 37(6), 563-569.
[http://dx.doi.org/10.1111/j.1365-2125.1994.tb04305.x] [PMID: 7917775]
[114]
McAleer, S.D.; Chrystyn, H.; Foondun, A.S. Measurement of the (R)- and (S)-isomers of warfarin in patients undergoing anticoagulant therapy. Chirality, 1992, 4(8), 488-493.
[http://dx.doi.org/10.1002/chir.530040806] [PMID: 1476859]
[115]
Lewis, R.J.; Trager, W.F. The metabolic fate of warfarin: Studies on the metabolites in plasma. Ann. N. Y. Acad. Sci., 1971, 179, 205-212.
[http://dx.doi.org/10.1111/j.1749-6632.1971.tb46900.x]
[116]
Lewis, R.J.; Trager, W.F.; Robinson, A.J.; Chan, K.K. Warfarin metabolites: The anticoagulant activity and pharmacology of warfarin alcohols. J. Lab. Clin. Med., 1973, 81(6), 925-931.
[PMID: 4710371]
[117]
Gebauer, M. Synthesis and structure-activity relationships of novel warfarin derivatives. Bioorg. Med. Chem., 2007, 15(6), 2414-2420.
[http://dx.doi.org/10.1016/j.bmc.2007.01.014] [PMID: 17275317]
[118]
Jansing, R.L.; Chao, E.S.; Kaminsky, L.S. Phase II metabolism of warfarin in primary culture of adult rat hepatocytes. Mol. Pharmacol., 1992, 41(1), 209-215.
[PMID: 1732719]
[119]
Miller, G.P.; Jones, D.R.; Sullivan, S.Z.; Mazur, A.; Owen, S.N.; Mitchell, N.C.; Radominska-Pandya, A.; Moran, J.H. Assessing cytochrome P450 and UDP-glucuronosyltransferase contributions to warfarin metabolism in humans. Chem. Res. Toxicol., 2009, 22(7), 1239-1245.
[http://dx.doi.org/10.1021/tx900031z] [PMID: 19408964]
[120]
Pugh, C.P.; Pouncey, D.L.; Hartman, J.H.; Nshimiyimana, R.; Desrochers, L.P.; Goodwin, T.E.; Boysen, G.; Miller, G.P. Multiple UDP-glucuronosyltransferases in human liver microsomes glucuronidate both R- and S-7-hydroxywarfarin into two metabolites. Arch. Biochem. Biophys., 2014, 564, 244-253.
[121]
Zielinska, A.; Lichti, C.F.; Bratton, S.; Mitchell, N.C.; Gallus-Zawada, A.; Le, V.H.; Finel, M.; Miller, G.P.; Radominska-Pandya, A.; Moran, J.H. Glucuronidation of monohydroxylated warfarin metabolites by human liver microsomes and human recombinant UDP-glucuronosyltransferases. J. Pharmacol. Exp. Ther., 2008, 324(1), 139-148.
[http://dx.doi.org/10.1124/jpet.107.129858] [PMID: 17921187]
[122]
Bratton, S.M.; Mosher, C.M.; Khallouki, F.; Finel, M.; Court, M.H.; Moran, J.H.; Radominska-Pandya, A. Analysis of R- and S-hydroxywarfarin glucuronidation catalyzed by human liver microsomes and recombinant UDP-glucuronosyltransferases. J. Pharmacol. Exp. Ther., 2012, 340(1), 46-55.
[http://dx.doi.org/10.1124/jpet.111.184721] [PMID: 21972237]
[123]
Kim, S.Y.; Jones, D.R.; Kang, J.Y.; Yun, C.H.; Miller, G.P. Regioselectivity significantly impacts microsomal glucuronidation efficiency of R/S-6, 7-, and 8-hydroxywarfarin. Xenobiotica, 2019, 49(4), 397-403.
