Association of Genetic Variants in CYP3A4, CYP3A5, CYP2C8, and CYP2C19 with Tacrolimus Pharmacokinetics in Renal Transplant Recipients

Author(s): Zijie Wang, Ming Zheng, Haiwei Yang, Zhijian Han, Jun Tao, Hao Chen, Li Sun, Miao Guo, Libin Wang, Ruoyun Tan, Ji-Fu Wei*, Min Gu*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 7 , 2019


Graphical Abstract:


Abstract:

Background: Our study aimed to investigate the pharmacogenetics of cytochrome P3A4 (CYP3A4), CYP3A5, CYP2C8, and CYP2C19 and their influence on TAC Pharmacokinetics (PKs) in short-term renal transplant recipients.

Methods: A total of 105 renal transplant recipients were enrolled. Target Sequencing (TS) based on next-generation sequencing technology was used to detect all exons, exon/intron boundaries, and flanking regions of CYP3A4, CYP3A5, CYP2C8, and CYP2C19. After adjustment of Minor Allele Frequencies (MAF) and Hardy-Weinberg Equilibrium (HWE) analysis, tagger Single-nucleotide Polymorphisms (SNPs) and haplotypes were identified. Influence of tagger SNPs on TAC concentrations was analyzed.

Results: A total of 94 SNPs were identified in TS analysis. Nine tagger SNPs were selected, and two SNPs (rs15524 and rs4646453) were noted to be significantly associated with TAC PKs in short-term post-transplant follow-up. Measurement time points of TAC, body mass index (BMI), usage of sirolimus, and incidence of Delayed Graft Function (DGF) were observed to be significantly associated with TAC PKs. Three haplotypes were identified, and rs15524-rs4646453 was found to remarkably contribute to TAC PKs. Recipients carrying H2/H2 (GG-AA) haplotype also showed significantly high weight- and dose-adjusted TAC concentrations in posttransplant periods of 7, 14, and 30 days and 3 and 6 months.

Conclusions: Two tagger SNPs, namely, rs15524 and rs4646453, are significantly related to the variability of TAC disposition, and TAC measurement time points, BMI, usage of sirolimus, and incidence of DGF contribute to this influence. Recipients carrying H2/H2 (GG-AA) haplotype in rs15524–rs4646453 may require a low dosage of TAC during 1-year follow-up posttransplant.

Keywords: Tacrolimus, pharmacogenetics, pharmacokinetics, single nucleotide polymorphisms, haplotype, kidney transplantation, target sequencing.

