Cyclodextrins and their Derivatives as Carrier Molecules in Drug and Gene Delivery Systems

Author(s): Ramin Karimian, Milad Aghajani*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4) bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs are widely used in many industrial products, technologies and analytical methods owing to their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are used as complexing agents to enhance aqueous solubility, physico-chemical stability and bio-availability of administered drugs. Herein, special attention is given to the use of α-, β- and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the past few decades through various routes of administration with a major emphasis on the more recent developments.

Keywords: Cyclodextrins, host-guest complexation, drug carriers, drug release, drug delivery systems, gene delivery systems.

[1]
Kumar, P.; Singh, C. A study on solubility enhancement methods for poorly water soluble drugs. Am. J. Pharmacol. Sci., 2013, 1, 67-73.
[http://dx.doi.org/10.12691/ajps-1-4-5]
[2]
Singh, R.K.; Kim, H-W. Inorganic nanobiomaterial drug carriers for medicine. Tissue Eng. Regen. Med., 2013, 10, 296-309.
[http://dx.doi.org/10.1007/s13770-013-1092-y]
[3]
Conceição, J.; Adeoye, O.; Cabral-Marques, H.M.; Lobo, J.M.S. Cyclodextrins as excipients in tablet formulations. Drug Discov. Today, 2018, 23(6), 1274-1284.
[http://dx.doi.org/10.1016/j.drudis.2018.04.009] [PMID: 29689302]
[4]
Valente, A.J.; Söderman, O. The formation of host-guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci., 2014, 205, 156-176.
[http://dx.doi.org/10.1016/j.cis.2013.08.001] [PMID: 24011696]
[5]
Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm., 2007, 329(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[6]
Radu, C-D.; Parteni, O.; Ochiuz, L. Applications of cyclodextrins in medical textiles - review. J. Control. Release, 2016, 224, 146-157.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.046] [PMID: 26796039]
[7]
Rasheed, A. Cyclodextrins as drug carrier molecule: A review. Sci. Pharm., 2008, 76, 567-598.
[http://dx.doi.org/10.3797/scipharm.0808-05]
[8]
Tiwari, G.; Tiwari, R.; Rai, A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci., 2010, 2(2), 72-79.
[http://dx.doi.org/10.4103/0975-7406.67003] [PMID: 21814436]
[9]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015198268
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[10]
Szejtli, J. Past, present and futute of cyclodextrin research. Pure Appl. Chem., 2004, 76, 1825-1845.
[http://dx.doi.org/10.1351/pac200476101825]
[11]
Crini, G. Review: A history of cyclodextrins. Chem. Rev., 2014, 114(21), 10940-10975.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[12]
Schardinger, F. Über thermophile Bakterien aus verschiedenen Speisen und Milch. Z. Unters. Nahr. Genussm., 1903, 6, 865-880.
[http://dx.doi.org/10.1007/BF02067497]
[13]
Freudenberg, K.; Cramer, F. Die konstitution der schardinger-dextrine α, β und γ. Z. Naturforsch. B: Chem. Sci., 1948, 3, 464-466.
[14]
Cramer, F. Einschlussverbindungen; Berlin: Springer, 1954.
[http://dx.doi.org/10.1007/978-3-642-49192-4]
[15]
Zhou, J.; Ritter, H. Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem., 2010, 1, 1552-1559.
[http://dx.doi.org/10.1039/c0py00219d]
[16]
Zafar, N.; Fessi, H.; Elaissari, A. Cyclodextrin containing biodegradable particles: From preparation to drug delivery applications. Int. J. Pharm., 2014, 461(1-2), 351-366.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.004] [PMID: 24342710]
[17]
Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech, 2005, 6(2), E329-E357.
[http://dx.doi.org/10.1208/pt060243] [PMID: 16353992]
[18]
Szente, L.; Szejtli, J. Highly soluble cyclodextrin derivatives: Chemistry, properties, and trends in development. Adv. Drug Deliv. Rev., 1999, 36(1), 17-28.
[http://dx.doi.org/10.1016/S0169-409X(98)00092-1] [PMID: 10837706]
[19]
Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5), 1161.
[http://dx.doi.org/10.3390/molecules23051161] [PMID: 29751694]
[20]
Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem. Rev., 1998, 98(5), 1787-1802.
[http://dx.doi.org/10.1021/cr9700181] [PMID: 11848949]
[21]
Martín, V.I.; Ostos, F.J.; Angulo, M.; Márquez, A.M.; López-Cornejo, P.; López-López, M.; Carmona, A.T.; Moyá, M.L. Host-guest interactions between cyclodextrins and surfactants with functional groups at the end of the hydrophobic tail. J. Colloid Interface Sci., 2017, 491, 336-348.
[http://dx.doi.org/10.1016/j.jcis.2016.12.040] [PMID: 28056443]
[22]
Song, L.X.; Bai, L.; Xu, X.M.; He, J.; Pan, S.Z. Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord. Chem. Rev., 2009, 253, 1276-1284.
[http://dx.doi.org/10.1016/j.ccr.2008.08.011]
[23]
Linde, G.A.; Laverde, A.; Colauto, N.B. Changes to taste perception in the food industry: use of cyclodextrins In: Handbook of Behavior, Food and Nutrition, Victor R. Preedy, Ronald Ross Watson; Colin R. Martin; Preedy, R .V.; Watson, R.R. Martin, C.R. Ed.; Springer:, 2011; pp. 99-118.
[http://dx.doi.org/[http://dx.doi.org/10.1007/978-0-387-92271-3_8]]
[24]
Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations I: Structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today, 2016, 21(2), 356-362.
[http://dx.doi.org/10.1016/j.drudis.2015.11.017] [PMID: 26686054]
[25]
Gould, S.; Scott, R.C. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem. Toxicol., 2005, 43(10), 1451-1459.
[http://dx.doi.org/10.1016/j.fct.2005.03.007] [PMID: 16018907]
[26]
Saokham, P.; Loftsson, T. γ-Cyclodextrin. Int. J. Pharm., 2017, 516(1-2), 278-292.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.062] [PMID: 27989822]
[27]
Kamada, M.; Hirayama, F.; Udo, K.; Yano, H.; Arima, H.; Uekama, K. Cyclodextrin conjugate-based controlled release system: Repeated- and prolonged-releases of ketoprofen after oral administration in rats. J. Control. Release, 2002, 82(2-3), 407-416.
[http://dx.doi.org/10.1016/S0168-3659(02)00171-2] [PMID: 12175753]
[28]
abr-Milane, L.; van Vlerken, L.; Devalapally, H.; Shenoy, D.; Komareddy, S.; Bhavsar, M.; Amiji, M. Multi-functional nanocarriers for targeted delivery of drugs and genes. J. Control. Release, 2008, 130, 121-128.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.016]
[29]
Thiele, C.; Auerbach, D.; Jung, G.; Qiong, L.; Schneider, M.; Wenz, G. Nanoparticles of anionic starch and cationic cyclodextrin derivatives for the targeted delivery of drugs. Polym. Chem., 2011, 2, 209-215.
[http://dx.doi.org/10.1039/C0PY00241K]
[30]
Loftsson, T.; Brewster, M.E.; Masson, M. Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv., 2004, 2, 261-275.
[http://dx.doi.org/10.2165/00137696-200402040-00006]
[31]
Zhang, J.; Ma, P.X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev., 2013, 65(9), 1215-1233.
[http://dx.doi.org/10.1016/j.addr.2013.05.001] [PMID: 23673149]
[32]
Szejtli, J.; Szente, L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur. J. Pharm. Biopharm., 2005, 61(3), 115-125.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.006] [PMID: 16185857]
[33]
Carrier, R.L.; Miller, L.A.; Ahmed, I. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release, 2007, 123(2), 78-99.
[http://dx.doi.org/10.1016/j.jconrel.2007.07.018] [PMID: 17888540]
[34]
Laza-Knoerr, A.L.; Gref, R.; Couvreur, P. Cyclodextrins for drug delivery. J. Drug Target., 2010, 18(9), 645-656.
[http://dx.doi.org/10.3109/10611861003622552] [PMID: 20497090]
[35]
Dinge, A.; Nagarsenker, M. Formulation and evaluation of fast dissolving films for delivery of triclosan to the oral cavity. AAPS PharmSciTech, 2008, 9(2), 349-356.
[http://dx.doi.org/10.1208/s12249-008-9047-7] [PMID: 18431674]
[36]
Tokumura, T.; Muraoka, A.; Machida, Y. Improvement of oral bioavailability of flurbiprofen from flurbiprofen/β-cyclodextrin inclusion complex by action of cinnarizine. Eur. J. Pharm. Biopharm., 2009, 73(1), 202-204.
[http://dx.doi.org/10.1016/j.ejpb.2009.04.018] [PMID: 19442722]
[37]
Agüeros, M.; Ruiz-Gatón, L.; Vauthier, C.; Bouchemal, K.; Espuelas, S.; Ponchel, G.; Irache, J.M. Combined hydroxypropyl-β-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur. J. Pharm. Sci., 2009, 38(4), 405-413.
[http://dx.doi.org/10.1016/j.ejps.2009.09.010] [PMID: 19765652]
[38]
Rezende, B.A.; Cortes, S.F.; De Sousa, F.B.; Lula, I.S.; Schmitt, M.; Sinisterra, R.D.; Lemos, V.S. Complexation with β-cyclodextrin confers oral activity on the flavonoid dioclein. Int. J. Pharm., 2009, 367(1-2), 133-139.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.046] [PMID: 18955122]
[39]
Patel, S.G.; Rajput, S.J. Enhancement of oral bioavailability of cilostazol by forming its inclusion complexes. AAPS PharmSciTech, 2009, 10(2), 660-669.
[http://dx.doi.org/10.1208/s12249-009-9249-7] [PMID: 19459053]
[40]
Sathigari, S.; Chadha, G.; Lee, Y.H.; Wright, N.; Parsons, D.L.; Rangari, V.K.; Fasina, O.; Babu, R.J. Physicochemical characterization of efavirenz-cyclodextrin inclusion complexes. AAPS PharmSciTech, 2009, 10(1), 81-87.
[http://dx.doi.org/10.1208/s12249-008-9180-3] [PMID: 19148759]
[41]
Miro, A.; Rondinone, A.; Nappi, A.; Ungaro, F.; Quaglia, F.; La Rotonda, M.I. Modulation of release rate and barrier transport of Diclofenac incorporated in hydrophilic matrices: role of cyclodextrins and implications in oral drug delivery. Eur. J. Pharm. Biopharm., 2009, 72(1), 76-82.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.006] [PMID: 19135532]
[42]
Lucio, D.; Martínez-Ohárriz, M.C.; Gu, Z.; He, Y.; Aranaz, P.; Vizmanos, J.L.; Irache, J.M. Cyclodextrin-grafted poly(anhydride) nanoparticles for oral glibenclamide administration. In vivo evaluation using C. elegans. Int. J. Pharm., 2018, 547(1-2), 97-105.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.064] [PMID: 29842888]
[43]
Lakkakula, J.R.; Matshaya, T.; Krause, R.W.M. Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mater. Sci. Eng. C, 2017, 70(Pt 1), 169-177.
[http://dx.doi.org/10.1016/j.msec.2016.08.073] [PMID: 27770878]
[44]
Lantz, A.W.; Rodriguez, M.A.; Wetterer, S.M.; Armstrong, D.W. Estimation of association constants between oral malodor components and various native and derivatized cyclodextrins. Anal. Chim. Acta, 2006, 557, 184-190.
[http://dx.doi.org/10.1016/j.aca.2005.10.005]
[45]
Anand, S.; Braga, V.M.L. Cyclodextrins in Ocular Drug Delivery In: Nano- Biomaterials For Ophthalmic Drug Delivery; Pathak, Y.; Sutariya, V.; Hirani, A,A, Ed.; Springer:, 2016; pp. 243-252.
[http://dx.doi.org/[http://dx.doi.org/10.1007/978-3-319-29346-2_12]]
[46]
Palma, S.D.; Tartara, L.I.; Quinteros, D.; Allemandi, D.A.; Longhi, M.R.; Granero, G.E. An efficient ternary complex of acetazolamide with HP-ss-CD and TEA for topical ocular administration. J. Control. Release, 2009, 138(1), 24-31.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.035] [PMID: 19426769]
[47]
Mahmoud, A.A.; El-Feky, G.S.; Kamel, R.; Awad, G.E. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm., 2011, 413(1-2), 229-236.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.031] [PMID: 21540097]
[48]
Djupesland, P.G. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res., 2013, 3(1), 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[49]
Asai, K.; Morishita, M.; Katsuta, H.; Hosoda, S.; Shinomiya, K.; Noro, M.; Nagai, T.; Takayama, K. The effects of water-soluble cyclodextrins on the histological integrity of the rat nasal mucosa. Int. J. Pharm., 2002, 246(1-2), 25-35.
[http://dx.doi.org/10.1016/S0378-5173(02)00345-9] [PMID: 12270606]
[50]
Boulmedarat, L.; Bochot, A.; Lesieur, S.; Fattal, E. Evaluation of buccal methyl-β-cyclodextrin toxicity on human oral epithelial cell culture model. J. Pharm. Sci., 2005, 94(6), 1300-1309.
[http://dx.doi.org/10.1002/jps.20350] [PMID: 15858859]
[51]
Al Omari, M.M.; Daraghmeh, N.H.; El-Barghouthi, M.I.; Zughul, M.B.; Chowdhry, B.Z.; Leharne, S.A.; Badwan, A.A. Novel inclusion complex of ibuprofen tromethamine with cyclodextrins: physico-chemical characterization. J. Pharm. Biomed. Anal., 2009, 50(3), 449-458.
[http://dx.doi.org/10.1016/j.jpba.2009.05.031] [PMID: 19545961]
[52]
Zhang, Y.; Jiang, X-G.; Yao, J. Nasal absorption enhancement of insulin by sodium deoxycholate in combination with cyclodextrins. Acta Pharmacol. Sin., 2001, 22(11), 1051-1056.
[PMID: 11749800]
[53]
Marttin, E.; Romeijn, S.G.; Verhoef, J.C.; Merkus, F.W. Nasal absorption of dihydroergotamine from liquid and powder formulations in rabbits. J. Pharm. Sci., 1997, 86(7), 802-807.
[http://dx.doi.org/10.1021/js960500j] [PMID: 9232520]
[54]
Loftsson, T.; Gudmundsdóttir, H.; Sigurjónsdóttir, J.F.; Sigurdsson, H.H.; Sigfússon, S.D.; Másson, M.; Stefánsson, E. Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. Int. J. Pharm., 2001, 212(1), 29-40.
[http://dx.doi.org/10.1016/S0378-5173(00)00580-9] [PMID: 11165818]
[55]
Yang, T.; Hussain, A.; Paulson, J.; Abbruscato, T.J.; Ahsan, F. Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm. Res., 2004, 21(7), 1127-1136.
[http://dx.doi.org/10.1023/B:PHAM.0000032998.84488.7a] [PMID: 15290851]
[56]
Cho, E.; Gwak, H.; Chun, I. Formulation and evaluation of ondansetron nasal delivery systems. Int. J. Pharm., 2008, 349(1-2), 101-107.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.028] [PMID: 17822864]
[57]
Bibby, D.C.; Davies, N.M.; Tucker, I.G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm., 2000, 197(1-2), 1-11.
[http://dx.doi.org/10.1016/S0378-5173(00)00335-5] [PMID: 10704788]
[58]
Chirio, D.; Cavalli, R.; Trotta, F.; Carlotti, M.E.; Trotta, M. Deformable liposomes containing alkylcarbonates of γ-cyclodextrins for dermal applications. J. Incl. Phenom. Macrocycl. Chem., 2007, 57, 645-649.
[http://dx.doi.org/10.1007/s10847-006-9271-2]
[59]
Lopez, R.F.; Collett, J.H.; Bentley, M.V.L. Influence of cyclodextrin complexation on the in vitro permeation and skin metabolism of dexamethasone. Int. J. Pharm., 2000, 200(1), 127-132.
[http://dx.doi.org/10.1016/S0378-5173(00)00365-3] [PMID: 10845694]
[60]
Maestrelli, F.; González-Rodríguez, M.L.; Rabasco, A.M.; Mura, P. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery. Int. J. Pharm., 2006, 312(1-2), 53-60.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.047] [PMID: 16469460]
[61]
Wang, L-L.; Zheng, W-S.; Chen, S-H.; Han, Y-X.; Jiang, J-D. Development of rectal delivered thermo-reversible gelling film encapsulating a 5-fluorouracil hydroxypropyl-β-cyclodextrin complex. Carbohydr. Polym., 2016, 137, 9-18.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.042] [PMID: 26686100]
[62]
Courrier, H.M.; Butz, N.; Vandamme, T.F. Pulmonary drug delivery systems: recent developments and prospects. Crit. Rev. Ther. Drug Carrier Syst., 2002, 19(4-5), 425-498.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i45.40] [PMID: 12661699]
[63]
Fatouros, D.G.; Hatzidimitriou, K.; Antimisiaris, S.G. Liposomes encapsulating prednisolone and prednisolone-cyclodextrin complexes: comparison of membrane integrity and drug release. Eur. J. Pharm. Sci., 2001, 13(3), 287-296.
[http://dx.doi.org/10.1016/S0928-0987(01)00114-2] [PMID: 11384851]
[64]
Gharib, R.; Greige-Gerges, H.; Fourmentin, S.; Charcosset, C. Hydroxypropyl-ß-cyclodextrin as a membrane protectant during freeze-drying of hydrogenated and non-hydrogenated liposomes and molecule-in-cyclodextrin-in- liposomes: Application to trans-anethole. Food Chem., 2018, 267, 67-74.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.144] [PMID: 29934191]
[65]
Fresta, M.; Fontana, G.; Bucolo, C.; Cavallaro, G.; Giammona, G.; Puglisi, G. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. J. Pharm. Sci., 2001, 90(3), 288-297.
[http://dx.doi.org/10.1002/1520-6017(200103)90:3<288:AID-JPS4>3.0.CO;2-5] [PMID: 11170022]
[66]
Guo, R.D.; Wilson, L. Cyclodextrin-based microcapsule materials-their preparation and physiochemical properties. Curr. Org. Chem., 2013, 17, 14-21.
[http://dx.doi.org/10.2174/138527213805289204]
[67]
Okimoto, K.; Tokunaga, Y.; Ibuki, R.; Irie, T.; Uekama, K.; Rajewski, R.A.; Stella, V.J. Applicability of (SBE)7m-β-CD in controlled-porosity osmotic pump tablets (OPTs). Int. J. Pharm., 2004, 286(1-2), 81-88.
[http://dx.doi.org/10.1016/j.ijpharm.2004.08.002] [PMID: 15501004]
[68]
Yin, J-J.; Zhou, Z-W.; Zhou, S-F. Cyclodextrin-based targeting strategies for tumor treatment. Drug Deliv. Transl. Res., 2013, 3(4), 364-374.
[http://dx.doi.org/10.1007/s13346-013-0140-4] [PMID: 25788282]
[69]
Conceição, J.; Adeoye, O.; Cabral-Marques, H.M.; Lobo, J.M.S. Cyclodextrins as excipients in tablet formulations. Drug Discov. Today, 2018, 23(6), 1274-1284.
[http://dx.doi.org/10.1016/j.drudis.2018.04.009] [PMID: 29689302]
[70]
Moya-Ortega, M.D.; Alvarez-Lorenzo, C.; Concheiro, A.; Loftsson, T. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. Int. J. Pharm., 2012, 428(1-2), 152-163.
[http://dx.doi.org/10.1016/j.ijpharm.2012.02.038] [PMID: 22388054]
[71]
Singh, S. Nanomedicine-nanoscale drugs and delivery systems. J. Nanosci. Nanotechnol., 2010, 10(12), 7906-7918.
[http://dx.doi.org/10.1166/jnn.2010.3617] [PMID: 21121278]
[72]
Varan, G.; Varan, C.; Erdoğar, N.; Hıncal, A.A.; Bilensoy, E. Amphiphilic cyclodextrin nanoparticles. Int. J. Pharm., 2017, 531(2), 457-469.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.010] [PMID: 28596142]
[73]
Oliveri, V.; Vecchio, G. Cyclodextrin-based nanoparticles; Organic Materials as Smart Nanocarriers for Drug Delivery, 2018, pp. 619-658.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00015-4]
[74]
Alizadeh, D.; Zhang, L.; Hwang, J.; Schluep, T.; Badie, B. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine (Lond.), 2010, 6(2), 382-390.
[http://dx.doi.org/10.1016/j.nano.2009.10.001] [PMID: 19836468]
[75]
Shelley, H.; Babu, R.J. Role of cyclodextrins in nanoparticle-based drug delivery systems. J. Pharm. Sci., 2018, 107(7), 1741-1753.
[http://dx.doi.org/10.1016/j.xphs.2018.03.021] [PMID: 29625157]
[76]
He, M.; Zhong, C.; Hu, H.; Jin, Y.; Chen, Y.; Lou, K.; Gao, F. Cyclodextrin/chitosan nanoparticles for oral ovalbumin delivery: Preparation, characterization and intestinal mucosal immunity in mice. Asian J. Pharm., 2019, 14, 193-203.
[http://dx.doi.org/10.1016/j.ajps.2018.04.001]
[77]
Jones, C.H.; Chen, C-K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B.A. Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharm., 2013, 10(11), 4082-4098.
[http://dx.doi.org/10.1021/mp400467x] [PMID: 24093932]
[78]
Ortiz Mellet, C.; García Fernández, J.M.; Benito, J.M. Cyclodextrin-based gene delivery systems. Chem. Soc. Rev., 2011, 40(3), 1586-1608.
[http://dx.doi.org/10.1039/C0CS00019A] [PMID: 21042619]
[79]
Lai, W-F. Cyclodextrins in non-viral gene delivery. Biomaterials, 2014, 35(1), 401-411.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.061] [PMID: 24103652]
[80]
Malhotra, M.; Gooding, M.; Evans, J.C.; O’Driscoll, D.; Darcy, R.; O’Driscoll, C.M. Cyclodextrin-siRNA conjugates as versatile gene silencing agents. Eur. J. Pharm. Sci., 2018, 114, 30-37.
[http://dx.doi.org/10.1016/j.ejps.2017.11.024] [PMID: 29191522]
[81]
Formoso, C. The interaction of -cyclodextrin with nucleic acid monomer units. Biochem. Biophys. Res. Commun., 1973, 50(4), 999-1005.
[http://dx.doi.org/10.1016/0006-291X(73)91505-2] [PMID: 4347898]
[82]
Lai, W-F.; Tang, G-P.; Wang, X.; Li, G.; Yao, H.; Shen, Z.; Lu, G.; Poon, W.S.; Kung, H-F.; Lin, M.C. Cyclodextrin-PEI-Tat polymer as a vector for plasmid DNA delivery to placenta mesenchymal stem cells. Bionanoscience, 2011, 1(3), 89-96.
[http://dx.doi.org/10.1007/s12668-011-0010-9] [PMID: 23024930]
[83]
Díaz-Moscoso, A.; Le Gourriérec, L.; Gómez-García, M.; Benito, J.M.; Balbuena, P.; Ortega-Caballero, F.; Guilloteau, N.; Di Giorgio, C.; Vierling, P.; Defaye, J.; Ortiz Mellet, C.; García Fernández, J.M. Polycationic amphiphilic cyclodextrins for gene delivery: Synthesis and effect of structural modifications on plasmid DNA complex stability, cytotoxicity, and gene expression. Chemistry, 2009, 15(46), 12871-12888.
[http://dx.doi.org/10.1002/chem.200901149] [PMID: 19834934]
[84]
Méndez-Ardoy, A.; Gómez-García, M.; Ortiz Mellet, C.; Sevillano, N.; Girón, M.D.; Salto, R.; Santoyo-González, F.; García Fernández, J.M. Preorganized macromolecular gene delivery systems: amphiphilic β-cyclodextrin “click clusters”. Org. Biomol. Chem., 2009, 7(13), 2681-2684.
[http://dx.doi.org/10.1039/b903635k] [PMID: 19532982]
[85]
Habus, I.; Zhao, Q.; Agrawal, S. Synthesis, hybridization properties, nuclease stability, and cellular uptake of the oligonucleotide--amino-beta-cyclodextrins and adamantane conjugates. Bioconjug. Chem., 1995, 6(4), 327-331.
[http://dx.doi.org/10.1021/bc00034a001] [PMID: 7578351]
[86]
Abdou, S.; Collomb, J.; Sallas, F.; Marsura, A.; Finance, C. beta-Cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence. Arch. Virol., 1997, 142(8), 1585-1602.
[http://dx.doi.org/10.1007/s007050050182] [PMID: 9672621]
[87]
Pun, S.H.; Davis, M.E. Development of a nonviral gene delivery vehicle for systemic application. Bioconjug. Chem., 2002, 13(3), 630-639.
[http://dx.doi.org/10.1021/bc0155768] [PMID: 12009955]
[88]
Pun, S.H.; Tack, F.; Bellocq, N.C.; Cheng, J.; Grubbs, B.H.; Jensen, G.S.; Davis, M.E.; Brewster, M.; Janicot, M.; Janssens, B.; Floren, W.; Bakker, A. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol. Ther., 2004, 3(7), 641-650.
[http://dx.doi.org/10.4161/cbt.3.7.918] [PMID: 15136766]
[89]
Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov., 2004, 3(12), 1023-1035.
[http://dx.doi.org/10.1038/nrd1576] [PMID: 15573101]
[90]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm., 2009, 6(3), 659-668.
[http://dx.doi.org/10.1021/mp900015y] [PMID: 19267452]
[91]
Teijeiro-Osorio, D.; Remuñán-López, C.; Alonso, M.J. Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. Eur. J. Pharm. Biopharm., 2009, 71(2), 257-263.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.020] [PMID: 18955137]
[92]
Li, W.; Du, J.; Zheng, K.; Zhang, P.; Hu, Q.; Wang, Y. Multifunctional nanoparticles via host-guest interactions: a universal platform for targeted imaging and light-regulated gene delivery. Chem. Commun. (Camb.), 2014, 50(13), 1579-1581.
[http://dx.doi.org/10.1039/c3cc48098d] [PMID: 24382426]
[93]
Hu, Y.; Yuan, W.; Zhao, N-N.; Ma, J.; Yang, W-T.; Xu, F-J. Supramolecular pseudo-block gene carriers based on bioreducible star polycations. Biomaterials, 2013, 34(21), 5411-5422.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.092] [PMID: 23611450]
[94]
Forrest, M.L.; Gabrielson, N.; Pack, D.W. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng., 2005, 89(4), 416-423.
[http://dx.doi.org/10.1002/bit.20356] [PMID: 15627256]
[95]
Huang, H.; Tang, G.; Wang, Q.; Li, D.; Shen, F.; Zhou, J.; Yu, H. Two novel non-viral gene delivery vectors: low molecular weight polyethylenimine cross-linked by (2-hydroxypropyl)-β-cyclodextrin or (2-hydroxypropyl)-γ-cyclodextrin. Chem. Commun. (Camb.), 2006, (22), 2382-2384.
[http://dx.doi.org/10.1039/B601130F] [PMID: 16733587]
[96]
Arima, H.; Kihara, F.; Hirayama, F.; Uekama, K. Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjug. Chem., 2001, 12(4), 476-484.
[http://dx.doi.org/10.1021/bc000111n] [PMID: 11459450]
[97]
Arima, H.; Yamashita, S.; Mori, Y.; Hayashi, Y.; Motoyama, K.; Hattori, K.; Takeuchi, T.; Jono, H.; Ando, Y.; Hirayama, F.; Uekama, K. In vitro and in vivo gene delivery mediated by Lactosylated dendrimer/α-cyclodextrin conjugates (G2) into hepatocytes. J. Control. Release, 2010, 146(1), 106-117.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.030] [PMID: 20678990]
[98]
Dandekar, P.; Jain, R.; Keil, M.; Loretz, B.; Muijs, L.; Schneider, M.; Auerbach, D.; Jung, G.; Lehr, C-M.; Wenz, G. Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes. J. Control. Release, 2012, 164(3), 387-393.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.040] [PMID: 22789529]
[99]
Chen, H.; Liu, X.; Dou, Y.; He, B.; Liu, L.; Wei, Z.; Li, J.; Wang, C.; Mao, C.; Zhang, J.; Wang, G. A pH-responsive cyclodextrin-based hybrid nanosystem as a nonviral vector for gene delivery. Biomaterials, 2013, 34(16), 4159-4172.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.035] [PMID: 23480956]
[100]
Yin, H.; Zhao, F.; Zhang, D.; Li, J. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int. J. Pharm., 2015, 483(1-2), 169-179.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.022] [PMID: 25681725]
[101]
Eslaminejad, T.; Nematollahi-Mahani, S.N.; Ansari, M. Cationic β-cyclodextrin–chitosan conjugates as potential carrier for pmCherry-C1 gene delivery. Mol. Biotechnol., 2016, 58(4), 287-298.
[http://dx.doi.org/10.1007/s12033-016-9927-0] [PMID: 26961910]
[102]
Shtratnikova, V.Y.; Schelkunov, M.I.; Dovbnya, D.V.; Bragin, E.Y.; Donova, M.V. Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol. Appl. Microbiol. Biotechnol., 2017, 101(11), 4659-4667.
[http://dx.doi.org/10.1007/s00253-017-8288-3] [PMID: 28421241]
[103]
Ran, Y.; Jain, A.; Yalkowsky, S.H. Solubilization and preformulation studies on PG-300995 (an anti-HIV drug). J. Pharm. Sci., 2005, 94(2), 297-303.
[http://dx.doi.org/10.1002/jps.20246] [PMID: 15570598]
[104]
Bikiaris, D.N. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv., 2011, 8(11), 1501-1519.
[http://dx.doi.org/10.1517/17425247.2011.618181] [PMID: 21919807]
[105]
Kou, X.; Zhou, L. Stability of amorphous solid dispersion; Amorphous Solid Dispersions, 2014, pp. 515-544.
[http://dx.doi.org/10.1007/978-1-4939-1598-9_16]
[106]
Caldera, F.; Tannous, M.; Cavalli, R.; Zanetti, M.; Trotta, F. Evolution of cyclodextrin nanosponges. Int. J. Pharm., 2017, 531(2), 470-479.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.072] [PMID: 28645630]
[107]
Deng, P.; Sun, J.; Chen, J.; Zou, X.; Liao, L. Fast responsive photo-switchable dual-color fluorescent cyclodextrin nanogels for cancer cell imaging. Carbohydr. Polym., 2019, 210, 379-388.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.086] [PMID: 30732774]
[108]
Xu, Z.; Liu, S.; Liu, H.; Yang, C.; Kang, Y.; Wang, M. Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery. Chem. Commun. (Camb.), 2015, 51(87), 15768-15771.
[http://dx.doi.org/10.1039/C5CC02743H] [PMID: 26121632]
[109]
Jia, T.; Huang, S.; Yang, C.; Wang, M. Unimolecular micelles of amphiphilic cyclodextrin-core star-like copolymers with covalent pH-responsive linkage of anticancer prodrugs. Mol. Pharm., 2017, 14(8), 2529-2537.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00708] [PMID: 27684093]
[110]
Wang, F.; Blanco, E.; Ai, H.; Boothman, D.A.; Gao, J. Modulating β-lapachone release from polymer millirods through cyclodextrin complexation. J. Pharm. Sci., 2006, 95(10), 2309-2319.
[http://dx.doi.org/10.1002/jps.20721] [PMID: 16883563]
[111]
Athmouni, K.; Belhaj, D.; Gammoudi, S.; El Feki, A.; Ayadi, H. Nano-encapsulation using macrocyclic carbohydrate polymers (β-cyclodextrins) of Periploca angustifolia extract: Physical stability and protective effect against cadmium-induced alterations in HepG2 cells. Int. J. Biol. Macromol., 2019, 125, 711-720.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.044] [PMID: 30521926]
[112]
Solanki, A.; Sanghvi, S.; Devkar, R.; Thakore, S. β-Cyclodextrin based magnetic nanoconjugates for targeted drug delivery in cancer therapy. RSC Adv, 2016, 6(101), 98693-98707.
[http://dx.doi.org/10.1039/C6RA18030B]
[113]
Ndong Ntoutoume, G.M.A.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Léger, D.Y.; Fidanzi-Dugas, C.; Lequart, V.; Joly, N.; Liagre, B.; Chaleix, V.; Sol, V. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg. Med. Chem. Lett., 2016, 26(3), 941-945.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.060] [PMID: 26739777]
[114]
Kulkarni, A.D.; Belgamwar, V.S. Inclusion complex of chrysin with sulfobutyl ether-β-cyclodextrin (Captisol®): Preparation, characterization, molecular modelling and in vitro anticancer activity. J. Mol. Struct., 2017, 1128, 563-571.
[http://dx.doi.org/10.1016/j.molstruc.2016.09.025]
[115]
Wang, Y.; Qin, F.; Tan, H.; Zhang, Y.; Jiang, M.; Lu, M.; Yao, X. pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs. Int. J. Nanomedicine, 2015, 10, 7359-7369.
[PMID: 26677325]
[116]
Shukla, A.; Singh, A.P.; Ray, B.; Aswal, V.; Kar, A.G.; Maiti, P. Efficacy of polyurethane graft on cyclodextrin to control drug release for tumor treatment. J. Colloid Interface Sci., 2019, 534, 215-227.
[http://dx.doi.org/10.1016/j.jcis.2018.09.032] [PMID: 30227378]
[117]
Hedges, A.R. Industrial applications of cyclodextrins. Chem. Rev., 1998, 98(5), 2035-2044.
[http://dx.doi.org/10.1021/cr970014w] [PMID: 11848958]
[118]
Cireli, A.; Yurdakul, B. Application of cyclodextrin to the textile dyeing and washing processes. J. Appl. Polym. Sci., 2006, 100, 208-218.
[http://dx.doi.org/10.1002/app.22863]
[119]
Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gandara, J. A review on the use of cyclodextrins in foods. J. Food Hydrocoll., 2009, 23, 1631-1640.
[http://dx.doi.org/10.1016/j.foodhyd.2009.01.001]
[120]
Fenyvesi, É.; Puskás, I.; Szente, L. Cyclodextrin-Steroid interactions and applications to pharmaceuticals, food, biotechnology and environment. In: Cyclodextrin Applications in Medicine, Food, Environment and Liquid Crystals; Fourmentin, S.; Crini, G.; Lichtfouse, E., Eds.; Springer: Cham, 2018; Vol. 17, pp. 19-57.
[http://dx.doi.org/10.1007/978-3-319-76162-6_2]
[121]
Uekaji, Y.; Jo, A.; Urano, A.; Terao, K. Application of γ-Cyclodextrin in nanomedicinal foods and cosmetics. In: Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences; Bagchi, M.; Moriyama, H.; Shahidi, F., Eds.; John Wiley & Sons, 2013; pp. 179-211.
[http://dx.doi.org/10.1002/9781118451915.ch10]
[122]
Morin-Crini, N.; Crini, G. Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog. Polym. Sci., 2013, 38, 344-368.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.06.005]
[123]
Ling, Y.; Klemes, M.J.; Xiao, L.; Alsbaiee, A.; Dichtel, W.R.; Helbling, D.E. Benchmarking micropollutant removal by activated carbon and porous β-cyclodextrin polymers under environmentally relevant scenarios. Environ. Sci. Technol., 2017, 51(13), 7590-7598.
[http://dx.doi.org/10.1021/acs.est.7b00906] [PMID: 28556664]
[124]
Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature, 2016, 529(7585), 190-194.
[http://dx.doi.org/10.1038/nature16185] [PMID: 26689365]
[125]
Klemes, M.J.; Ling, Y.; Chiapasco, M.; Alsbaiee, A.; Helbling, D.E.; Dichtel, W.R. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. Chem. Sci. (Camb.), 2018, 9(47), 8883-8889.
[http://dx.doi.org/10.1039/C8SC03267J] [PMID: 30627407]
[126]
Wang, L.; Kang, Y.; Xing, C-Y.; Guo, K.; Zhang, X-Q.; Ding, L-S.; Zhang, S.; Li, B-J. β-Cyclodextrin based air filter for high-efficiency filtration of pollution sources. J. Hazard. Mater., 2019, 373, 197-203.
[http://dx.doi.org/10.1016/j.jhazmat.2019.03.087] [PMID: 30921570]
[127]
Mahlambi, M.M.; Malefetse, T.J.; Mamba, B.B.; Krause, R.W. β-Cyclodextrin-ionic liquid polyurethanes for the removal of organic pollutants and heavy metals from water: synthesis and characterization. J. Polym. Res., 2010, 17, 589-600.
[http://dx.doi.org/10.1007/s10965-009-9347-y]
[128]
Tahir, M.U.; Su, X.; Zhao, M.; Liao, Y.; Wu, R.; Chen, D. Preparation of hydroxypropyl-cyclodextrin-graphene/Fe3O4 and its adsorption properties for heavy metals. Surf. Interfaces, 2019, 16, 43-49.
[http://dx.doi.org/10.1016/j.surfin.2019.04.007]
[129]
Huang, Z.; Wu, Q.; Liu, S.; Liu, T.; Zhang, B. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions. Carbohydr. Polym., 2013, 97(2), 496-501.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.047] [PMID: 23911476]
[130]
Li, Z.; Chen, S.; Gu, Z.; Chen, J.; Wu, J. Alpha-cyclodextrin: Enzymatic production and food applications. Trends Food Sci. Technol., 2014, 35, 151-160.
[http://dx.doi.org/10.1016/j.tifs.2013.11.005]
[131]
Martin, A.; Tabary, N.; Chai, F.; Leclercq, L.; Junthip, J.; Aubert-Viard, F.; Neut, C.; Weltrowski, M.; Blanchemain, N.; Martel, B. Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue-poly(cyclodextrin) complex. Biomed. Mater., 2013, 8(6)065006
[http://dx.doi.org/10.1088/1748-6041/8/6/065006] [PMID: 24280742]
[132]
Vyas, A.; Saraf, S.; Saraf, S. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem., 2008, 62, 23-42.
[http://dx.doi.org/10.1007/s10847-008-9456-y]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 11
Year: 2019
Page: [1256 - 1269]
Pages: 14
DOI: 10.2174/1385272823666190627115422
Price: $58

Article Metrics

PDF: 20
HTML: 2