Overcoming Cancer Cell Drug Resistance by a Folic Acid Targeted Polymeric Conjugate of Buthionine Sulfoximine

Author(s): Felisa Cilurzo, Maria C. Cristiano, Marta Da Pian, Eleonora Cianflone, Luigi Quintieri*, Donatella Paolino, Gianfranco Pasut*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Glutathione (GSH), which is the predominant low molecular weight intracellular thiol in mammals, has multiple functions, such as those of protecting against oxidative stress and detoxifying endogenous and exogenous electrophiles. High GSH levels, which have been observed in various types of tumors, have been thought to contribute to the resistance of neoplastic cells to apoptotic stimuli triggered by pro-oxidant therapy. Although L-(S,R)-Buthionine Sulfoximine (BSO), a selective irreversible inhibitor of glutamate cysteine ligase, depletes GSH in vitro and in in vivo and sensitizes tumor cells to radiation and some cancer chemotherapeutics, its toxicity and short in vivo half-life have limited its application to combination anticancer therapies.

Objective: To demonstrate that a folate-targeted PEGylated BSO conjugate can sensitize cancer cells to a Reactive Oxygen Species (ROS)-generating anticancer agent by depleting GSH.

Methods: A novel folate-targeted PEGylated-BSO conjugate was synthesized and tested in combination with gemcitabine in human cell lines that over-express (HeLa) or do not express (A549) the folate receptor.

Results: The prepared folate-PEG-GFLG-BSO conjugate proved to be efficacious in reducing GSH levels and, when used in combination with the pro-oxidant drug gemcitabine, it enhanced drug activity in the cell line overexpressing the folate receptor.

Conclusion: The folate-PEG-GFLG-BSO conjugate studied was found to be effective in sensitizing folatereceptor positive cancer cells to the ROS-generating drug gemcitabine.

Keywords: Drug delivery, PEGylation, anti-cancer, macromolecular pro-drug, glutathione, buthionine sulfoximine, pro-oxidant therapy, gemcitabine.

[1]
Calvert, P.; Yao, K.S.; Hamilton, T.C.; O’Dwyer, P.J. Clinical studies of reversal of drug resistance based on glutathione. Chem. Biol. Interact., 1998, 111-112, 213-224.
[2]
Ballatori, N.; Krance, S.M.; Marchan, R.; Hammond, C.L. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med., 2009, 30, 13-28.
[3]
Ruzza, P.; Rosato, A.; Rossi, C.R.; Floreani, M.; Quintieri, L. Glutathione transferases as targets for cancer therapy. Anticancer. Agents Med. Chem., 2009, 9, 763-777.
[4]
Dalzoppo, D.; Di Paolo, V.; Calderan, L.; Pasut, G.; Rosato, A.; Caccuri, A.M.; Quintieri, L. Thiol-activated anticancer agents: The state of the art. Anticancer. Agents Med. Chem., 2017, 17, 4-20.
[5]
Griffith, O.W.; Meister, A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem., 1979, 254, 7558-7560.
[6]
Hamilton, T.C.; Winker, M.A.; Louie, K.G.; Batist, G.; Behrens, B.C.; Tsuruo, T.; Grotzinger, K.R.; McKoy, W.M.; Young, R.C.; Ozols, R.F. Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol., 1985, 34, 2583-2586.
[7]
Bailey, H.H.L-S. R-buthionine sulfoximine: historical development and clinical issues. Chem. Biol. Interact., 1998, 111-112, 239-254.
[8]
Yi, X.; Ding, L.; Jin, Y.; Ni, C.; Wang, W. The toxic effects, GSH depletion and radiosensitivity by BSO on retinoblastoma. Int. J. Radiat. Oncol. Biol. Phys., 1994, 29, 393-396.
[9]
Anderson, C.P.; Tsai, J.; Chan, W.; Park, C.K.; Tian, L.; Lui, R.M.; Forman, H.J.; Reynolds, C.P. Buthionine sulphoximine alone and in combination with melphalan (L-PAM) is highly cytotoxic for human neuroblastoma cell lines. Eur. J. Cancer, 1997, 33, 2016-2019.
[10]
Fruehauf, J.P.; Zonis, S.; Al-Bassam, M.; Kyshtoobayeva, A.; Dasgupta, C.; Milovanovic, T.; Parker, R.J.; Buzaid, A.C. Selective and synergistic activity of L-S,R-buthionine sulfoximine on malignant melanoma is accompanied by decreased expression of glutathione-S-transferase. Pigment Cell Res., 1997, 10, 236-249.
[11]
Prezioso, J.A.; FitzGerald, G.B.; Wick, M.M. Melanoma cytotoxicity of buthionine sulfoximine (BSO) alone and in combination with 3,4-dihydroxybenzylamine and melphalan. J. Invest. Dermatol., 1992, 99, 289-293.
[12]
Villablanca, J.G.; Volchenboum, S.L.; Cho, H.; Kang, M.H.; Cohn, S.L.; Anderson, C.P.; Marachelian, A.; Groshen, S.; Tsao-Wei, D.; Matthay, K.K.; Maris, J.M.; Hasenauer, C.E.; Czarnecki, S.; Lai, H.; Goodarzian, F.; Shimada, H.; Reynolds, C.P. A Phase I new approaches to neuroblastoma therapy study of buthionine sulfoximine and melphalan with autologous stem cells for recurrent/refractory high-risk neuroblastoma. Pediatr. Blood Cancer, 2016, 63, 1349-1356.
[13]
Anderson, C.P.; Reynolds, C.P. Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy. Bone Marrow Transplant., 2002, 30, 135-140.
[14]
Bailey, H.H.; Mulcahy, R.T.; Tutsch, K.D.; Arzoomanian, R.Z.; Alberti, D.; Tombes, M.B.; Wilding Pomplun, G.M.; Spriggs, D.R. Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione. J. Clin. Oncol., 1994, 12, 194-205.
[15]
Anderson, C.P.; Matthay, K.K.; Perentesis, J.P.; Neglia, J.P.; Bailey, H.H.; Villablanca, J.G.; Groshen, S.; Hasenauer, B.; Maris, J.M.; Seeger, R.C.; Reynolds, C.P. Pilot study of intravenous melphalan combined with continuous infusion L-S,R-buthionine sulfoximine for children with recurrent neuroblastoma. Pediatr. Blood Cancer, 2015, 62, 1739-1746.
[16]
Paolino, D.; Cosco, D.; Licciardi, M.; Giammona, G.; Fresta, M.; Cavallaro, G. Polyaspartylhydrazide copolymer-based supramolecular vesicular aggregates as delivery devices for anticancer drugs. Biomacromolecule, 2008, 9, 1117-1130.
[17]
Di Meo, C.; Cilurzo, F.; Licciardi, M.; Scialabba, C.; Sabia, R.; Paolino, D.; Capitani, D.; Fresta, M.; Giammona, G.; Villani, C.; Matricardi, P. Polyaspartamide-doxorubicin conjugate as potential prodrug for anticancer therapy. Pharm. Res., 2015, 32, 1557-1569.
[18]
Pasut, G.; Paolino, D.; Celia, C.; Mero, A.; Joseph, A.S.; Wolfram, J.; Cosco, D.; Schiavon, O.; Shen, H.; Fresta, M. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J. Control. Release, 2015, 199, 106-113.
[19]
Celia, C.; Ferrati, S.; Bansal, S.; Van de Ven, A.; Ruozzi, B.; Zabre, E.; Hosali, S.; Paolino, D.; Sarpietro, M.G.; Fine, D.; Fresta, M.; Ferrari, M.; Grattoni, A. Sustained zero-order release of intact ultra-stable drug-loaded liposomes from an implantable nanochannel delivery system. Adv. Healthc. Mater., 2014, 3, 230-238.
[20]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9E12
[21]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1, 10-29.
[22]
Licciardi, M.; Paolino, D.; Celia, C.; Giammona, G.; Cavallaro, G.; Fresta, M. Folate-targeted supramolecular vesicular aggregates based on polyaspartyl-hydrazide copolymers for the selective delivery of antitumoral drugs. Biomaterials, 2010, 31, 7340-7354.
[23]
Paolino, D.; Licciardi, M.; Celia, C.; Giammona, G.; Fresta, M.; Cavallaro, G. Folate - targeted supramolecular vesicular aggregates as a new frontier for effective anticancer treatment. Eur. J. Pharm. Biopharm., 2012, 82, 94-102.
[24]
Canal, F.; Vicent, M.J.; Pasut, G.; Schiavon, O. Relevance of folic acid/polymer ratio in targeted PEG-epirubicin conjugates. J. Control. Release, 2010, 146, 388-399.
[25]
Pasut, G.; Canal, F.; Dalla Via, L.; Arpicco, S.; Veronese, F.M.; Schiavon, O. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J. Control. Release, 2008, 127, 239-248.
[26]
Sudimack, J.; Lee, R.J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev., 2000, 41, 147-162.
[27]
a)Leamon, C.P.; Jackman, A.L. Exploitation of the folate receptor in the management of cancer and inflammatory disease. Vitam. Horm., 2008, 79, 203-233.
b)Lu, Y.; Low, P.S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev., 2002, 54, 675-693.
[28]
Campbell, I.G.; Jones, T.A.; Foulkes, W.D.; Trowsdale, J. Folate-binding protein is a marker for ovarian cancer. Cancer Res., 1991, 51, 5329-5338.
[29]
Weitman, S.D.; Lark, R.H.; Coney, L.R.; Fort, D.W.; Frasca, V.; Zurawski, V.R., Jr; Kamen, B.A. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res., 1992, 52, 3396-3401.
[30]
Ju, H.Q.; Gocho, T.; Aguilar, M.; Wu, M.; Zhuang, Z.N.; Fu, J.; Yanaga, K.; Huang, P.; Chiao, P.J. Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Mol. Cancer Ther., 2015, 14, 788-798.
[31]
Snyder, S.L.; Sobocinski, P.Z. An improved 2,4,6-trinitro-benzenesulfonic acid method for the determination of amines. Anal. Biochem., 1975, 64, 284-288.
[32]
Yoncheva, K.; Doytchinova, I.; Irache, J.M. Different approaches for determination of the attachment degree of polyethylene glycols to poly(anhydride) nanoparticles Determination of pegylation degree of nanoparticles. Drug Dev. Ind. Pharm., 2010, 36, 676-680.
[33]
Pasut, G.; Mero, A.; Caboi, F.; Scaramuzza, S.; Sollai, L.; Veronese, F.M. A new PEG-beta-alanine active derivative for releasable protein conjugation. Bioconjug. Chem., 2008, 19, 2427-2431.
[34]
Pasut, G.; Canal, F.; Dalla Via, L.; Arpicco, S.; Veronese, F.M.; Schiavon, O. Antitumoral activity of Peg-gemcitabine prodrugs targeted by folic acid. J. Control. Release, 2008, 127, 239-248.
[35]
Duncan, R.; Cable, H.C.; Lloyd, J.B.; Rejmanová, P.; Kopeček, J. Polymers containing enzymatically degradable bonds. 7. Design of oligopeptide side chains in poly [N-(2-hydroxypropyl) methacrylamide] copolymers to promote efficient degradation by lysosomal enzymes. Makromol. Chem., 1983, 184, 1997-2008.
[36]
Kopeček, J.; Rejmanová, P.; Strohalm, J.; Ulbrich, K.; Říhová, B.; Chytrý, V.; Lloyd, J.B.; Duncan, R. Synthetic polymeric drugs. U.S. Patent 5,037,883, 1991.
[37]
Etrych, T.; Jelínková, M.; Říhová, B.; Ulbrich, K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release, 2001, 73, 89-102.
[38]
Mrkvan, T.; Šírová, M.; Etrych, T.; Chytil, P.; Strohalm, J.; Plocová, D.; Ulbrich, K.; Říhová, B. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. J. Control. Release, 2005, 110, 119-129.
[39]
Duncan, R. N-(2-hydroxypropyl)methacrylamide copolymer conjugates, In: Glen, S. Kwon (Ed.), Polymeric Drug Delivery Systems (Drugs and the Pharmaceutical Sciences); , 2005; 148, pp. 1-92.
[40]
Rejmanová, P.; Kopeček, J.; Pohl, J.; Baudyš, M.; Kostka, V. Polymers containing enzymatically degradable bonds, 8*.: degradation of oligopeptide sequences in N-(2-hydroxypropyl)methacryamide copolymers by bovine spleen cathepsin B. Makromol. Chem., 1983, 184, 2009-2020.
[41]
Li, C.; Wallace, S. Polymer-drug conjugates: Recent development in clinical oncology. Adv. Drug Deliv. Rev., 2008, 60, 886-898.
[42]
Ríhová, B.; Strohalm, J.; Hovorka, O.; Subr, V.; Etrych, T.; Chytil, P.; Pola, R.; Plocová, D.; Boucek, J.; Ulbrich, K. Doxorubicin release is not a prerequisite for the in vitro cytotoxicity of HPMA-based pharmaceuticals: In vitro effect of extra drug-free GlyPheLeuGly sequences. J. Control. Release, 2008, 127, 110-120.
[43]
Duncan, R. Development of HPMA copolymer-anticancer conjugates: Clinical experience and lesson learnt. Adv. Drug Deliv. Rev., 2009, 61, 1131-1148.
[44]
Pechar, M.; Ulbrich, K.; Subr, V. Poly(ethylene glycol) multiblock copolymer as a carrier of anticancer drug doxorubicin. Bioconjug. Chem., 2000, 11, 131-139.
[45]
Veronese, F.M.; Schiavon, O.; Pasut, G.; Mendichi, R.; Andersson, L.; Tsirk, A.; Ford, J.; Wu, G.; Kneller, S.; Davies, J.; Duncan, R. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug. Chem., 2005, 16, 775-784.
[46]
Greco, F.; Arif, I.; Botting, R.; Fante, C.; Quintieri, L.; Clementi, C.; Schiavon, O.; Pasut, G. Polysialic acid as a drug carrier: evaluation of a new polysialic acid-epirubicin conjugate and its comparison against established drug carriers. Polym. Chem., 2013, 4, 1600-1609.
[47]
Paolino, D.; Cosco, D.; Gaspari, M.; Celano, M.; Wolfram, J.; Voce, P.; Puxeddu, E.; Filetti, S.; Celia, C.; Ferrari, M.; Russo, D.; Fresta, M. Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35, 7101-7109.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 12
Year: 2019
Page: [1513 - 1522]
Pages: 10
DOI: 10.2174/1871520619666190626114641
Price: $65

Article Metrics

PDF: 24
HTML: 3