In Vitro and In Vivo Evaluation of Olmesartan Medoxomil Microcrystals and Nanocrystals: Preparation, Characterization, and Pharmacokinetic Comparison in Beagle Dogs

Author(s): Rong Chai, Hailing Gao, Zhihui Ma, Meng Guo, Qiang Fu, Hongzhuo Liu*, Zhonggui He.

Journal Name: Current Drug Delivery

Volume 16 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Olmesartan medoxomil (OLM) is a promising prodrug hydrolyzed to olmesartan (OL) during absorption from the gastrointestinal tract. OL is a selective angiotensin II receptor antagonist, with high drug resistance and low drug interaction. However, OLM has low solubility and low bioavailability. Therefore, it is extremely urgent to reduce the drug particle size to improve its biological bioavailability.

Objective: The aim of the study was to improve the oral bioavailability of poorly water-soluble olmesartan medoxomil (OLM) by using different particle size-reduction strategies.

Method: Raw drug material was micronized or nanosized by either jet or wet milling processes, respectively. The particle sizes of the prepared nanocrystals (100-300 nm) and microcrystals (0.5-16 μm) were characterized by DLS, SEM, and TEM techniques. Solid state characterization by XPRD and DSC was used to confirm the crystalline state of OLM after the milling processes.

Results: We demonstrated that OLM nanocrystals enhanced solubility and dissolution in the non-sink condition in which high sensitivity was found in purified water. After 1 h, 65.4% of OLM was dissolved from nanocrystals, while microcrystals and OLMETEC® only showed 37.8% and 31.9% of drug dissolution, respectively. In the pharmacokinetic study using Beagle dogs, an increase in Cmax (~2 fold) and AUC (~1.6 fold) was observed after oral administration of OLM nanocrystals when compared to microcrystals and reference tablets, OLMETEC®. In contrast, OLM microcrystals failed to improve the oral bioavailability of the drugs.

Conclusion: Particles size reduction to nano-scale by means of nanocrystals technology significantly increased in vitro dissolution rate and in vivo oral bioavailability of OLM.

Keywords: Olmesartan medoxomil (OLM), nanocrystals, microcrystals, bioavailability, particle size reduction, gastrointestinal tract.

[1]
Volpe, M.; Tocci, G. Olmesartan in the treatment of hypertension in elderly patients: A review of the primary evidence. Drugs Aging, 2013, 30(12), 987-998.
[http://dx.doi.org/10.1007/s40266-013-0130-8] [PMID: 24170236]
[2]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[3]
Nakagomi-Hagihara, R.; Nakai, D.; Kawai, K.; Yoshigae, Y.; Tokui, T.; Abe, T.; Ikeda, T. OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab. Dispos., 2006, 34(5), 862-869.
[http://dx.doi.org/10.1124/dmd.105.008888] [PMID: 16501004]
[4]
Shen, G.; Cheng, L.; Wang, L-Q.; Zhang, L-H.; Shen, B-D.; Liao, W-B.; Li, J-J.; Zheng, J.; Xu, R.; Yuan, H-L. Formulation of dried lignans nanosuspension with high redispersibility to enhance stability, dissolution, and oral bioavailability. Chin. J. Nat. Med., 2016, 14(10), 757-768.
[http://dx.doi.org/10.1016/S1875-5364(16)30090-5] [PMID: 28236405]
[5]
Kaithwas, V.; Dora, C.P.; Kushwah, V.; Jain, S. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf. B Biointerfaces, 2017, 154, 10-20.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.006] [PMID: 28284054]
[6]
Gorain, B.; Choudhury, H.; Kundu, A.; Sarkar, L.; Karmakar, S.; Jaisankar, P.; Pal, T.K. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf. B Biointerfaces, 2014, 115, 286-294.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.016] [PMID: 24388859]
[7]
Beg, S.; Sharma, G.; Thanki, K.; Jain, S.; Katare, O.P.; Singh, B. Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: Systematic development, in vitro, ex vivo and in vivo evaluation. Int. J. Pharm., 2015, 493(1-2), 466-482.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.048] [PMID: 26211900]
[8]
Kamran, M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y.; Ali, A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Int. J. Pharm., 2016, 505(1-2), 147-158.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.030] [PMID: 27005906]
[9]
Li, L.; Zhang, X.; Gu, X.; Mao, S. Applications of natural polymeric materials in solid oral modified-release dosage forms. Curr. Pharm. Des., 2015, 21(40), 5854-5867.
[http://dx.doi.org/10.2174/1381612821666151008150306] [PMID: 26446465]
[10]
Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[11]
Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J. Colloid Interface Sci., 2017, 485, 91-98.
[http://dx.doi.org/10.1016/j.jcis.2016.09.003] [PMID: 27657837]
[12]
Müller, R.H.; Jacobs, C.; Kayser, O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev., 2001, 47(1), 3-19.
[http://dx.doi.org/10.1016/S0169-409X(00)00118-6] [PMID: 11251242]
[13]
Lai, F.; Schlich, M.; Pireddu, R.; Corrias, F.; Fadda, A.M.; Sinico, C. Production of nanosuspensions as a tool to improve drug bioavailability: Focus on topical delivery. Curr. Pharm. Des., 2015, 21(42), 6089-6103.
[http://dx.doi.org/10.2174/1381612821666151027152350] [PMID: 26503149]
[14]
Al-Kassas, R.; Bansal, M.; Shaw, J. Nanosizing techniques for improving bioavailability of drugs. J. Control. Release, 2017, 260, 202-212.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.003] [PMID: 28603030]
[15]
B, A.; D, N.; Veerabrahma, K. Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: Preparation, characterization and comparative pharmacokinetic evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 126-137.
[http://dx.doi.org/10.1080/21691401.2017.1299160] [PMID: 28290712]
[16]
Nagaraj, K.; Narendar, D.; Kishan, V. Development of olmesartan medoxomil optimized nanosuspension using the Box-Behnken design to improve oral bioavailability. Drug Dev. Ind. Pharm., 2017, 43(7), 1186-1196.
[http://dx.doi.org/10.1080/03639045.2017.1304955] [PMID: 28271908]
[17]
Hancock, B.C.; Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci., 1997, 86(1), 1-12.
[http://dx.doi.org/10.1021/js9601896] [PMID: 9002452]
[18]
Thakkar, H.P.; Patel, B.V.; Thakkar, S.P. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J. Pharm. Bioallied Sci., 2011, 3(3), 426-434.
[http://dx.doi.org/10.4103/0975-7406.84459] [PMID: 21966165]
[19]
Steckel, H.; Rasenack, N.; Villax, P.; Müller, B.W. In vitro characterization of jet-milled and in-situ-micronized fluticasone-17-propionate. Int. J. Pharm., 2003, 258(1-2), 65-75.
[http://dx.doi.org/10.1016/S0378-5173(03)00153-4] [PMID: 12753754]
[20]
Yang, W.; Johnston, K.P.; Williams, R.O., III Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur. J. Pharm. Biopharm., 2010, 75(1), 33-41.
[http://dx.doi.org/10.1016/j.ejpb.2010.01.011] [PMID: 20102737]
[21]
Patravale, V.B.; Date, A.A.; Kulkarni, R.M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol., 2004, 56(7), 827-840.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[22]
Jantratid, E.; Janssen, N.; Reppas, C.; Dressman, J.B. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. Pharm. Res., 2008, 25(7), 1663-1676.
[http://dx.doi.org/10.1007/s11095-008-9569-4] [PMID: 18404251]
[23]
Rahman, M.M.; Khan, S.B.; Faisal, M.; Rub, M.A.; Al-Youbi, A.O.; Asiri, A.M. Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2-Co3O4 nanocubes in tablet dosage forms. Talanta, 2012, 99, 924-931.
[http://dx.doi.org/10.1016/j.talanta.2012.07.060] [PMID: 22967644]
[24]
Arndt, M.; Chokshi, H.; Tang, K.; Parrott, N.J.; Reppas, C.; Dressman, J.B. Dissolution media simulating the proximal canine gastrointestinal tract in the fasted state. Eur. J. Pharm. Biopharm., 2013, 84, 633-641.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.010] [PMID: 23434923]
[25]
Youngberg, C.A.; Wlodyga, J.; Schmaltz, S.; Dressman, J.B. Radiotelemetric determination of gastrointestinal pH in four healthy beagles. Am. J. Vet. Res., 1985, 46(7), 1516-1521.
[PMID: 4026035]
[26]
Mori, C.; Kondo, H. Effect of gastric acidity regulation on the gastrointestinal transit time and secretion of gastric fluids in beagle dogs. J. Drug Deliv. Sci. Technol., 2006, 16, 467-472.
[http://dx.doi.org/10.1016/S1773-2247(06)50089-9]
[27]
Hens, B.; Tsume, Y.; Bermejo, M.; Paixao, P.; Koenigsknecht, M.J.; Baker, J.R.; Hasler, W.L.; Lionberger, R.; Fan, J.; Dickens, J.; Shedden, K.; Wen, B.; Wysocki, J.; Loebenberg, R.; Lee, A.; Frances, A.; Amidon, G.; Yu, A.; Benninghoff, G.; Salehi, N.; Talattof, A.; Sun, D.; Amidon, G.L. Low buffer capacity and alternating motility along the human gastrointestinal tract: Implications for in vivo dissolution and absorption of ionizable drugs. Mol. Pharm., 2017, 14(12), 4281-4294.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00426] [PMID: 28737409]
[28]
Hens, B.; Tsume, Y.; Bermejo, M.; Paixao, P.; Koenigsknecht, M.J.; Baker, J.R.; Hasler, W.L.; Lionberger, R.; Fan, J.; Dickens, J.; Shedden, K.; Wen, B.; Wysocki, J.; Loebenberg, R.; Lee, A.; Frances, A.; Amidon, G.; Yu, A.; Benninghoff, G.; Salehi, N.; Talattof, A.; Sun, D.; Amidon, G.L. Low buffer capacity and alternating motility along the human gastrointestinal tract: Implications for in vivo dissolution and absorption of ionizable drugs. Mol. Pharm., 2017, 14(12), 4281-4294.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00426] [PMID: 28737409]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2019
Page: [500 - 510]
Pages: 11
DOI: 10.2174/1567201816666190627143214

Article Metrics

PDF: 47
HTML: 6
EPUB: 2
PRC: 2