[1]
Staatz, C.E.; Tett, S.E. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin. Pharmacokinet., 2004, 43(10), 623-653.
[http://dx.doi.org/10.2165/00003088-200443100-00001] [PMID: 15244495]
[2]
Andrews, L.M.; Li, Y.; De Winter, B.C.M.; Shi, Y.Y.; Baan, C.C.; Van Gelder, T.; Hesselink, D.A. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin. Drug Metab. Toxicol., 2017, 13(12), 1225-1236.
[http://dx.doi.org/10.1080/17425255.2017.1395413] [PMID: 29084469]
[3]
Marcén, R. Immunosuppressive drugs in kidney transplantation: impact on patient survival, and incidence of cardiovascular disease, malignancy and infection. Drugs, 2009, 69(16), 2227-2243.
[http://dx.doi.org/10.2165/11319260-000000000-00000] [PMID: 19852526]
[4]
Sattler, M.; Guengerich, F.P.; Yun, C.H.; Christians, U.; Sewing, K.F. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab. Dispos., 1992, 20(5), 753-761.
[PMID: 1385058]
[5]
Lee, S.J.; Goldstein, J.A. Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics, 2005, 6(4), 357-371.
[http://dx.doi.org/10.1517/14622416.6.4.357] [PMID: 16004554]
[6]
Gervasini, G.; Garcia, M.; Macias, R.M.; Cubero, J.J.; Caravaca, F.; Benitez, J. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl. Int., 2012, 25(4), 471-480.
[http://dx.doi.org/10.1111/j.1432-2277.2012.01446.x] [PMID: 22369694]
[7]
Zeldin, D.C.; Moomaw, C.R.; Jesse, N.; Tomer, K.B.; Beetham, J.; Hammock, B.D.; Wu, S. Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway. Arch. Biochem. Biophys., 1996, 330(1), 87-96.
[http://dx.doi.org/10.1006/abbi.1996.0229] [PMID: 8651708]
[8]
Gijsen, V.M.; Madadi, P.; Dube, M.P.; Hesselink, D.A.; Koren, G.; de Wildt, S.N. Tacrolimus-induced nephrotoxicity and genetic variability: A review. Ann. Transplant., 2012, 17(2), 111-121.
[http://dx.doi.org/10.12659/AOT.883229] [PMID: 22743729]
[9]
Miura, M.; Inoue, K.; Kagaya, H.; Satoh, S.; Tada, H.; Sagae, Y.; Habuchi, T.; Suzuki, T. Influence of rabeprazole and lansoprazole on the pharmacokinetics of tacrolimus in relation to CYP2C19, CYP3A5 and MDR1 polymorphisms in renal transplant recipients. Biopharm. Drug Dispos., 2007, 28(4), 167-175.
[http://dx.doi.org/10.1002/bdd.544] [PMID: 17377957]
[10]
De Jonge, H.; Naesens, M.; Kuypers, D.R. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: Possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther. Drug Monit., 2009, 31(4), 416-435.
[http://dx.doi.org/10.1097/FTD.0b013e3181aa36cd] [PMID: 19536049]
[11]
Thervet, E.; Loriot, M.A.; Barbier, S.; Buchler, M.; Ficheux, M.; Choukroun, G.; Toupance, O.; Touchard, G.; Alberti, C.; Le Pogamp, P.; Moulin, B.; Le Meur, Y.; Heng, A.E.; Subra, J.F.; Beaune, P.; Legendre, C. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther., 2010, 87(6), 721-726.
[http://dx.doi.org/10.1038/clpt.2010.17] [PMID: 20393454]
[12]
Haufroid, V.; Wallemacq, P.; VanKerckhove, V.; Elens, L.; De Meyer, M.; Eddour, D.C.; Malaise, J.; Lison, D.; Mourad, M. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: Guidelines from an experimental study. Am. J. Transplant., 2006, 6(11), 2706-2713.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01518.x] [PMID: 17049058]
[13]
Barry, A.; Levine, M. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients. Ther. Drug Monit., 2010, 32(6), 708-714.
[http://dx.doi.org/10.1097/FTD.0b013e3181f3c063] [PMID: 20864901]
[14]
MacPhee, I.A.; Fredericks, S.; Tai, T.; Syrris, P.; Carter, N.D.; Johnston, A.; Goldberg, L.; Holt, D.W. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Transplant., 2004, 4(6), 914-919.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00435.x] [PMID: 15147425]
[15]
Yu, M.; Liu, M.; Zhang, W.; Ming, Y. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr. Drug Metab., 2018, 19(6), 513-522.
[http://dx.doi.org/10.2174/1389200219666180129151948] [PMID: 29380698]
[16]
Arns, W.; Huppertz, A.; Rath, T.; Ziefle, S.; Rump, L.C.; Hansen, A.; Budde, K.; Lehner, L.J.; Shipkova, M.; Baeumer, D.; Kroeger, I.; Sieder, C.; Klein, T.; Schenker, P. Pharmacokinetics and clinical outcomes of generic tacrolimus (hexal) versus branded tacrolimus in de novo kidney transplant patients: A multicenter, randomized trial. Transplantation, 2017, 101(11), 2780-2788.
[http://dx.doi.org/10.1097/TP.0000000000001843] [PMID: 28658202]
[17]
Woillard, J.B.; Mourad, M.; Neely, M.; Capron, A.; van Schaik, R.H.; van Gelder, T.; Lloberas, N.; Hesselink, D.A.; Marquet, P.; Haufroid, V.; Elens, L. Tacrolimus updated guidelines through poppk modeling: How to benefit more from CYP3a pre-emptive genotyping prior to kidney transplantation. Front. Pharmacol., 2017, 8, 358.
[http://dx.doi.org/10.3389/fphar.2017.00358] [PMID: 28642710]
[18]
Kuypers, D.R.; de Jonge, H.; Naesens, M.; Lerut, E.; Verbeke, K.; Vanrenterghem, Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin. Pharmacol. Ther., 2007, 82(6), 711-725.
[http://dx.doi.org/10.1038/sj.clpt.6100216] [PMID: 17495880]
[19]
Zhao, W.; Elie, V.; Roussey, G.; Brochard, K.; Niaudet, P.; Leroy, V.; Loirat, C.; Cochat, P.; Cloarec, S.; André, J.L.; Garaix, F.; Bensman, A.; Fakhoury, M.; Jacqz-Aigrain, E. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin. Pharmacol. Ther., 2009, 86(6), 609-618.
[http://dx.doi.org/10.1038/clpt.2009.210] [PMID: 19865079]
[20]
Oetting, W.S.; Schladt, D.P.; Guan, W.; Miller, M.B.; Remmel, R.P.; Dorr, C.; Sanghavi, K.; Mannon, R.B.; Herrera, B.; Matas, A.J.; Salomon, D.R.; Kwok, P.Y.; Keating, B.J.; Israni, A.K.; Jacobson, P.A.; De, K.A.F.I. Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am. J. Transplant., 2016, 16(2), 574-582.
[http://dx.doi.org/10.1111/ajt.13495] [PMID: 26485092]
[21]
Chow, S.C.; Shao, J.; Wang, H. A note on sample size calculation for mean comparisons based on noncentral t-statistics. J. Biopharm. Stat., 2002, 12(4), 441-456.
[http://dx.doi.org/10.1081/BIP-120016229] [PMID: 12477068]
[22]
Wang, Z.; Yang, H.; Si, S.; Han, Z.; Tao, J.; Chen, H.; Ge, Y.; Guo, M.; Wang, K.; Tan, R.; Wei, J.F.; Gu, M. Polymorphisms of nucleotide factor of activated T cells cytoplasmic 2 and 4 and the risk of acute rejection following kidney transplantation. World J. Urol., 2018, 36(1), 111-116.
[http://dx.doi.org/10.1007/s00345-017-2117-2] [PMID: 29103109]
[23]
Benjamini, Y.; Drai, D.; Elmer, G.; Kafkafi, N.; Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res., 2001, 125(1-2), 279-284.
[http://dx.doi.org/10.1016/S0166-4328(01)00297-2] [PMID: 11682119]
[24]
Thervet, E.; Anglicheau, D.; King, B.; Schlageter, M.H.; Cassinat, B.; Beaune, P.; Legendre, C.; Daly, A.K. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation, 2003, 76(8), 1233-1235.
[http://dx.doi.org/10.1097/01.TP.0000090753.99170.89] [PMID: 14578760]
[25]
Macphee, I.A.; Fredericks, S.; Tai, T.; Syrris, P.; Carter, N.D.; Johnston, A.; Goldberg, L.; Holt, D.W. Tacrolimus pharmacogenetics: Polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation, 2002, 74(11), 1486-1489.
[http://dx.doi.org/10.1097/00007890-200212150-00002] [PMID: 12490779]
