Reverse Micellar System in Protein Recovery - A Review of the Latest Developments

Author(s): Revathy Sankaran , Jenn Hau Bong , Yin Hui Chow , Fadzlie Wong Faizal Wong , Tau Chuan Ling* , Pau Loke Show* .

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Reversed micellar system (RMS) is an innovative technique used for the isolation, extraction and purification of proteins and enzymes. Studies have demonstrated that RMS is an efficient purification technology for extracting proteins and enzymes from natural plant materials or fermentation broth. Lately, reverse micelles have wider biological applications and the ease of scaling up and the possibility for the continuous process have made RMS a vital purification technique in various fields. In this study, an extensive review of RMS with the current application in biotechnology is examined. This review provides insights into the fundamental principles, key variables and parameters of RMS. In addition, a comparative study of RMS with other liquid-liquid extraction techniques is also included. The present review aims to provide a general overview of RMS by summarising the research works, since the introduction of the technology to current development.

Keywords: Reversed micellar system, protein, enzyme, purification, recovery, genetic engineering.

[1]
Raja, S.; Murty, V.R.; Thivaharan, V.; Rajasekar, V.; Ramesh, V. Aqueous two phase systems for the recovery of biomolecules – A review. Sci. Technol., 2012, 1(1), 7-16.
[2]
Schwenke, K.D. Protein purification. From molecular mechanisms to large-scale processes (ACS Symposium Series 427). Developed from a symposium sponsored by the Division on Biochemical Technology at the 198th National Meeting of the American Chemical Society, Miami Beach Food / Nahrung, 1991, 35(3), p. 325.
[3]
Kumar, S.; Hemavathi, A.B.; Hebbar, H.U. Affinity based reverse micellar extraction and purification of bromelain from pineapple (Ananas comosus L. Merryl) waste. Process Biochem., 2011, 46(5), 1216-1220.
[4]
Cui, K-L.; Yuan, X-Z.; Zeng, G-M.; Liang, Y-S.; Han, Z.; Zhang, S.; Peng, S. Application of biosurfactant on the construction of reversed micelle and the optimization of its microenvironment. China Environ. Sci, 2011, 31(9), 1444-1450.
[5]
Luisi, P.L. Enzymes hosted in reverse micelles in hydrocarbon solution. Angew. Chemie. Int. Ed. Engl., 1985, 24(6), 439-450.
[6]
Peng, X.; Xu, H.; Yuan, X.; Leng, L.; Meng, Y. Mixed reverse micellar extraction and effect of surfactant chain length on extraction efficiency. Sep. Purif. Technol., 2016, 160, 117-122.
[7]
Krishna, S.H.; Srinivas, N.D.; Raghavarao, K.S.M.S.; Karanth, N.G. Reverse micellar extraction for downstream processing of proteins/enzymes. In: Advances in Biochemical Engineering/Biotechnology. 2002: 119-183
[8]
He, S.; Shi, J.; Walid, E.; Ma, Y.; Xue, S.J. Extraction and purification of a lectin from small black kidney bean (Phaseolus vulgaris) using a reversed micellar system. Process Biochem., 2013, 48(4), 746-752.
[9]
He, Z.; Tan, J.S.; Abbasiliasi, S.; Lai, O.M.; Tam, Y.J.; Halim, M.; Ariff, A.B. Primary recovery of miraculin from miracle fruit, Synsepalum dulcificum by AOT reverse micellar system. LWT Food Sci Technol., 2015, 64(2), 1243-1250.
[10]
Chen, Y.L.; Su, C.K.; Chiang, B.H. Optimization of reversed micellar extraction of chitosanases produced by Bacillus cereus. Process Biochem., 2006, 41(4), 752-758.
[11]
Nandini, K.E.; Rastogi, N.K. Reverse micellar extraction for downstream processing of lipase: Effect of various parameters on extraction. Process Biochem., 2009, 44(10), 1172-1178.
[12]
Yeung, P.S.W.; Eskici, G.; Axelsen, P.H. Infrared spectroscopy of proteins in reverse micelles. Biochim. Biophys. Acta Biomembr., 2013, 1828(10), 2314-2318.
[13]
Ellis, R.J.; Minton, A.P. Protein aggregation in crowded environments. Biol. Chem., 2006, 387(5), 485-497.
[14]
Fragoso, A.; Pacheco, R.; Karmali, A. Investigation of structural effects and behaviour of Pseudomonas aeruginosa amidase encapsulated in reversed micelles. Process Biochem., 2012, 47(2), 264-272.
[15]
Meersman, F.; Dirix, C.; Shipovskov, S.; Klyachko, N.L.; Heremans, K. Pressure-induced protein unfolding in the ternary system AOT−octane−water is different from that in bulk water. Langmuir, 2005, 21(8), 3599-3604.
[16]
Moilanen, D.E.; Fenn, E.E.; Wong, D.; Fayer, M.D. Water dynamics at the interface in AOT reverse micelles. J. Phys. Chem. B, 2009, 113(25), 8560-8568.
[17]
Mukherjee, S.; Chowdhury, P.; Gai, F. Infrared study of the effect of hydration on the amide I band and aggregation properties of helical peptides. J. Phys. Chem. B, 2007, 111(17), 4596-4602.
[18]
Storm, S.; Aschenbrenner, D.; Smirnova, I. Reverse micellar extraction of amino acids and complex enzyme mixtures. Sep. Purif. Technol., 2014, 123, 23-34.
[19]
Fayer, M.D. Water in a crowd. Physiology, 2011, 26(6), 381-392.
[20]
Regalado, C.; Asenjo, J.A.; Pyle, D.L. Studies on the purification of peroxidase from horseradish roots using reverse micelles. Enzyme Microb. Technol., 1996, 18(5), 332-339.
[21]
Krei, G.A.; Hustedt, H. Extraction of enzymes by reverse micelles. Chem. Eng. Sci., 1992, 47(1), 99-111.
[22]
Gaikaiwari, R.P.; Wagh, S.A.; Kulkarni, B.D. Efficient lipase purification using reverse micellar extraction. Bioresour. Technol., 2012, 108, 224-230.
[23]
Saha, A.; Yadav, R. Reverse micellar extraction: Technological aspects, applications and recent developments. J. Pharm. Res., 2015, 9(2), 145-156.
[24]
Matzke, S.F.; Creagh, A.L.; Haynes, C.A.; Prausnitz, J.M.; Blanch, H.W. Mechanisms of protein solubilization in reverse micelles. Biotechnol. Bioeng., 1992, 40(1), 91-102.
[25]
Lee, K.L.; Chong, C.C. The use of reverse micelles in downstream processing of biotechnological products. Imp. Coll. London 2011 http://arxiv.org/abs/1109.1641
[26]
Nandini, K.E.; Rastogi, N.K. Single step purification of lactoperoxidase from whey involving reverse micelles-assisted extraction and its comparison with reverse micellar extraction. Biotechnol. Prog., 2010, 26(3), 763-771.
[27]
Gangadharappa, B.; Somalapura, B.; Dammalli, M.; Rajashekarappa, S.; Pandurangappa, K.M.T.; Siddaiah, G.B. Reverse micelles as a bioseparation tool for enzymes. J. Proteins Prroteomics, 2017, 8(2), 105-120.
[28]
Wolbert, R.B.G.; Hilhorst, R.; Voskuilen, G.; Nachtegaal, H.; Dekker, M.; Van’t Riet, K.; Bijsterbosch, B.H. Protein transfer from an aqueous phase into reversed micelles: The effect of protein size and charge distribution. Eur. J. Biochem., 1989, 184(3), 627-633.
[29]
Dungan, S.R.; Bausch, T.; Hatton, T.A.; Plucinski, P.; Nitsch, W. Interfacial transport processes in the reversed micellar extraction of proteins. J. Colloid Interface Sci., 1991, 145(1), 33-50.
[30]
Jarudilokkul, S.; Poppenborg, L.H.; Valetti, F.; Gilardi, G.; Stuckey, D.C. Separation and purification of periplasmic cytochrome c 553 using reversed micelles. Biotechnol. Tech., 1999, 13, 159-163.
[31]
Leser, M.E.; Mrkoci, K.; Luisi, P.L. Reverse micelles in protein separation: The use of silica for the back-transfer process. Biotechnol. Bioeng., 1993, 41(4), 489-492.
[32]
Krishna, S.H.; Srinivas, N.D.; Raghavarao, K.S.M.S.; Karanth, N.G. History and Trends in Bioprocessing and Biotransformation. In: Advances in Biochemical Engineering/Biotechnology, 2002, Volume 75, Edition 1, Springer-Verlag Berlin Heidelberg, IX, 258
[33]
Mitra, R.K.; Paul, B.K. Effect of temperature and salt on the phase behavior of nonionic and mixed nonionic-ionic microemulsions with fish-tail diagrams. J. Colloid Interface Sci., 2005, 291(2), 550-559.
[34]
Guo, Z.; Chen, F.; Yang, H.; Liu, K.; Zhang, L. Kinetics of protein extraction in reverse micelle. Int. J. Food Prop., 2015, 18(8), 1707-1718.
[35]
Anjana, P.; Kumar, A.P.; Srinivasan, P.; Suryaprakash, P.; Kumar, R.S. Reverse micelles extraction of lactoferrin using cationic surfactant from whey. Int. J. Chem. Sci., 2010, 8(5), 49-56.
[36]
Li, X.; He, G.; Lin, C.; Liu, H. Study on the extraction and back extraction of bovine serum albumin using reversed micelles. Sep. Sci. Technol., 2007, 42(16), 3741-3757.
[37]
Bratko, D.; Luzar, A.; Chen, S.H. Electrostatic model for protein/reverse micelle complexation. J. Chem. Phys., 1988, 89(1), 545-550.
[38]
Woll, J.M.; Hatton, T.A. A simple phenomenological thermodynamic model for protein partitioning in reversed micellar systems. Bioprocess Eng., 1989, 4(5), 193-199.
[39]
Haghtalab, A.; Osfouri, S. Vacancy solution theory for partitioning of protein in reverse-micellar systems. Sep. Sci. Technol., 2003, 38(3), 553-569.
[40]
Osfouri, S.; Tayebi, T.; Azin, R. A new thermodynamic approach for protein partitioning in reverse micellar solution. Phys. Chem. Res., 2018, 6(1), 105-113.
[41]
Umesh Hebbar, H.; Sumana, B.; Raghavarao, K.S. Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresour. Technol., 2008, 99(11), 4896-4902.
[42]
Peng, X.; Yuan, X.Z.; Zeng, G.M.; Huang, H.J.; Zhong, H.; Liu, Z.F.; Cui, K.; Liang, Y.; Peng, Z.; Guo, L.; Ma, Y.; Liu, W. Extraction and purification of laccase by employing a novel rhamnolipid reversed micellar system. Process Biochem., 2012, 47(5), 742-748.
[43]
Liang, Y.; Yuan, X.; Zeng, G.; Zhong, H.; Li, H.; Wang, W. Effects of surfactants on enzyme-containing reversed micellar system. Sci. China Chem., 2011, 54(5), 715-723.
[44]
Liu, Y.; Dong, X.; Sun, Y. New development of reverse micelles and applications in protein separation and refolding. Chinese. J. Chem. Eng., 2008, 16(6), 949-955.
[45]
Chuo, S.C.; Mohd-Setapar, S.H.; Mohamad-Aziz, S.N.; Starov, V.M. A new method of extraction of amoxicillin using mixed reverse micelles. Colloids Surfaces. A Physicochem. Eng. Asp., 2014, 460, 137-144.
[46]
Sawada, K.; Ueda, M.; Kajiwara, K. Simultaneous dyeing and enzyme processing of fabrics in a non-ionic surfactant reverse micellar system. Dyes Pigments, 2004, 63(3), 251-258.
[47]
Singh, S.K.; Kishore, N. Thermodynamic insights into the binding of triton X-100 to globular proteins: A calorimetric and spectroscopic investigation. J. Phys. Chem. B, 2006, 110(19), 9728-9737.
[48]
Naoe, K.; Ura, O.; Hattori, M.; Kawagoe, M.; Imai, M. Protein extraction using non-ionic reverse micelles of Span 60. Biochem. Eng. J., 1998, 2(2), 113-119.
[49]
Naoe, K.; Nishino, M.; Ohsa, T.; Kawagoe, M.; Imai, M. Protein extraction using sugar ester reverse micelles. J. Chem. Technol. Biotechnol., 1999, 74(3), 221-226.
[50]
Walde, P.; Giuliani, A.M.; Boicelli, C.A.; Luisi, P.L. Phospholipid based reverse micelles. Chem. Phys. Lipids, 1990, 53(4), 265-288.
[51]
Ichikawa, S.; Sugiura, S.; Nakajima, M.; Sano, Y.; Seki, M.; Furusaki, S. Formation of biocompatible reversed micellar systems using phospholipids. Biochem. Eng. J., 2000, 6(3), 193-199.
[52]
He, S.; Shi, J.; Walid, E.; Zhang, H.; Ma, Y.; Xue, S.J. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology. Food Chem., 2015, 166, 93-100.
[53]
Hsiao, Y-C.; Lin, Y-W.; Su, C-K.; Chiang, B-H. High degree polymerized chitooligosaccharides synthesis by chitosanase in the bulk aqueous system and reversed micellar microreactors. Process Biochem., 2008, 43(1), 76-82.
[54]
Ceraulo, L.; Fanara, S.; Turco Liveri, V.; Ruggirello, A.; Panzeri, W.; Mele, A. Orientation and molecular contacts of melatonin confined into AOT and lecithin reversed micellar systems. Colloids Surfaces. A Physicochem. Eng. Asp., 2008, 316(1-3), 307-312.
[55]
Hebbar, U.H. Reverse Micellar Extraction for Downstream Processing of Enzymes/ Proteins 2007
[56]
Hemavathi, A.B.; Hebbar, H.U.; Raghavarao, K.S. Mixed reverse micellar systems for extraction and purification of β-glucosidase. Sep. Purif. Technol., 2010, 71(2), 263-268.
[57]
Mohd-Setapar, S.H.; Wakeman, R.J.; Tarleton, E.S. Penicillin G solubilisation into AOT reverse micelles. Chem. Eng. Res. Des., 2009, 87(6), 833-842.
[58]
Pires, M.J.; Aires-Barros, M.R.; Cabral, J.M.S. Liquid-liquid extraction of proteins with reversed micelles. Biotechnol. Prog., 1996, 12(3), 290-301.
[59]
Mathew, D.S.; Juang, R.S. Role of alcohols in the formation of inverse microemulsions and back extraction of proteins/enzymes in a reverse micellar system. Sep. Purif. Technol., 2007, 53(3), 199-215.
[60]
Li, S.; Cao, X. Extraction of tea polysaccharides (TPS) using anionic reverse micellar system. Sep. Purif. Technol., 2014, 122, 306-314.
[61]
Michizoe, J.; Ichinose, H.; Kamiya, N.; Maruyama, T.; Goto, M. Biodegradation of phenolic environmental pollutants by a surfactant–laccase complex in organic media. J. Biosci. Bioeng., 2005, 99(6), 642-647.
[62]
Dekker, M.; Hilhorst, R.; Laane, C. Isolating enzymes by reversed micelles. Anal. Biochem., 1989, 178(2), 217-226.
[63]
Liu, J-G.; Xing, J-M.; Shen, R.; Yang, C-L.; Liu, H-Z. Reverse micelles extraction of nattokinase from fermentation broth. Biochem. Eng. J., 2004, 21(3), 273-278.
[64]
Gaikaiwari, R.P.; Wagh, S.A.; Kulkarni, B.D. Extraction and purification of tannase by reverse micelle system. Sep. Purif. Technol., 2012, 89, 288-296.
[65]
Zhou, B.; Wan, J.; Wang, J.; Cao, X. Effect of chaotropes in reverse micellar extraction of kallikrein. Process Biochem., 2012, 47(2), 229-233.
[66]
Gull, N.; Kumar, S.; Ahmad, B.; Khan, R.H. Kabir-ud-Din. Influence of urea additives on micellar morphology/protein conformation. Colloids Surf. B Biointerfaces, 2006, 51(1), 10-15.
[67]
Wan, J.; Li, Q.; Zhou, F.; Liu, J.; Cao, X. Influence of chaotropes on recovery of trypsin and micellar sizes during reverse micelle extraction. Sep. Purif. Technol., 2013, 116, 307-312.
[68]
Aires-Barros, M.R.; Cabral, J.M.S. Selective separation and purification of two lipases fromchromobacterium viscosum using AOT reversed micelles. Biotechnol. Bioeng., 1991, 38(11), 1302-1307.
[69]
Ono, T.; Goto, M. Application of reversed micelles in bioengineering. Curr. Opin. Colloid Interface Sci., 1997, 2(4), 397-401.
[70]
Yi, S.; Dai, F.; Zhao, C.; Si, Y. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci. Rep., 2017, 7(1), 1-9.
[71]
Freitas, O.; Delerue-Matos, C.; Boaventura, R. Optimization of Cu(II) biosorption onto Ascophyllum nodosum by factorial design methodology. J. Hazard. Mater., 2009, 167(1-3), 449-454.
[72]
Jayachandran, D.; Chityala, S.; Prabhu, A.A.; Dasu, V.V. Cationic reverse micellar based purification of recombinant glutaminase free L-asparaginase II of Bacillus subtilis WB800N from fermentation media. Protein Expr. Purif., 2019. 157(December 2018 1-8
[73]
Lee, S.Y.; Khoiroh, I.; Ling, T.C.; Show, P.L. Aqueous two-phase flotation for the recovery of biomolecules. Sep. Purif. Rev., 2016, 45(1), 81-92.
[74]
Imm, J-Y.; Kim, S-C. Convenient partial purification of polyphenol oxidase from apple skin by cationic reversed micellar extraction. Food Chem., 2009, 113(1), 302-306.
[75]
Carvalho, C. Reverse micelles as reaction media for lipases. Biochimie, 2000, 82(11), 1063-1085.
[76]
Lee, K.K.B.; Poppenborg, L.H.; Stuckey, D.C. Terpene ester production in a solvent phase using a reverse micelle-encapsulated lipase. Enzyme Microb. Technol., 1998, 23(3-4), 253-260.
[77]
Naoe, K.; Kataoka, M.; Kawagoe, M. Preparation of water-soluble palladium nanocrystals by reverse micelle method: Digestive ripening behavior of mercaptocarboxylic acids as stabilizing agent. Colloids Surf. A Physicochem. Eng. Asp., 2010, 364(1-3), 116-122.
[78]
Poinern, G.E.J.; Ng, Y-J.; Fawcett, D. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique. J. Colloid Interface Sci., 2010, 352(2), 259-264.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 10
Year: 2019
Page: [1012 - 1026]
Pages: 15
DOI: 10.2174/1389203720666190628142203

Article Metrics

PDF: 15
HTML: 1