Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Efficient Delivery of Antisense Oligonucleotides by an Amphipathic Cell-Penetrating Peptide in Acinetobacter baumannii

Author(s): Zhou Chen, Dan Nie, Yue Hu, Mingkai Li, Zheng Hou, Xinggang Mao, Xiaoxing Luo* and Xiaoyan Xue*

Volume 16, Issue 8, 2019

Page: [728 - 736] Pages: 9

DOI: 10.2174/1567201816666190627141931

Price: $65

Abstract

Background: Carbapenem-resistant Acinetobacter baumannii (A. baumannii) was on the top of the list of the most threatening bacteria published by the WHO in 2017. Antisense oligonucleotides (ASOs) based therapy is a promising strategy for combating Multi-Drug Resistant (MDR) bacteria because of its high specificity, easy design and lower induction of resistance, but poor cellular uptake by bacteria has restricted the further utilization of this therapy.

Methods: Here, we used CADY, a secondary amphipathic peptide of 20 residues that could successfully carry siRNA into mammalian cells, to prepare CADY/ASOs nanoparticles (CADY-NPs) targeting acpP (encoding acyl carrier protein), and evaluated the uptake features, the inhibitory effects of CADY-NPs on gene expression and the growth of MDR-A. baumannii.

Results: We found that CADY-NPs could be quickly internalized by drug-sensitive and MDR-A. baumannii in an energy independent manner, which could be restrained by chlorpromazine (an inhibitor of clathrin mediated endocytosis) significantly. In addition, CADY-NPs targeting acpP concentrationdependently retarded the growth of MDR-A. baumannii, which was associated with the decreased expression of targeted genes in A. baumannii.

Conclusion: In conclusion, our research is the first to demonstrate that CADY can deliver ASOs into bacteria and provide a novel strategy for the treatment of MDR-A. baumannii.

Keywords: Acinetobacter baumannii, CADY, antisense oligonucleotides, delivery system, acpP, SiRNA.

Graphical Abstract
[1]
Rodrigo-Troyano, A.; Sibila, O. The respiratory threat posed by multidrug resistant Gram-negative bacteria. Respirology, 2017, 22(7), 1288-1299.
[http://dx.doi.org/10.1111/resp.13115] [PMID: 28681941]
[2]
Tommasi, R.; Brown, D.G.; Walkup, G.K.; Manchester, J.I.; Miller, A.A. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov., 2015, 14(8), 529-542.
[http://dx.doi.org/10.1038/nrd4572] [PMID: 26139286]
[3]
Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature, 2017, 543(7643), 15.
[http://dx.doi.org/10.1038/nature.2017.21550] [PMID: 28252092]
[4]
Zhao, L.; Li, H.; Zhu, Z.; Wakefield, M.R.; Fang, Y.; Ye, Y. Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance. Infect. Genet. Evol., 2017, 50, 20-24.
[http://dx.doi.org/10.1016/j.meegid.2017.02.001] [PMID: 28189888]
[5]
Zhi, C.; Lv, L.; Yu, L.F.; Doi, Y.; Liu, J.H. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis., 2016, 16(3), 292-293.
[http://dx.doi.org/10.1016/S1473-3099(16)00063-3] [PMID: 26973307]
[6]
Shin, B.; Park, W. Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. J. Microbiol., 2017, 55(11), 837-849.
[http://dx.doi.org/10.1007/s12275-017-7288-4] [PMID: 29076065]
[7]
Hegarty, J.P.; Stewart, D.B., Sr Advances in therapeutic bacterial antisense biotechnology. Appl. Microbiol. Biotechnol., 2018, 102(3), 1055-1065.
[http://dx.doi.org/10.1007/s00253-017-8671-0] [PMID: 29209794]
[8]
Kurreck, J. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem., 2003, 270(8), 1628-1644.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03555.x] [PMID: 12694176]
[9]
Sully, E.K.; Geller, B.L. Antisense antimicrobial therapeutics. Curr. Opin. Microbiol., 2016, 33, 47-55.
[http://dx.doi.org/10.1016/j.mib.2016.05.017] [PMID: 27375107]
[10]
Chen, Z.; Hu, Y.; Meng, J.; Li, M.; Hou, Z.; Zhou, Y.; Luo, X.; Xue, X. Efficient transfection of phosphorothioate oligodeoxyribonucleotides by lipofectamine2000 into different bacteria. Curr. Drug Deliv., 2016, 13(5), 784-793.
[http://dx.doi.org/10.2174/1567201812666150817123528] [PMID: 26279118]
[11]
Cheng, L.; Bulmer, C.; Margaritis, A. Characterization of novel composite alginate chitosan-carrageenan nanoparticles for encapsulation of BSA as a model drug delivery system. Curr. Drug Deliv., 2015, 12(3), 351-357.
[http://dx.doi.org/10.2174/1567201812666150114155948] [PMID: 26054536]
[12]
Ahmed, M. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers. Biomater. Sci., 2017, 5(11), 2188-2211.
[http://dx.doi.org/10.1039/C7BM00584A] [PMID: 28880322]
[13]
Böhmová, E.; Machová, D.; Pechar, M.; Pola, R.; Venclíková, K.; Janoušková, O.; Etrych, T. Cell-penetrating peptides: A useful tool for the delivery of various cargoes into cells. Physiol. Res., 2018, 67(Suppl. 2), S267-S279.
[PMID: 30379549]
[14]
Meng, J.; Da, F.; Ma, X.; Wang, N.; Wang, Y.; Zhang, H.; Li, M.; Zhou, Y.; Xue, X.; Hou, Z.; Jia, M.; Luo, X. Antisense growth inhibition of methicillin-resistant Staphylococcus aureus by locked nucleic acid conjugated with cell-penetrating peptide as a novel FtsZ inhibitor. Antimicrob. Agents Chemother., 2015, 59(2), 914-922.
[http://dx.doi.org/10.1128/AAC.03781-14] [PMID: 25421468]
[15]
Abushahba, M.F.; Mohammad, H.; Thangamani, S.; Hussein, A.A.; Seleem, M.N. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Sci. Rep., 2016, 6, 20832.
[http://dx.doi.org/10.1038/srep20832] [PMID: 26860980]
[16]
Morris, M.C.; Deshayes, S.; Heitz, F.; Divita, G. Cell-penetrating peptides: From molecular mechanisms to therapeutics. Biol. Cell, 2008, 100(4), 201-217.
[http://dx.doi.org/10.1042/BC20070116] [PMID: 18341479]
[17]
Crombez, L.; Aldrian-Herrada, G.; Konate, K.; Nguyen, Q.N.; McMaster, G.K.; Brasseur, R.; Heitz, F.; Divita, G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther., 2009, 17(1), 95-103.
[http://dx.doi.org/10.1038/mt.2008.215] [PMID: 18957965]
[18]
Deshayes, S.; Konate, K.; Aldrian, G.; Heitz, F.; Divita, G. Interactions of amphipathic CPPs with model membranes. Methods Mol. Biol., 2011, 683, 41-56.
[http://dx.doi.org/10.1007/978-1-60761-919-2_4] [PMID: 21053121]
[19]
Rydström, A.; Deshayes, S.; Konate, K.; Crombez, L.; Padari, K.; Boukhaddaoui, H.; Aldrian, G.; Pooga, M.; Divita, G. Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PLoS One, 2011, 6(10)e25924
[http://dx.doi.org/10.1371/journal.pone.0025924] [PMID: 21998722]
[20]
McCarthy, H.O.; McCaffrey, J.; McCrudden, C.M.; Zholobenko, A.; Ali, A.A.; McBride, J.W.; Massey, A.S.; Pentlavalli, S.; Chen, K.H.; Cole, G.; Loughran, S.P.; Dunne, N.J.; Donnelly, R.F.; Kett, V.L.; Robson, T. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J. Control. Release: Off. J. Control. Release Society, 2014, 189, 141.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.048]
[21]
Hansen, A.M.; Bonke, G.; Larsen, C.J.; Yavari, N.; Nielsen, P.E.; Franzyk, H. Antibacterial peptide nucleic acid-antimicrobial peptide (PNA-AMP) conjugates: Antisense targeting of fatty acid biosynthesis. Bioconjug. Chem., 2016, 27(4), 863-867.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00013] [PMID: 26938833]
[22]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[23]
Miller, A.D. Delivery of RNAi therapeutics: Work in progress. Expert Rev. Med. Devices, 2013, 10(6), 781-811.
[http://dx.doi.org/10.1586/17434440.2013.855471] [PMID: 24195461]
[24]
Zhao, Q.Q.; Chen, J.L.; Lv, T.F.; He, C.X.; Tang, G.P.; Liang, W.Q.; Tabata, Y.; Gao, J.Q. N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol. Pharm. Bull., 2009, 32(4), 706-710.
[http://dx.doi.org/10.1248/bpb.32.706] [PMID: 19336909]
[25]
Jackson, A.; Jani, S.; Sala, C.D.; Soler-Bistué, A.J.; Zorreguieta, A.; Tolmasky, M.E. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: A methodology for inhibition of expression of antibiotic resistance genes. Biol. Methods Protoc., 2016, 1(1), 1.
[http://dx.doi.org/10.1093/biomethods/bpw001] [PMID: 27857983]
[26]
Geller, B.L.; Marshall-Batty, K.; Schnell, F.J.; McKnight, M.M.; Iversen, P.L.; Greenberg, D.E. Gene-silencing antisense oligomers inhibit acinetobacter growth in vitro and in vivo. J. Infect. Dis., 2013, 208(10), 1553-1560.
[http://dx.doi.org/10.1093/infdis/jit460] [PMID: 24130069]
[27]
Wang, H.; He, Y.; Xia, Y.; Wang, L.; Liang, S. Inhibition of gene expression and growth of multidrug-resistant Acinetobacter baumannii by antisense peptide nucleic acids. Mol. Biol. Rep., 2014, 41(11), 7535-7541.
[http://dx.doi.org/10.1007/s11033-014-3643-2] [PMID: 25091942]
[28]
Fonseca, S.B.; Pereira, M.P.; Kelley, S.O. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv. Drug Deliv. Rev., 2009, 61(11), 953-964.
[http://dx.doi.org/10.1016/j.addr.2009.06.001] [PMID: 19538995]
[29]
Crowet, J.M.; Lins, L.; Deshayes, S.; Divita, G.; Morris, M.; Brasseur, R.; Thomas, A. Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. Biochim. Biophys. Acta, 2013, 1828(2), 499-509.
[http://dx.doi.org/10.1016/j.bbamem.2012.09.006] [PMID: 23000699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy