Recent Advances on Triazolium Ionic Liquids: Synthesis and Applications

Author(s): Roli Mishra*, Jyoti S. Mishra, Snehkrishn A. Chaubey.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The present review is principally focused on the triazolium ILs (TILs) and its potential applications. The major part of this review deals with the use of triazolium ILs as catalysts in asymmetric synthesis, solvents, recognition abilities, and electrolytes in electrochemical, storage devices. Influences of stereochemistry in ion conducting properties, hydrolysis of sugar baggage, Dye-Sensitized Solar Cell (DSSC) and biological activity are also discussed. Our intention in this review is to make concise compilation and investigations of the latest key achievements, broad spectrum of developments and problems within triazolium ionic-liquid. We anticipate that this communication will encourage scientific researchers and industries to exploit triazolium ILs in addressing scientific accost.

Keywords: Ionic Liquids (ILs), Triazolium Ionic Liquids (TILs), Task Specific Triazolium Ionic Liquids (TSTILs), asymmetric synthesis, Baylis-Hillman, green chemistry.Ionic Liquids (ILs), Triazolium Ionic Liquids (TILs), Task Specific Triazolium Ionic Liquids (TSTILs), asymmetric synthesis, Baylis-Hillman, green chemistry.Ionic Liquids (ILs), Triazolium Ionic Liquids (TILs), Task Specific Triazolium Ionic Liquids (TSTILs), asymmetric synthesis, Baylis-Hillman, green chemistry.Ionic Liquids (ILs), Triazolium Ionic Liquids (TILs), Task Specific Triazolium Ionic Liquids (TSTILs), asymmetric synthesis, Baylis-Hillman, green chemistry.Ionic Liquids (ILs), Triazolium Ionic Liquids (TILs), Task Specific Triazolium Ionic Liquids (TSTILs), asymmetric synthesis, Baylis-Hillman, green chemistry.

[1]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[2]
Sugden, S.H.; Wilkins, H. The parachor and chemical constitution. Part X11. Fused metals and salts. J. Chem. Soc., 1929, 1291-1298.
[http://dx.doi.org/10.1039/JR9290001291]
[3]
Gorman, J. Faster, better, cleaner?: New liquids take aim at old-fashioned chemistry. Sci. News, 2001, 160, 156-158.
[http://dx.doi.org/10.2307/4012654]
[4]
Bonhôte, P.; Dias, A.P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35(5), 1168-1178.
[http://dx.doi.org/10.1021/ic951325x] [PMID: 11666305]
[5]
Fannin, A.A. Jr; King, L.A.; Levisky, J.A.; Wilkes, J.S. Properties of 1,3-dialkylimidazolium chloride-aluminium chloride ILs. 1. Ion interactions by nuclear magnetic resonance spectroscopy. J. Phys. Chem., 1984, 88, 2609-2614.
[http://dx.doi.org/10.1021/j150656a037]
[6]
Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium chloroaluminate melts: A new class of room temperature ILs for electroscopy, spectroscopy and synthesis. Inorg. Chem., 1982, 21, 1263-1264.
[http://dx.doi.org/10.1021/ic00133a078]
[7]
Hurley, F.H.; Weir, T.P. Electrodeposition of metals from fused quarternary ammonium salts. J. Electrochem. Soc., 1951, 98, 203-206.
[http://dx.doi.org/10.1149/1.2778132]
[8]
Hill, M.G.; Lamanna, W.M.; Mann, K.R. Tetrabutylammonium tetrakis[3, 5-bis(trifluoromethyl)phenyl]borate as a non-coordinating electrolyte: Reversible 1e-oxidations of ruthenocene, osmocene, and Rh2(TM4)42+. Inorg. Chem., 1991, 30, 4687-4690.
[http://dx.doi.org/10.1021/ic00025a003]
[9]
Sun, J.; Forsyth, M.; Mac Farlane, D.R. Room temperature molten salts based on quartenary ammonium ion. J. Phys. Chem. B, 1998, 102, 8858-8861.
[http://dx.doi.org/10.1021/jp981159p]
[10]
Gale, R.J.; Osteryoung, R.A. Infrared spectral investigations of room-temperature aluminium chloride-1-butylpyridinium chloride melts. Inorg. Chem., 1980, 19, 2240-2242.
[http://dx.doi.org/10.1021/ic50210a009]
[11]
Tait, S.; Osteryoung, R.A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg. Chem., 1984, 23, 4352-4360.
[http://dx.doi.org/10.1021/ic00193a049]
[12]
Miyatake, K.; Yamamoto, K.; Endo, K.; Tsuchida, E. Superacidified reaction of sulfides and esters for the direct synthesis of sulfonium derivatives. J. Org. Chem., 1998, 63(21), 7522-7524.
[http://dx.doi.org/10.1021/jo980473c] [PMID: 11672407]
[13]
Mac Farlane, D.R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B, 1999, 103, 4164-4170.
[http://dx.doi.org/10.1021/jp984145s]
[14]
Vestergaard, B.B.; Petrushina, N.J.I.; Hjuler, H.A.; Berg, R.W.; Begtrup, M. Molten triazolium chloride systems as new aluminium battery electrolytes. J. Electrochem. Soc., 1993, 140, 3108-3113.
[http://dx.doi.org/10.1149/1.2220994]
[15]
Hussey, C.L. The electrochemistry of room temperature haloaluminate molten salts. In: Chemistry of Nonaqueous Solutions: Current Progress; Mamantov, G.; Popov, A.I., Eds.; VCH: New York, NY, USA, 1994; pp. 227-275.
[16]
Cha, J.H.; Kim, K.S.; Choi, S. Thermal and electrochemical properties of morpholinium salts with bromide anion. Korean J. Chem. Eng., 2005, 22(6), 945-948.
[http://dx.doi.org/10.1007/BF02705680]
[17]
Davis, J.H., Jr; Forrester, K.J. Thiazolium-ion based organic ILs. Tetrahedron Lett., 1999, 40, 1621-1622.
[http://dx.doi.org/10.1016/S0040-4039(99)00025-8]
[18]
Hsu, J-C.; Yen, Y-H.; Chu, Y-H. Baylis–Hillman reaction in [bdmim][PF6] ionic liquid. Tetrahedron Lett., 2004, 45, 4673-4676.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.099]
[19]
Handy, S.T.; Okello, M. The 2-position of imidazolium ionic liquids: Substitution and exchange. J. Org. Chem., 2005, 70(5), 1915-1918.
[http://dx.doi.org/10.1021/jo0480850] [PMID: 15730322]
[20]
Armstrong, D.W.; Zhang, L.K.; He, L.; Gross, M.L. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2001, 73(15), 3679-3686.
[http://dx.doi.org/10.1021/ac010259f] [PMID: 11510834]
[21]
Marsza, M.P.; Kaliszan, R. Application of ILs in liquid chromatography. Crit. Rev. Anal. Chem., 2007, 37, 127-140.
[http://dx.doi.org/10.1080/10408340601107847]
[22]
Zincke, T.; Lawson, A.T. Azo-derivatives of phenyl-β -naphthylamine. Azoderivatives of phenyl-β -naphthylamine. 1887. 20, 1167-1176. ISSN 0365- 9496
[23]
Hanelt, S.; Liebscher, J. A Novel and versatile access to task-specific ILs Based on 1,2,3-triazolium salts. Synlett, 2008, 7, 1058-1060.
[24]
Shan, Y.; Dai, L.; Ye, S.; He, M. Method for preparation of CIL of L-amino acid sulfate,
[25]
Tao, G-H.; He, L.; Sun, N.; Kou, Y. New generation ionic liquids: Cations derived from amino acids. Chem. Commun. (Camb.), 2005, 28(28), 3562-3564.
[http://dx.doi.org/10.1039/b504256a] [PMID: 16010324]
[26]
Mu, X.; Qi, L.; Zhang, H.; Shen, Y.; Qiao, J.; Ma, H. ILs with amino acids as cations: Novel chiral ligands in chiral ligand-exchange capillary electrophoresis. Talanta, 2012, 97, 349-354.
[27]
Yuan, K.; Guohong, T.; Ling, H.; Sun, N. Method for producing ionic liquid of amino acid ester cation. 2005. CN106397239A
[28]
Marwani, H.M. Spectroscopic evaluation of chiral and achiral fluorescent ILs Centr. Eur. J. Chem., 2010, 8(4), 946-952.
[29]
Hough, W.L.; Smiglak, M.; Rodríguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; Davis, J.H. Jr R/D. Rogers. New J. Chem., 2007, 31, 1429-1436.
[http://dx.doi.org/10.1039/b706677p]
[30]
Smiglak, M.; Metlen, A.; Rogers, R.D. The second evolution of ionic liquids: From solvents and separations to advanced materials--energetic examples from the ionic liquid cookbook. Acc. Chem. Res., 2007, 40(11), 1182-1192.
[http://dx.doi.org/10.1021/ar7001304] [PMID: 17979252]
[31]
Mishra, R.; Pandey, S.; Trivedi, S.; Pandey, S.; Pandey, P.S. Synthesis and properties of L-valine based chiral long alkyl chain appended 1,2,3-triazolium ILs. RSC Adv, 2014, 4(63), 33478-33488.
[http://dx.doi.org/10.1039/C4RA05037A]
[32]
Jha, A.K.; Jain, N. Synthesis of glucose-tagged triazolium ILs and their application as solvent and ligand for copper (I) catalyzed amination Tet. Lett., 2013, 54, 4738-4741.
[33]
Ferlin, N.; Gatard, S.; Van Nhien, A.N.; Courty, M.; Bouquillon, S.; Bouquillon, S. Click reactions as a key step for an efficient and selective synthesis of D-xylose-based ILs. Molecules, 2013, 18(9), 11512-11525.
[http://dx.doi.org/10.3390/molecules180911512] [PMID: 24048284]
[34]
Marra, A.; Chiappe, C.; Mele, A. Sugar-Derived ILs. CHIMIA Intl. J. Chem., 2011, 65(1-2), 76-80.
[http://dx.doi.org/10.2533/chimia.2011.76]
[35]
Kumar, V.; Pei, C.; Olsen, C.E.; Schäffer, S.J.C.; Parmar, V.S.; Malhotra, S.V. Novel carbohydrate-based chiral ammonium ILs derived from isomannide. Tetrahedron Asymmetry, 2008, 19, 664-671.
[http://dx.doi.org/10.1016/j.tetasy.2008.02.009]
[36]
Chiappe, C.; Marra, A.; Mele, A. Synthesis and applications of ionic liquids derived from natural sugars. Top. Curr. Chem., 2010, 295, 177-195.
[http://dx.doi.org/10.1007/128_2010_47] [PMID: 21626744]
[37]
Tseng, M-C.; Yuan, T-C.; Li, Z.; Chu, Y-H. Crowned ionic liquids for biomolecular interaction analysis. Anal. Chem., 2016, 88(22), 10811-10815.
[http://dx.doi.org/10.1021/acs.analchem.6b03323] [PMID: 27804294]
[38]
Chang, Y-P.; Chu, Y-H. Ionic Liquid Devices. In: Recognition-based Smart ILs; Eftekhari, A., Ed.; Royal Society of Chemistry: Cambridge, UK, 2018; pp. 272-295.
[39]
Gao, Y.; Twamley, B.; Shreeve, J.M. The first (ferrocenylmethyl)imidazolium and (ferrocenylmethyl)triazolium room temperature ionic liquids. Inorg. Chem., 2004, 43(11), 3406-3412.
[http://dx.doi.org/10.1021/ic049961v] [PMID: 15154802]
[40]
Tseng, M-C.; Cheng, H-T.; Shen, M-J.; Chu, Y-H. Bicyclic 1,2,3-triazolium ionic liquids: Synthesis, characterization, and application to rutaecarpine synthesis. Org. Lett., 2011, 13(16), 4434-4437.
[http://dx.doi.org/10.1021/ol201793v] [PMID: 21797204]
[41]
Zhou, Z.; Li, X.; Chen, X.; Hao, X. Synthesis and characterization of dicationic ILs that contain both hydrophilic and hydrophobic liquid chromatography. Anal. Chim. Acta, 2010, 678, 208-214.
[http://dx.doi.org/10.1016/j.aca.2010.08.024] [PMID: 20888454]
[42]
M’Sahel, M.; Obadia, M.M.; Medimagh, R.; Serghei, A.; Said Zina, M.; Drockenmuller, E. Biosourced 1,2,3-triazolium ILs derived from isosorbide. New J. Chem., 2016, 40, 740-747.
[http://dx.doi.org/10.1039/C5NJ02660A]
[43]
Yoshida, Y.; Takizawa, S.; Sasai, H. Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ILs. Tetrahedron Asymmetry, 2012, 23, 843-851.
[http://dx.doi.org/10.1016/j.tetasy.2012.06.007]
[44]
Green, M.D.; Long, T.E. Designing imidazole-based ILs and ionic liquid monomers for emerging technologies. Polym. Rev. (Phila. Pa.), 2009, 49, 291-314.
[http://dx.doi.org/10.1080/15583720903288914]
[45]
Yuan, J.; Antoinette, M. Poly (ILs): Polymers expanding classical property profiles. Polymer (Guildf.), 2011, 52, 1469-1482.
[http://dx.doi.org/10.1016/j.polymer.2011.01.043]
[46]
Mecerreyes, D. Polymeric ILs: Broadening the properties and applications of polyelectrolyte. Prog. Polym. Sci., 2011, 36, 1629-1648.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.05.007]
[47]
Yuan, J.; Mecerreyes, D. Antonietti, M. Poly (ionic liquid)s: An update. Prog. Polym. Sci., 2013, 38, 1009-1036.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.04.002]
[48]
Abdelhedi-Miladi, I.; Obadia, M.M.; Allaoua, I.; Serghei, A.; Romdhane, H.B.; Drockenmuller, E. 1,2,3-Triazolium-based poly(ionic liquid)s obtainedthrough click chemistry. Macromol. Chem. Phys., 2014, 215, 2229-2236.
[http://dx.doi.org/10.1002/macp.201400182]
[49]
Obadia, M.M.; Drockenmuller, E. Poly(1,2,3-triazolium)s: A new class of functional polymer electrolytes. Chem. Commun. (Camb.), 2016, 52(12), 2433-2450.
[http://dx.doi.org/10.1039/C5CC09861K] [PMID: 26732341]
[50]
Antoinea, J.; Antoniuk, I.; Serghei, A.; Espuchea, E.; Drockenmuller, E. 1,2,3-Triazolium-based linear ionic polyurethanes. Polym. Chem., 2017, 8, 5148-5156.
[http://dx.doi.org/10.1039/C7PY00406K]
[51]
Mudraboyina, B.P.; Obadia, M.M.; Allaoua, I.; Sood, R.; Serghei, A. 1,2,3-Triazolium-Based Poly(ionic liquid)s with enhanced ion conducting properties obtained through a click chemistry polyaddition strategy. Chem. Mater., 2014, 26, 1720-1726.
[http://dx.doi.org/10.1021/cm500021z]
[52]
Ye, L.; Wan, L.; Tang, J.; Li, Y.; Huang, F. Novolac-based poly(1,2,3-triazolium)s with good ionic conductivity and enhanced CO2 permeation. RSC Adv, 2018, 8, 8552-8855.
[http://dx.doi.org/10.1039/C8RA00541A]
[53]
Mendecki, L.; Chen, X.; Callan, N.; Thompson, D.F.; Schazmann, B.; Granados-Focil, S.; Radu, A. Simple, robust, and plasticizer-free iodide-selective sensor based on copolymerized triazole-based ionic liquid. Anal. Chem., 2016, 88(8), 4311-4317.
[http://dx.doi.org/10.1021/acs.analchem.5b04461] [PMID: 26965316]
[54]
Shvedene, N.V.; Chernyshov, D.V.; Khrenova, M.G.; Formanovsky, A.A.; Baulin, V.E.; Pletnev, I.V. ILs Plasticize and bring ion‐sensing ability to polymer membranes of selective electrodes. Electroanalysis, 2006, 18(13‐14), 1416-1421.
[http://dx.doi.org/10.1002/elan.200603537]
[55]
Ly Nguyen, T.K.; Obadia, M.M.; Serghei, A.; Livi, S.; Duchet-Rumeau, J.; Drockenmuller, E. 1,2,3-Triazolium-based epoxy-amine networks: ion-conducting polymer electrolytes. Macromol. Rapid Commun., 2016, 37(14), 1168-1174.
[http://dx.doi.org/10.1002/marc.201600018] [PMID: 26924313]
[56]
Strehmel, V. Introduction to ILs. Dielectric Properties ILs 2016, 1-27.
[57]
Basavaiah, D.; Venkateswara Rao, K.; Jannapu Reddy, R. The Baylis-Hillman reaction: A novel source of attraction, opportunities, and challenges in synthetic chemistry. Chem. Soc. Rev., 2007, 36(10), 1581-1588.
[http://dx.doi.org/10.1039/b613741p] [PMID: 17721583]
[58]
Srivastava, V. Ionic liquid mediated macmillan imidazolidinone organocatalyst for diels alder reaction. Curr. Organocatal., 2016, 3, 277-282.
[http://dx.doi.org/10.2174/2213337202666150729230804]
[59]
Shah, J.; Khan, S.S.; Blumenthal, H.; Liebsche, J. 1,2,3-Triazolium-tagged prolines and their application in asymmetric aldol and michael reactions. Synthesis, 2009, 23, 3975-3982.
[60]
Singh, A.; Kumar, A. Probing the mechanism of Baylis-Hillman reaction in ionic liquids. J. Org. Chem., 2012, 77(19), 8775-8779.
[http://dx.doi.org/10.1021/jo301348k] [PMID: 22931044]
[61]
Jeong, Y.; Ryu, J-S. Synthesis of 1,3-dialkyl-1,2,3-triazolium ionic liquids and their applications to the Baylis-Hillman reaction. J. Org. Chem., 2010, 75(12), 4183-4191.
[http://dx.doi.org/10.1021/jo100618d] [PMID: 20499940]
[62]
Mi, X.L.; Luo, S.Z.; He, J.Q.; Cheng, J-P. Dy(OTf)3 in ionic liquid: An efficient catalytic system for reactions of indole with aldehydes/ketones or imines. Tet. Lett, 2004, 45(23), 4567-4570.
[63]
Stappert, K.; Mudring, A.V. Triazolium based ionic liquid crystals: Effect of asymmetric substitution. RSC Adv, 2015, 5, 16886-16896.
[http://dx.doi.org/10.1039/C4RA14961K]
[64]
Sanghi, S.; Willett, E.; Versek, C.; Tuominen, M.; Coughlin, E.B. Physicochemical properties of 1,2,3-triazolium ILs. RSC Adv, 2012, 2, 848-853.
[http://dx.doi.org/10.1039/C1RA00286D]
[65]
Singh, D.; Gardas, R.L. Influence of cation size on the ionicity, fluidity, and physiochemical properties of 1,2,4-triazolium based ionic liquids. J. Phys. Chem. B, 2016, 120(21), 4834-4842.
[http://dx.doi.org/10.1021/acs.jpcb.6b03669] [PMID: 27158831]
[66]
Brauer, U.G.; De La Hoz, A.T.; Miller, K.M. The effect of counteranion on the physicochemical and thermal properties of 4-methyl-1-propyl-1,2,4-triazolium ILs. J. Mol. Liq., 2015, 210, 286-292.
[http://dx.doi.org/10.1016/j.molliq.2015.02.041]
[67]
Zhang, Q.; Liu, S.; Li, J.; Chen, Z.; Wang, R.; Lu, L.; Deng, Y. Novel cyclic sulfonium‐based ILs: Synthesis, characterization, and physicochemical properties. Chemistry, 2009, 15, 765-778.
[http://dx.doi.org/10.1002/chem.200800610] [PMID: 19040247]
[68]
Wassercheid, P.; Welton, T. ILs in Synthesis; Wiley-VCH: Weinheim, 2002.
[69]
Zhou, Z-B.; Matsumoto, H.; Tatsumi, K. Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chemistry, 2004, 10(24), 6581-6591.
[http://dx.doi.org/10.1002/chem.200400533] [PMID: 15540269]
[70]
Zhou, Z-B.; Matsumoto, H.; Tatsumi, K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chemistry, 2006, 12(8), 2196-2212.
[http://dx.doi.org/10.1002/chem.200500930] [PMID: 16389616]
[71]
Noda, A.; Watanabe, M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim. Acta, 2000, 45, 1265-1270.
[http://dx.doi.org/10.1016/S0013-4686(99)00330-8]
[72]
Babucci, M. Akçay, Balci, V.; Uzun, A. Thermal stability limits of imidazolium ils immobilized on metal-oxides. Langmuir, 2015, 31(33), 9163-9176.
[http://dx.doi.org/10.1021/acs.langmuir.5b02519] [PMID: 26241084]
[73]
Borowiecki, P.; Poterała, M.; Maurin, J.; Wielechowska, M.; Plenkiewicz, J. Preparation and thermal stability of optically active1,2,4-triazolium-basedionic liquid. ARKIVOC, 2012, (viii), 262-281.
[74]
Schmidt, M.W.; Gordon, M.S.; Boatz, J.A. Triazolium-based energetic ionic liquids. J. Phys. Chem. A, 2005, 109(32), 7285-7295.
[http://dx.doi.org/10.1021/jp058149q] [PMID: 16834094]
[75]
Sebastiao, E.; Cook, C.; Hu, A.; Morgues, M.J. Recent developments in the field of energetic ILs. Mater. Chem. A, 2014, 2, 8153-8173.
[http://dx.doi.org/10.1039/C4TA00204K]
[76]
Jourdain, A.; Serghei, A.; Drockenmuller, E. Enhanced ionic conductivity of a 1,2,3-triazolium-based poly(siloxane ionic liquid). Homopolymer. ACS Macro. Lett., 2016, 5(11), 1283-1286.
[http://dx.doi.org/10.1021/acsmacrolett.6b00761]
[77]
Kazemiabnavi, S.; Zhang, Z.; Thornton, K.; Banerjee, S. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J. Phys. Chem. B, 2016, 120(25), 5691-5702.
[http://dx.doi.org/10.1021/acs.jpcb.6b03433] [PMID: 27266487]
[78]
Ly Nguyen, T.K.; Obadia, M.M.; Serghei, A.; Livi, S.; Duchet-Rumeau, J.; Drockenmuller, E. 1,2,3-triazolium-based epoxy-amine networks: Ion-conducting polymer electrolytes. Macromol. Rapid Commun., 2016, 37(14), 1168-1174.
[http://dx.doi.org/10.1002/marc.201600018] [PMID: 26924313]
[79]
Carmo, A.M.L.; Stroppa, P.H.F.; Corrales, R.C.N.R.; Barroso, A.B.N.; Ferreira-Leitão, V.S.; Silva, A.D. Synthesis of 1, 2, 3-Triazolium-based ionic liquid and preliminary pretreatment to enhance hydrolysis of sugarcane bagasse. J. Braz. Chem. Soc., 2014, 25(11), 2088-2093.
[http://dx.doi.org/10.5935/0103-5053.20140198]
[80]
Lau, G.P.S.; Tsao, H.N.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. Highly stable dye-sensitized solar cells based on novel 1,2,3-triazolium ionic liquids. ACS Appl. Mater. Interfaces, 2014, 6(16), 13571-13577.
[http://dx.doi.org/10.1021/am502838u] [PMID: 25111366]
[81]
Marszalek, M.; Fei, Z. Zhu, D.R.; Scopelliti, R.; Dyson, P.J.; Zakeeruddin, S.; Application of ILs containing tricyanomethanide [C(CN)3]− or tetracyanoborate [B(CN)4]− anions in dye-sensitized solar cells. Inorg. Chem., 2011, 50, 11561-11567.
[http://dx.doi.org/10.1021/ic201513m] [PMID: 22026738]
[82]
Lau, G.P.; Décoppet, J.D.; Moehl, T.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. Robust high-performance dye-sensitized solar cells based on ionic liquid-sulfolane composite electrolytes. Sci. Rep., 2015, 5, 18158.
[http://dx.doi.org/10.1038/srep18158] [PMID: 26670595]
[83]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[84]
Zhang, Q.; Shreeve, J.M. Energetic ionic liquids as explosives and propellant fuels: A new journey of ionic liquid chemistry. Chem. Rev., 2014, 114(20), 10527-10574.
[http://dx.doi.org/10.1021/cr500364t] [PMID: 25207674]
[85]
Rhoades, T.C.; Wistrom, J.C.; Johnson, R.D.; Miller, K.M. Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks. Polymer (Guildf.), 2016, 100, 1-9.
[http://dx.doi.org/10.1016/j.polymer.2016.08.010]
[86]
Daily, L.A.; Miller, K.M. Correlating structure with thermal properties for a series of 1-alkyl-4-methyl-1,2,4-triazolium ionic liquids. J. Org. Chem., 2013, 78(8), 4196-4201.
[http://dx.doi.org/10.1021/jo4003932] [PMID: 23530931]
[87]
Zhao, Y.; Bostrom, T. Application of ILs in solar cells and batteries. Curr. Org. Chem., 2015, 19(6), 556-566.
[http://dx.doi.org/10.2174/1385272819666150127002529]
[88]
Watanabe, M.; Thomas, M.L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev., 2017, 117(10), 7190-7239.
[http://dx.doi.org/10.1021/acs.chemrev.6b00504] [PMID: 28084733]
[89]
Raiguel, S.; Depuydt, D.; Vander Hoogerstraete, T.; Thomas, J.; Dehaen, W.; Binnemans, K. Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids. Dalton Trans., 2017, 46(16), 5269-5278.
[http://dx.doi.org/10.1039/C7DT00624A] [PMID: 28379269]
[90]
Lartey, M.; Meyer-Ilse, J.; Watkins, J.D.; Roth, E.A.; Bowser, S.; Kusuma, V.A.; Damodaran, K.; Zhou, X.; Haranczyk, M.; Albenze, E.; Luebke, D.R.; Hopkinson, D.; Kortright, J.B.; Nulwala, H.B. Branched isomeric 1,2,3-triazolium-based ionic liquids: New insight into structure-property relationships. Phys. Chem. Chem. Phys., 2015, 17(44), 29834-29843.
[http://dx.doi.org/10.1039/C5CP04756K] [PMID: 26486091]
[91]
Tan, W.; Li, Q.; Wang, H.; Liu, Y.; Zhang, J.; Dong, F.; Guo, Z. Synthesis, characterization, and antibacterial property of novel starch derivatives with 1,2,3-triazole. Carbohydr. Polym., 2016, 142, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.007] [PMID: 26917366]
[92]
Alpers, T.; Muesmann, T.W.T.; Temme, O.; Christoffers, J. Perfluorinated 1,2,3- and 1,2,4-Triazolium ILs. Eur. J. Org. Chem., 2018, 31, 4331-4337.
[http://dx.doi.org/10.1002/ejoc.201800582]
[93]
Brehm, M.; Pulst, M.; Kressler, J. Sebastiani, D. Triazolium-Based ILs: A novel class of cellulose solvents. J. Phys. Chem. B, 2019.
[http://dx.doi.org/10.1021/acs.jpcb.8b12082] [PMID: 30763092]
[94]
Schroeter, F.; Lerch, S.; Kaliner, M.; Strassner, T. Cobalt-catalyzed hydroarylations and hydroaminations of alkenes in tunable aryl alkyl ionic liquids. Org. Lett., 2018, 20(19), 6215-6219.
[http://dx.doi.org/10.1021/acs.orglett.8b02688] [PMID: 30247040]
[95]
Obadia, M.M.; Mudraboyina, B.P.; Allaoua, I.; Haddane, A.; Montarnal, D.; Serghei, A.; Drockenmuller, E. Accelerated solvent- and catalyst-free synthesis of 1,2,3-triazolium-based poly(ionic liquid)s. Macromol. Rapid Commun., 2014, 35(8), 794-800.
[http://dx.doi.org/10.1002/marc.201400075] [PMID: 24700443]
[96]
Sanghi, S.; Willett, E.; Versek, C.; Tuominen, M.; Coughlin, E.B. Physicochemical proper-ties of 1,2,3-triazolium ILs. RSC Adv , 2012, 2, 848-853.
[http://dx.doi.org/10.1039/C1RA00286D]
[97]
Trojer, M.A.; Movahedi, A.; Blanck, H.; Nydén, M. Imidazole and triazole coordination chemistry for antifouling coatings. J. Chem., 2013.
[98]
Fletcher, J.T.; Sobczyk, J.M.; Gwazdacz, S.C.; Blanck, A.J. Antimicrobial 1,3,4-trisubstituted-1,2,3-triazolium salts. Bioorg. Med. Chem. Lett., 2018, 28(20), 3320-3323.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.011] [PMID: 30219525]
[99]
Tan, W.; Li, Q.; Dong, F.; Zhang, J.; Luan, F.; Wei, L.; Chen, Y.; Guo, Z. Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: Synthesis, characterization, and antifungal property. Carbohydr. Polym., 2018, 182, 180-187.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.023] [PMID: 29279113]
[100]
Glanzmann, N.; Carmo, A.M.L.; Antinarelli, L.M.R.; Coimbra, E.S.; Costa, L.A.S.; da Silva, A.D. Synthesis, characterization, and NMR studies of 1,2,3-triazolium ionic liquids: A good perspective regarding cytotoxicity. J. Mol. Model., 2018, 24(7), 160.
[http://dx.doi.org/10.1007/s00894-018-3682-z] [PMID: 29904800]
[101]
Couling, D.J.; Bernot, R.J.; Docherty, K.M.; Dixon, J.K.; Maginn, E.J. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem., 2006, 8, 82-90.
[http://dx.doi.org/10.1039/B511333D]
[102]
Ekwall, B; Silano, V; Paganuzzi-Stammati, A; Zucco, F Toxicity tests with mammalian cell cultures. Short-term toxicity tests non-genotoxic effects. 1990, 41, 75-82.
[103]
Petkovic, M.; Seddon, K.R.; Rebelo, L.P.; Silva Pereira, C. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev., 2011, 40(3), 1383-1403.
[http://dx.doi.org/10.1039/C004968A] [PMID: 21116514]
[104]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[105]
Steiner, I.; Stojanovic, N.; Bolje, A.; Brozovic, A.; Polancec, D.; Ambriovic-Ristov, A.; Stojkovic, M.R.; Piantanida, I.; Eljuga, D.; Kosmrlj, J.; Osmak, M. Discovery of ‘click’ 1,2,3-triazolium salts as potential anticancer drugs. Radiol. Oncol., 2016, 50(3), 280-288.
[http://dx.doi.org/10.1515/raon-2016-0027] [PMID: 27679544]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 11
Year: 2019
Page: [1239 - 1255]
Pages: 17
DOI: 10.2174/1385272823666190627114321
Price: $58

Article Metrics

PDF: 22
HTML: 2