[PMID: 29543105]
[124]
An, S.H.; Chang, B.C.; Lee, K.E.; Gwak, H.S. Influence of UDP-glucuronosyltransferase polymorphisms on stable warfarin doses in patients with mechanical cardiac valves. Cardiovasc. Ther., 2015, 33(6), 324-328.
[http://dx.doi.org/10.1111/1755-5922.12147] [PMID: 26223945]
[125]
Benet, L.Z. The role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) in drug development. J. Pharm. Sci., 2013, 102(1), 34-42.
[http://dx.doi.org/10.1002/jps.23359] [PMID: 23147500]
[126]
Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; Hillgren, K.M.; Hoffmaster, K.A.; Ishikawa, T.; Keppler, D.; Kim, R.B.; Lee, C.A.; Niemi, M.; Polli, J.W.; Sugiyama, Y.; Swaan, P.W.; Ware, J.A.; Wright, S.H.; Yee, S.W.; Zamek-Gliszczynski, M.J.; Zhang, L. Membrane transporters in drug development. Nat. Rev. Drug Discov., 2010, 9(3), 215-236.
[http://dx.doi.org/10.1038/nrd3028] [PMID: 20190787]
[127]
Yang, M.S.; Yu, C.P.; Chao, P.L.; Lin, S.P.; Hou, Y.C. R- and S-warfarin were transported by breast cancer resistance protein: From in vitro to pharmacokinetic-pharmacodynamic studies. J. Pharm. Sci., 2017, 106(5), 1419-1425.
[http://dx.doi.org/10.1016/j.xphs.2017.01.012] [PMID: 28093289]
[128]
Bi, Y.A.; Lin, J.; Mathialagan, S.; Tylaska, L.; Callegari, E.; Rodrigues, A.D.; Varma, M.V.S. Role of hepatic organic anion transporter 2 in the pharmacokinetics of R- and S-warfarin: In vitro studies and mechanistic evaluation. Mol. Pharm., 2018, 15(3), 1284-1295.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01108] [PMID: 29433307]
[129]
Jones, D.R.; Kim, S.Y.; Guderyon, M.; Yun, C.H.; Moran, J.H.; Miller, G.P. Hydroxywarfarin metabolites potently inhibit CYP2C9 metabolism of S-warfarin. Chem. Res. Toxicol., 2010, 23(5), 939-945.
[http://dx.doi.org/10.1021/tx1000283] [PMID: 20429590]
[130]
Lomonaco, T.; Ghimenti, S.; Piga, I.; Onor, M.; Melai, B.; Fuoco, R.; Di Francesco, F. Determination of total and unbound warfarin and warfarin alcohols in human plasma by high performance liquid chromatography with fluorescence detection. J. Chromatogr. A, 2013, 1314, 54-62.
[131]
Yacobi, A.; Levy, G. Protein binding of warfarin enantiomers in serum of humans and rats. J. Pharmacokinet. Biopharm., 1977, 5(2), 123-131.
[http://dx.doi.org/10.1007/BF01066216] [PMID: 859099]
[132]
Reidenberg, M.M. The binding of drugs to plasma proteins and the interpretation of measurements of plasma concentrations of drugs in patients with poor renal function. Am. J. Med., 1977, 62(4), 466-470.
[http://dx.doi.org/10.1016/0002-9343(77)90398-9] [PMID: 851114]
[133]
Naud, J.; Nolin, T.D.; Leblond, F.A.; Pichette, V. Current understanding of drug disposition in kidney disease. J. Clin. Pharmacol., 2012, 52(Suppl. 1), 10S-22S.
[http://dx.doi.org/10.1177/0091270011413588] [PMID: 22232747]
[134]
Odar-Cederlof, I. Plasma protein binding of phenytoin and warfarin in patients undergoing renal transplantation. Clin. Pharmacokinet., 1977, 2(2), 147-153.
[http://dx.doi.org/10.2165/00003088-197702020-00005] [PMID: 324689]
[135]
Sjöholm, I.; Kober, A.; Odar-Cederlöf, I.; Borgåa, O. Protein binding of drugs in uremic and normal serum: the role of endogenous binding inhibitors. Biochem. Pharmacol., 1976, 25(10), 1205-1213.
[http://dx.doi.org/10.1016/0006-2952(76)90370-1] [PMID: 938543]
[136]
Levy, G.; Yacobi, A. Letter: Effect of plasma protein binding on elimination of warfarin. J. Pharm. Sci., 1974, 63(5), 805-806.
[http://dx.doi.org/10.1002/jps.2600630539] [PMID: 4830012]
[137]
Yacobi, A.; Udall, J.A.; Levy, G. Serum protein binding as a determinant of warfarin body clearance and anticoagulant effect. Clin. Pharmacol. Ther., 1976, 19(5 Pt 1), 552-558.
[http://dx.doi.org/10.1002/cpt1976195part1552] [PMID: 1277711]
[138]
Bachmann, K.; Shapiro, R.; Mackiewicz, J. Warfarin elimination and responsiveness in patients with renal dysfunction. J. Clin. Pharmacol., 1977, 17(5-6), 292-299.
[http://dx.doi.org/10.1002/j.1552-4604.1977.tb04608.x] [PMID: 858804]
[139]
Alshogran, O.Y.; Nolin, T.D. Implications of kidney disease on metabolic reduction. Curr. Drug Metab., 2016, 17(7), 663-672.
[http://dx.doi.org/10.2174/1389200217666160603131320] [PMID: 27262337]
[140]
Ladda, M.A.; Goralski, K.B. The Effects of CKD on cytochrome P450-mediated drug metabolism. Adv. Chronic Kidney Dis., 2016, 23(2), 67-75.
[http://dx.doi.org/10.1053/j.ackd.2015.10.002] [PMID: 26979145]
[141]
Velenosi, T.J.; Urquhart, B.L. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Expert Opin. Drug Metab. Toxicol., 2014, 10(8), 1131-1143.
[http://dx.doi.org/10.1517/17425255.2014.931371] [PMID: 24961255]
[142]
Yeung, C.K.; Shen, D.D.; Thummel, K.E.; Himmelfarb, J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int., 2014, 85(3), 522-528.
[http://dx.doi.org/10.1038/ki.2013.399] [PMID: 24132209]
[143]
Alshogran, O.Y.; Naud, J.; Ocque, A.J.; Leblond, F.A.; Pichette, V.; Nolin, T.D. Effect of experimental kidney disease on the functional expression of hepatic reductases. Drug Metab. Dispos., 2015, 43(1), 100-106.
[http://dx.doi.org/10.1124/dmd.114.061150] [PMID: 25332430]
[144]
Alshogran, O.Y.; Urquhart, B.L.; Nolin, T.D. Downregulation of hepatic carbonyl reductase type 1 in end-stage renal disease. Drug Metab. Lett., 2015, 9(2), 111-118.
[http://dx.doi.org/10.2174/1872312809666150818111626] [PMID: 26282591]
[145]
Yu, C.; Ritter, J.K.; Krieg, R.J.; Rege, B.; Karnes, T.H.; Sarkar, M.A. Effect of chronic renal insufficiency on hepatic and renal udp-glucuronyltransferases in rats. Drug Metab. Dispos., 2006, 34(4), 621-627.
[http://dx.doi.org/10.1124/dmd.105.006601] [PMID: 16415115]
[146]
Singlas, E.; Pioger, J.C.; Taburet, A.M.; Colin, J.N.; Fillastre, J.P. Zidovudine disposition in patients with severe renal impairment: Influence of hemodialysis. Clin. Pharmacol. Ther., 1989, 46(2), 190-197.
[http://dx.doi.org/10.1038/clpt.1989.125] [PMID: 2758728]
[147]
Lalande, L.; Charpiat, B.; Leboucher, G.; Tod, M. Consequences of renal failure on non-renal clearance of drugs. Clin. Pharmacokinet., 2014, 53(6), 521-532.
