Influence of the OATP Polymorphism on the Population Pharmacokinetics of Methotrexate in Chinese Patients

Author(s): Zhiqi Wang, Nan Zhang, Chaoyang Chen, Shuqing Chen, Junyu Xu, Ying Zhou, Xia Zhao*, Yimin Cui*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 7 , 2019


Graphical Abstract:


Abstract:

Background: The Pharmacokinetics of Methotrexate (MTX) has been reported to show significant intersubject variability. MTX is metabolized by SHMT1 and transported by OATP1B1 and OATP1B3 both of which show genetic polymorphisms. The non-genetic and genetic factors may influence the pharmacokinetics of MTX.

Objective: This study aimed to determine the pharmacokinetic parameters of MTX in Chinese patients and to investigate the effect of various non-genetic factors and genetic variants of OATP1B1, OATP1B3 on MTX’s pharmacokinetics.

Methods: MTX concentration and clinical characteristics data were collected from 71 rheumatoid arthritis patients. For each patient, SLC19A1, SHMT1, OATP1B1, and OATP1B3 genotyping were tested. Population pharmacokinetic analysis was performed by Nonlinear Mixed-Effect Modeling (NONMEM). MTX pharmacokinetic properties analysis was executed using the one-compartment pharmacokinetic model which incorporated first-order conditional estimation methods with interaction. Besides, the impact of genetic factors and demographic factors on MTX disposition were explored.

Results: All the genotypes of steady-state plasma concentrations and OATP1B1 rs4149056, OATP1B1 rs2306283, and OATP1B3 rs7311358 were determined. The detected blood drug concentration reached the standard. Genotypes were all measured. At the same time, the population pharmacokinetic model of methotrexate was obtained CL(L·h-1) =8.25× e0.167× SNP (SNP: SLCO1B1 388A/A=3; SLCO1B1 388A/G=2; SLCO1B1 388G/G=1); V(L)= 32.8; Ka(h- 1)=1.69.

Conclusion: In our study, it was showed that OATP1B1-388 G>A SNP had a significant effect on CL/F. The factor should be considered when determining MTX dosing. However, prospective studies with a large number of participants are needed to validate the results of this study.

Keywords: Rheumatoid arthritis, methotrexate, organic anion-transporting polypeptides (OATPs), nonlinear mixed-effect modeling (NONMEM), pharmacogenetics, population pharmacokinetics.

[1]
Visser, K.H.D.; Dougados, M. Methotrexate in rheumatoid arthritis: experience and recommendations from the 3E initiative. Int. J. Clin. Rheumatol., 2009, 4, 239-243.
[http://dx.doi.org/10.2217/ijr.09.13]
[2]
Tugwell, P.; Bennett, K.; Gent, M. Methotrexate in rheumatoid arthritis. Indications, contraindications, efficacy, and safety. Ann. Intern. Med., 1987, 107(3), 358-366.
[http://dx.doi.org/10.7326/0003-4819-107-2-358] [PMID: 3304050]
[3]
Stamp, L.K.; Roberts, R.L. Effect of genetic polymorphisms in the folate pathway on methotrexate therapy in rheumatic diseases. Pharmacogenomics, 2011, 12(10), 1449-1463.
[http://dx.doi.org/10.2217/pgs.11.86] [PMID: 22008049]
[4]
Sokka, T.; Kautiainen, H.; Toloza, S.; Mäkinen, H.; Verstappen, S.M.; Lund Hetland, M.; Naranjo, A.; Baecklund, E.; Herborn, G.; Rau, R.; Cazzato, M.; Gossec, L.; Skakic, V.; Gogus, F.; Sierakowski, S.; Bresnihan, B.; Taylor, P.; McClinton, C.; Pincus, T. QUEST-RA Group. QUEST-RA: Quantitative clinical assessment of patients with rheumatoid arthritis seen in standard rheumatology care in 15 countries. Ann. Rheum. Dis., 2007, 66(11), 1491-1496.
[http://dx.doi.org/10.1136/ard.2006.069252] [PMID: 17412740]
[5]
Morgan, C.; Lunt, M.; Brightwell, H.; Bradburn, P.; Fallow, W.; Lay, M.; Silman, A.; Bruce, I.N. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis. Ann. Rheum. Dis., 2003, 62(1), 15-19.
[http://dx.doi.org/10.1136/ard.62.1.15] [PMID: 12480663]
[6]
Tian, H.; Cronstein, B.N. Understanding the mechanisms of action of methotrexate: Implications for the treatment of rheumatoid arthritis. Bull. NYU Hosp. Jt. Dis., 2007, 65(3), 168-173.
[PMID: 17922664]
[7]
Rowland, M.T.T. Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications, 4th ed; Wolters Kluwer: PA, 2011.
[8]
Inoue, K.; Yuasa, H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab. Pharmacokinet., 2014, 29(1), 12-19.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RV-119] [PMID: 24284432]
[9]
Durmus, S.; Lozano-Mena, G.; Van Esch, A.; Wagenaar, E.; Van Tellingen, O.; Schinkel, A.H. Preclinical mouse models to study human OATP1B1- and OATP1B3-mediated drug-drug interactions in vivo. Mol. Pharm., 2015, 12(12), 4259-4269.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00453] [PMID: 26474710]
[10]
Pasanen, M.K.; Neuvonen, P.J.; Niemi, M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics, 2008, 9(1), 19-33.
[http://dx.doi.org/10.2217/14622416.9.1.19] [PMID: 18154446]
[11]
Xu, L.Y.; He, Y.J.; Zhang, W.; Deng, S.; Li, Q.; Zhang, W.X.; Liu, Z.Q.; Wang, D.; Huang, Y.F.; Zhou, H.H.; Sun, Z.Q. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients. Acta Pharmacol. Sin., 2007, 28(10), 1693-1697.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00643.x] [PMID: 17883959]
[12]
Smith, N.F.; Marsh, S.; Scott-Horton, T.J.; Hamada, A.; Mielke, S.; Mross, K.; Figg, W.D.; Verweij, J.; McLeod, H.L.; Sparreboom, A. Variants in the SLCO1B3 gene: Interethnic distribution and association with paclitaxel pharmacokinetics. Clin. Pharmacol. Ther., 2007, 81(1), 76-82.
[http://dx.doi.org/10.1038/sj.clpt.6100011] [PMID: 17186002]
[13]
Hamada, A.; Sissung, T.; Price, D.K.; Danesi, R.; Chau, C.H.; Sharifi, N.; Venzon, D.; Maeda, K.; Nagao, K.; Sparreboom, A.; Mitsuya, H.; Dahut, W.L.; Figg, W.D. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin. Cancer Res., 2008, 14(11), 3312-3318.
[http://dx.doi.org/dx.doi:10.1158/1078-0432.CCR-07-4118] [PMID: 18519758]
[14]
Smith, N.F.; Acharya, M.R.; Desai, N.; Figg, W.D.; Sparreboom, A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther., 2005, 4(8), 815-818.
[http://dx.doi.org/10.4161/cbt.4.8.1867] [PMID: 16210916]
[15]
Gong, I.Y.; Kim, R.B. Impact of genetic variation in OATP transporters to drug disposition and response. Drug Metab. Pharmacokinet., 2013, 28(1), 4-18.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RV-099] [PMID: 23047721]
[16]
Godfrey, C.; Sweeney, K.; Miller, K.; Hamilton, R.; Kremer, J. The population pharmacokinetics of long-term methotrexate in rheumatoid arthritis. Br. J. Clin. Pharmacol., 1998, 46(4), 369-376.
[http://dx.doi.org/10.1046/j.1365-2125.1998.t01-1-00790.x] [PMID: 9803986]
[17]
Qi, G.T.Y.; Li, Hongjian Population pharmacokinetics of methotrexate in patients with rheumatoid arthritis. Zhongguo Lin Chuang Yao Li Xue Za Zhi, 2001, 17, 125-128.
[18]
Zhang, C.G.J.; Li, Yuzhen. Population pharmacokinetic study of 329 children with acute lymphoblastic leukemia treated with high-dose methotrexate. J. Exp. Hematol., 2008, 16, 106-110.
[PMID: 18315911]
[19]
Bannwarth, B.; Péhourcq, F.; Schaeverbeke, T.; Dehais, J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin. Pharmacokinet., 1996, 30(3), 194-210.
[http://dx.doi.org/10.2165/00003088-199630030-00002] [PMID: 8882301]
[20]
Romaine, S.P.; Bailey, K.M.; Hall, A.S.; Balmforth, A.J. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J., 2010, 10(1), 1-11.
[http://dx.doi.org/10.1038/tpj.2009.54] [PMID: 19884908]
[21]
Tirona, R.G.; Leake, B.F.; Merino, G.; Kim, R.B. Polymorphisms in OATP-C: Identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem., 2001, 276(38), 35669-35675.
[http://dx.doi.org/10.1074/jbc.M103792200] [PMID: 11477075]
[22]
Pasanen, M.K.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics, 2006, 16(12), 873-879.
[http://dx.doi.org/10.1097/01.fpc.0000230416.82349.90] [PMID: 17108811]
[23]
Maeda, K.; Ieiri, I.; Yasuda, K.; Fujino, A.; Fujiwara, H.; Otsubo, K.; Hirano, M.; Watanabe, T.; Kitamura, Y.; Kusuhara, H.; Sugiyama, Y. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin. Pharmacol. Ther., 2006, 79(5), 427-439.
[http://dx.doi.org/10.1016/j.clpt.2006.01.011] [PMID: 16678545]
[24]
Nakai, D.; Nakagomi, R.; Furuta, Y.; Tokui, T.; Abe, T.; Ikeda, T.; Nishimura, K. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J. Pharmacol. Exp. Ther., 2001, 297(3), 861-867.
[PMID: 11356905]
[25]
Michalski, C.; Cui, Y.; Nies, A.T.; Nuessler, A.K.; Neuhaus, P.; Zanger, U.M.; Klein, K.; Eichelbaum, M.; Keppler, D.; Konig, J. A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J. Biol. Chem., 2002, 277(45), 43058-43063.
[http://dx.doi.org/10.1074/jbc.M207735200] [PMID: 12196548]
[26]
Hagenbuch, B.; Meier, P.J. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta, 2003, 1609(1), 1-18.
[http://dx.doi.org/10.1016/S0005-2736(02)00633-8] [PMID: 12507753]
[27]
Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; Li, X.; Chien, N.; Wei, M.; Ogawa, E.; Zhao, C.; Wu, X.; Stave, C.D.; Henry, L.; Barnett, S.; Takahashi, H.; Furusyo, N.; Eguchi, Y.; Hsu, Y.C.; Lee, T.Y.; Ren, W.; Qin, C.; Jun, D.W.; Toyoda, H.; Wong, V.W.; Cheung, R.; Zhu, Q.; Nguyen, M.H. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol., 2019, 4(5), 389-398.
[http://dx.doi.org/10.1016/S2468-1253(19)30039-1] [PMID: 30902670]
[28]
Clarke, J.D.; Cherrington, N.J. Genetics or environment in drug transport: The case of organic anion transporting polypeptides and adverse drug reactions. Expert Opin. Drug Metab. Toxicol., 2012, 8(3), 349-360.
[http://dx.doi.org/10.1517/17425255.2012.656087] [PMID: 22280100]
[29]
Ditzel, E.J.; Li, H.; Foy, C.E.; Perrera, A.B.; Parker, P.; Renquist, B.J.; Cherrington, N.J.; Camenisch, T.D. Altered hepatic transport by fetal arsenite exposure in diet-induced fatty liver disease. J. Biochem. Mol. Toxicol., 2016, 30(7), 321-330.
[http://dx.doi.org/10.1002/jbt.21796] [PMID: 26890134]
[30]
Clarke, J.D.; Novak, P.; Lake, A.D.; Hardwick, R.N.; Cherrington, N.J. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int., 2017, 37(7), 1074-1081.
[http://dx.doi.org/10.1111/liv.13362] [PMID: 28097795]
[31]
Murakami, Y.; Yamazaki, K.; Sakauchi, N.; Ogasawara, H.; Yamashita, N.; Masuda, T.; Tauchi, K. A one-month repeated oral dose toxicity study of methotrexate in unilaterally nephrectomized rats. J. Toxicol. Sci., 1998, 23(Suppl. 5), 681-699.
[http://dx.doi.org/10.2131/jts.23.SupplementV_681] [PMID: 9891907]
[32]
Bressolle, F.; Bologna, C.; Kinowski, J.M.; Sany, J.; Combe, B. Effects of moderate renal insufficiency on pharmacokinetics of methotrexate in rheumatoid arthritis patients. Ann. Rheum. Dis., 1998, 57(2), 110-113.
[http://dx.doi.org/10.1136/ard.57.2.110] [PMID: 9613341]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 7
Year: 2019
Page: [592 - 600]
Pages: 9
DOI: 10.2174/1389200220666190701094756

Article Metrics

PDF: 31
HTML: 3