[26]
Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M.S.; Schuetz, E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 2001, 27(4), 383-391.
[http://dx.doi.org/10.1038/86882] [PMID: 11279519]
[27]
Tsuchiya, N.; Satoh, S.; Tada, H.; Li, Z.; Ohyama, C.; Sato, K.; Suzuki, T.; Habuchi, T.; Kato, T. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation, 2004, 78(8), 1182-1187.
[http://dx.doi.org/10.1097/01.TP.0000137789.58694.B4] [PMID: 15502717]
[28]
Andreu, F.; Colom, H.; Elens, L.; van Gelder, T.; van Schaik, R.H.N.; Hesselink, D.A.; Bestard, O.; Torras, J.; Cruzado, J.M.; Grinyó, J.M.; Lloberas, N. A new CYP3A5*3 and CYP3A4*22 cluster influencing tacrolimus target concentrations: A population approach. Clin. Pharmacokinet., 2017, 56(8), 963-975.
[http://dx.doi.org/10.1007/s40262-016-0491-3] [PMID: 28050888]
[29]
Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; Leeder, J.S.; van Schaik, R.; Thummel, K.E.; Klein, T.E.; Caudle, K.E.; MacPhee, I.A. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin. Pharmacol. Ther., 2015, 98(1), 19-24.
[http://dx.doi.org/10.1002/cpt.113] [PMID: 25801146]
[30]
Genvigir, F.D.; Salgado, P.C.; Felipe, C.R.; Luo, E.Y.; Alves, C.; Cerda, A.; Tedesco-Silva, H., Jr; Medina-Pestana, J.O.; Oliveira, N.; Rodrigues, A.C.; Doi, S.Q.; Hirata, M.H.; Hirata, R.D. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients. Pharmacogenet. Genomics, 2016, 26(10), 462-472.
[http://dx.doi.org/10.1097/FPC.0000000000000237] [PMID: 27434656]
[31]
Wei, R.; Yang, F.; Urban, T.J.; Li, L.; Chalasani, N.; Flockhart, D.A.; Liu, W. Impact of the interaction between 3′-UTR SNPs and microRNA on the expression of human xenobiotic metabolism enzyme and transporter genes. Front. Genet., 2012, 3, 248.
[http://dx.doi.org/10.3389/fgene.2012.00248] [PMID: 23181071]
[32]
Trofe-Clark, J.; Brennan, D.C.; West-Thielke, P.; Milone, M.C.; Lim, M.A.; Neubauer, R.; Nigro, V.; Bloom, R.D. Results of ASERTAA, a randomized prospective crossover pharmacogenetic study of immediate-release versus extended-release tacrolimus in african american kidney transplant recipients. Am. J. Kidney Dis., 2018, 71(3), 315-326.
[http://dx.doi.org/10.1053/j.ajkd.2017.07.018] [PMID: 29162334]
[33]
Asempa, T.E.; Rebellato, L.M.; Hudson, S.; Briley, K.; Maldonado, A.Q. Impact of CYP3A5 genomic variances on clinical outcomes among African American kidney transplant recipients. Clin. Transplant., 2018, 32(1)
[http://dx.doi.org/10.1111/ctr.13162] [PMID: 29161757]
[34]
Li, D.Y.; Teng, R.C.; Zhu, H.J.; Fang, Y. CYP3A4/5 polymorphisms affect the blood level of cyclosporine and tacrolimus in Chinese renal transplant recipients. Int. J. Clin. Pharmacol. Ther., 2013, 51(6), 466-474.
[http://dx.doi.org/10.5414/CP201836] [PMID: 23557867]
[35]
Hamzah, S.; Teh, L.K.; Siew, J.S.; Ahmad, G.; Wong, H.S.; Zakaria, Z.A.; Salleh, M.Z. Pharmacogenotyping of CYP3A5 in predicting dose-adjusted trough levels of tacrolimus among Malaysian kidney-transplant patients. Can. J. Physiol. Pharmacol., 2014, 92(1), 50-57.
[http://dx.doi.org/10.1139/cjpp-2013-0128] [PMID: 24383873]
[36]
Li, L.; Li, C.J.; Zheng, L.; Zhang, Y.J.; Jiang, H.X.; Si-Tu, B.; Li, Z.H. Tacrolimus dosing in Chinese renal transplant recipients: A population-based pharmacogenetics study. Eur. J. Clin. Pharmacol., 2011, 67(8), 787-795.
[http://dx.doi.org/10.1007/s00228-011-1010-y] [PMID: 21331500]
[37]
Campagne, O.; Mager, D.E.; Brazeau, D.; Venuto, R.C.; Tornatore, K.M. Tacrolimus population pharmacokinetics and multiple CYP3A5 genotypes in black and white renal transplant recipients. J. Clin. Pharmacol., 2018, 58(9), 1184-1195.
[http://dx.doi.org/10.1002/jcph.1118] [PMID: 29775201]
[38]
Imamura, C.K.; Furihata, K.; Okamoto, S.; Tanigawara, Y. Impact of cytochrome P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when coadministered with voriconazole. J. Clin. Pharmacol., 2016, 56(4), 408-413.
[http://dx.doi.org/10.1002/jcph.605] [PMID: 26239045]
[39]
Iwamoto, T.; Monma, F.; Fujieda, A.; Nakatani, K.; Gayle, A.A.; Nobori, T.; Katayama, N.; Okuda, M. Effect of genetic polymorphism of CYP3A5 and CYP2C19 and concomitant use of voriconazole on blood tacrolimus concentration in patients receiving hematopoietic stem cell transplantation. Ther. Drug Monit., 2015, 37(5), 581-588.
[http://dx.doi.org/10.1097/FTD.0000000000000182] [PMID: 25565672]
[40]
Bosó, V.; Herrero, M.J.; Bea, S.; Galiana, M.; Marrero, P.; Marqués, M.R.; Hernández, J.; Sánchez-Plumed, J.; Poveda, J.L.; Aliño, S.F. Increased hospital stay and allograft dysfunction in renal transplant recipients with Cyp2c19 AA variant in SNP rs4244285. Drug Metab. Dispos., 2013, 41(2), 480-487.
[http://dx.doi.org/10.1124/dmd.112.047977] [PMID: 23175667]
[41]
Andersson, T.; Miners, J.O.; Veronese, M.E.; Tassaneeyakul, W.; Tassaneeyakul, W.; Meyer, U.A.; Birkett, D.J. Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br. J. Clin. Pharmacol., 1993, 36(6), 521-530.
[http://dx.doi.org/10.1111/j.1365-2125.1993.tb00410.x] [PMID: 12959268]
[42]
Ishizaki, T.; Horai, Y. Review article: Cytochrome P450 and the metabolism of proton pump inhibitors--emphasis on rabeprazole. Aliment. Pharmacol. Ther., 1999, 13(Suppl. 3), 27-36.
[http://dx.doi.org/10.1046/j.1365-2036.1999.00022.x] [PMID: 10491726]
[43]
Chen, M.; Liu, X.J.; Yan, S.D.; Peng, Y.; Chai, H.; Li, Q.; Wei, J.F.; Xu, Y.N.; Huang, D.J. Association between cytochrome P450 2C19 polymorphism and clinical outcomes in Chinese patients with coronary artery disease. Atherosclerosis, 2012, 220(1), 168-171.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.008] [PMID: 22071359]
[44]
Mourad, M.; Mourad, G.; Wallemacq, P.; Garrigue, V.; Van Bellingen, C.; Van Kerckhove, V.; De Meyer, M.; Malaise, J.; Eddour, D.C.; Lison, D.; Squifflet, J.P.; Haufroid, V. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation, 2005, 80(7), 977-984.
[http://dx.doi.org/10.1097/01.TP.0000174131.47469.D2] [PMID: 16249748]
[45]
Li, Y.; Yan, L.; Shi, Y.; Bai, Y.; Tang, J.; Wang, L. CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients. Springerplus, 2015, 4, 637.
[http://dx.doi.org/10.1186/s40064-015-1425-5] [PMID: 26543771]
[46]
Khaled, S.K.; Palmer, J.M.; Herzog, J.; Stiller, T.; Tsai, N.C.; Senitzer, D.; Liu, X.; Thomas, S.H.; Shayani, S.; Weitzel, J.; Forman, S.J.; Nakamura, R. Influence of absorption, distribution, metabolism, and excretion genomic variants on tacrolimus/sirolimus blood levels and graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant., 2016, 22(2), 268-276.
[http://dx.doi.org/10.1016/j.bbmt.2015.08.027] [PMID: 26325438]
[47]
Biesecker, L.G. Hypothesis-generating research and predictive medicine. Genome Res., 2013, 23(7), 1051-1053.
[http://dx.doi.org/10.1101/gr.157826.113] [PMID: 23817045]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 7
Year: 2019
Page: [609 - 618]
Pages: 10
DOI: 10.2174/1389200220666190627101927
Price: $58

Article Metrics

PDF: 39
HTML: 4