[http://dx.doi.org/10.1007/s40262-014-0146-1] [PMID: 24861189]
[148]
Nolin, T.D.; Frye, R.F.; Le, P.; Sadr, H.; Naud, J.; Leblond, F.A.; Pichette, V.; Himmelfarb, J. ESRD impairs nonrenal clearance of fexofenadine but not midazolam. J. Am. Soc. Nephrol., 2009, 20(10), 2269-2276.
[http://dx.doi.org/10.1681/ASN.2009010082] [PMID: 19696225]
[149]
Albrecht, D.; Turakhia, M.P.; Ries, D.; Marbury, T.; Smith, W.; Dillon, D.; Milner, P.G.; Midei, M.G. Pharmacokinetics of tecarfarin and warfarin in patients with severe chronic kidney disease. Thromb. Haemost., 2017, 117(11), 2026-2033.
[http://dx.doi.org/10.1160/TH16-10-0815] [PMID: 28933798]
[150]
Jang, H.R.; Kang, D.; Sinn, D.H.; Gu, S.; Cho, S.J.; Lee, J.E.; Huh, W.; Paik, S.W.; Ryu, S.; Chang, Y.; Shafi, T.; Lazo, M.; Guallar, E.; Cho, J.; Gwak, G.Y. Nonalcoholic fatty liver disease accelerates kidney function decline in patients with chronic kidney disease: A cohort study. Sci. Rep., 2018, 8(1), 4718.
[http://dx.doi.org/10.1038/s41598-018-23014-0] [PMID: 29549269]
[151]
Mantovani, A.; Zaza, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Bonora, E.; Targher, G. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism, 2018, 79, 64-76.
[http://dx.doi.org/10.1016/j.metabol.2017.11.003]
[152]
Marcuccilli, M.; Chonchol, M. NAFLD and chronic kidney disease. Int. J. Mol. Sci., 2016, 17(4), 562.
[http://dx.doi.org/10.3390/ijms17040562] [PMID: 27089331]
[153]
Dietrich, C.G.; Rau, M.; Jahn, D.; Geier, A. Changes in drug transport and metabolism and their clinical implications in non-alcoholic fatty liver disease. Expert Opin. Drug Metab. Toxicol., 2017, 13(6), 625-640.
[http://dx.doi.org/10.1080/17425255.2017.1314461] [PMID: 28359183]
[154]
Merrell, M.D.; Cherrington, N.J. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab. Rev., 2011, 43(3), 317-334.
[http://dx.doi.org/10.3109/03602532.2011.577781] [PMID: 21612324]
[155]
Deal, E.N.; Shuster, J.E. Balancing anticoagulation decisions in patients on dialysis with atrial fibrillation. J. Am. Soc. Nephrol., 2017, 28(7), 1957-1959.
[http://dx.doi.org/10.1681/ASN.2017040451] [PMID: 28583916]
[156]
Finazzi, G.; Mingardi, G. Oral anticoagulant therapy in hemodialysis patients: Do the benefits outweigh the risks? Intern. Emerg. Med., 2009, 4(5), 375-380.
[http://dx.doi.org/10.1007/s11739-009-0281-0] [PMID: 19609643]
[157]
Sood, M.M.; Komenda, P.; Sood, A.R.; Rigatto, C.; Bueti, J. The intersection of risk and benefit: Is warfarin anticoagulation suitable for atrial fibrillation in patients on hemodialysis? Chest, 2009, 136(4), 1128-1133.
[http://dx.doi.org/10.1378/chest.09-0730] [PMID: 19809054]
[158]
Yang, F.; Chou, D.; Schweitzer, P.; Hanon, S. Warfarin in haemodialysis patients with atrial fibrillation: What benefit? Europace, 2010, 12(12), 1666-1672.
[http://dx.doi.org/10.1093/europace/euq387] [PMID: 21045011]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy