Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Latent Tuberculosis Infection (LTBI) and Its Potential Targets: An Investigation into Dormant Phase Pathogens

Author(s): Gopichand Gutti, Karan Arya and Sushil Kumar Singh*

Volume 19, Issue 19, 2019

Page: [1627 - 1642] Pages: 16

DOI: 10.2174/1389557519666190625165512

Price: $65

Abstract

One-third of the world’s population harbours the latent tuberculosis infection (LTBI) with a lifetime risk of reactivation. Although, the treatment of LTBI relies significantly on the first-line therapy, identification of novel drug targets and therapies are the emerging focus for researchers across the globe. The current review provides an insight into the infection, diagnostic methods and epigrammatic explanations of potential molecular targets of dormant phase bacilli. This study also includes current preclinical and clinical aspects of tubercular infections and new approaches in antitubercular drug discovery.

Keywords: Latent tuberculosis infection, diagnosis, biomarkers, molecular targets, Mtb topoisomerase-I, lysine 3-aminotransferase, isocitrate lyase, regulon.

« Previous
Graphical Abstract
[1]
Lin, M.Y.; Ottenhoff, T.H. Host-pathogen interactions in latent Mycobacterium tuberculosis infection: Identification of new targets for tuberculosis intervention. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(1), 15-29.
[2]
Sakamoto, K. The pathology of Mycobacterium tuberculosis infection. Veterin. Pathol., 2012, 49(3), 423-439.
[3]
Cardona, P.J. New insights on the nature of latent tuberculosis infection and its treatment. Inflamm. Allergy Drug Targets, 2007, 6(1), 27-39.
[4]
Lin, P.L.; Flynn, J.L. Understanding latent tuberculosis: A moving target. J. Immunol., 2010, 185(1), 15-22.
[5]
Weis, S.E.; Pogoda, J.M.; Yang, Z.; Cave, M.D.; Wallace, C.; Kelley, M.; Barnes, P.F. Transmission dynamics of tuberculosis in Tarrant county, Texas. Am. J. Respir. Crit. Care Med., 2002, 166(1), 36-42.
[6]
Barnes, P.F.; Yang, Z.; Preston-Martin, S.; Pogoda, J.M.; Jones, B.E.; Otaya, M.; Eisenach, K.D.; Knowles, L.; Harvey, S.; Cave, M.D. Patterns of tuberculosis transmission in Central Los Angeles. JAMA, 1997, 278(14), 1159-1163.
[7]
Small, P.M.; Hopewell, P.C.; Singh, S.P.; Paz, A.; Parsonnet, J.; Ruston, D.C.; Schecter, G.F.; Daley, C.L.; Schoolnik, G.K. The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N. Engl. J. Med., 1994, 330(24), 1703-1709.
[8]
Jasmer, R.M.; Hahn, J.A.; Small, P.M.; Daley, C.L.; Behr, M.A.; Moss, A.R.; Creasman, J.M.; Schecter, G.F.; Paz, E.A.; Hopewell, P.C. A molecular epidemiologic analysis of tuberculosis trends in San Francisco, 1991-1997. Ann. Intern. Med., 1999, 130(12), 971-978.
[9]
Millet, J-P.; Moreno, A.; Fina, L.; Del Baño, L.; Orcau, A.; De Olalla, P.G.; Cayla, J.A. Factors that influence current tuberculosis epidemiology. Eur. Spine J., 2013, 22(4), 539-548.
[10]
Selwyn, P.A.; Alcabes, P.; Hartel, D.; Buono, D.; Schoenbaum, E.E.; Klein, R.S.; Davenny, K.; Friedland, G.H. Clinical manifestations and predictors of disease progression in drug users with human immunodeficiency virus infection. N. Engl. J. Med., 1992, 327(24), 1697-1703.
[11]
Global Tuberculosis Report 2016. World Health Organization, 2016, 1-214. http://apps.who.int/medicinedocs/documents/s23098en/s23098en.pdf (Accessed June 07, 2017).
[12]
Tomioka, H.; Tatano, Y.; Yasumoto, K.; Shimizu, T. Recent advances in antituberculous drug development and novel drug targets. Expert Rev. Respir. Med., 2008, 2(4), 455-471.
[13]
Sellamuthu, S.; Bhat, M.; Kumar, A.; Singh, S. Phenothiazine: A better Scaffold against Tuberculosis. Mini Rev. Med. Chem., 2017, 18(17), 1442-1451.
[http://dx.doi.org/10.2174/1389557517666170220152651]
[14]
Sridevi, J.P.; Suryadevara, P.; Janupally, R.; Sridhar, J.; Soni, V.; Anantaraju, H.S.; Yogeeswari, P.; Sriram, D. Identification of potential Mycobacterium tuberculosis topoisomerase I inhibitors: A study against active, dormant and resistant tuberculosis. Eur. J. Pharm. Sci., 2015, 72(1), 81-92.
[15]
D., Joshi S.; Kumar, D.; R Dixit, S.; S Joshi, A.; M Aminabhavi, T. Drug resistance of antitubercular agents at the genetic level in mycobacterium species: A road map to drug development for counteracting the resistance. Mini Rev. Org. Chem., 2016, 13(4), 262-280.
[16]
Barry, C.E., III; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol., 2009, 7(12), 845.
[17]
Flynn, J.L.; Chan, J. Tuberculosis: Latency and reactivation. Infect. Immun., 2001, 69(7), 4195-4201.
[18]
Zambuzi, F.A.; Cardoso-Silva, P.M.; Espindola, M.S.; Soares, L.S.; Galvao-Lima, L.J.; Brauer, V.S.; Gomes, M.S.; Amaral, L.R.; Schaller, M.; Bollela, V.R.; Frantz, F.G. Identification of promising plasma immune biomarkers to differentiate active pulmonary tuberculosis. Cytokine, 2016, 88(1), 99-107.
[19]
Meintjes, G.; Skolimowska, K.H.; Wilkinson, K.A.; Matthews, K.; Tadokera, R.; Conesa-Botella, A.; Seldon, R.; Rangaka, M.X.; Rebe, K.; Pepper, D.J. Corticosteroid-modulated immune activation in the tuberculosis immune reconstitution inflammatory syndrome. Am. J. Respir. Crit. Care Med., 2012, 186(4), 369-377.
[20]
Yang, C.S. Advancing host-directed therapy for tuberculosis. Microb. Cell, 2017, 4(3), 105.
[21]
Joshi, S.D.; Kumar, D.; Dixit, S.R.; Tigadi, N.; More, U.A.; Lherbet, C.; Aminabhavi, T.M.; Yang, K.S. Synthesis, characterization and antitubercular activities of novel pyrrolyl hydrazones and their Cu-complexes. . Eur. J. Med. Chem., 2016, 121(1), 21-39.
[22]
Joshi, S.D.; Kumar, D.; More, U.A.; Yang, K.S.; Aminabhavi, T.M. Design and development of pyrrole carbaldehyde: an effective pharmacophore for enoyl-ACP reductase. Med. Chem. Res., 2016, 25(4), 672-689.
[23]
Joshi, S.D.; Kumar, D.; More, U.A.; Aminabhavi, T.M. Docking, CoMFA, and CoMSIA analyses of phenoxy triazole derivatives as enoyl-ACP reductase inhibitors for Escherichia coli. Med. Chem. Res., 2014, 23(11), 4932-4955.
[24]
Satheeshkumar, S.; Amer, H.A.; Hojjat Ghasemi, G.; Gopal, N.; Shushil Kumar, S. Preliminary studies on Ligand-based design and evaluation of new mycobacterial ATP synthase inhibitors. Curr. Drug Ther., 2017, 12(1), 1-18.
[25]
Koul, A.; Vranckx, L.; Dendouga, N.; Balemans, W.; Van den Wyngaert, I.; Vergauwen, K.; Göhlmann, H.W.; Willebrords, R.; Poncelet, A.; Guillemont, J. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem., 2008, 283(37), 25273-25280.
[26]
Kumar, D.; Negi, B.; Rawat, D.S. The anti-tuberculosis agents under development and the challenges ahead. Future Med. Chem., 2015, 7(15), 1981-2003.
[27]
Geiter, L. Ending neglect: The elimination of tuberculosis in the United States; National Academies Press: Washington, D.C, 2000.
[28]
World Health Organization (WHO) Global Tuberculosis Report. 2012, 1-98. http://www.who.int/tb/publications/global_report/gtbr12_main.pdf (Accessed June 11, 2017)
[29]
US Food and Drug Administration - SIRTURO Prescribing Information. 2013, 1-25. https://www.accessdata.fda.gov/drugsatfda_ docs/label/2012/204384s000lbl.pdf (Accessed June 11, 2017)
[30]
US Food and Drug Administration. NDA 204-384 Deouty Division Director Summary Review. 2013, 1-26. https://www.accessdata. fda.gov/drugsatfda_docs/nda/2012/204384Orig1s000SumR.pdf (Accessed June 11, 2017)
[31]
Esmail, H.; Barry, C.E., III; Young, D.B.; Wilkinson, R.J. The ongoing challenge of latent tuberculosis. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1645)20130437
[32]
Organization, W.H. Global tuberculosis control: Surveillance, planning, financing. 2009, 1-216. http://apps.who.int/iris/bitstream/10665/42889/2/9241562641.pdf (Accessed June 11, 2017)
[33]
Shaw, J.B.; Wynn-Williams, N. Infectivity of pulmonary tuberculosis in relation to sputum status. Am. Rev. Tuberc., 1954, 69(5), 724-732.
[34]
Targeted tuberculin testing and treatment of latent tuberculosis infection. American Thoracic Society. MMWR Recomm. Rep., 2000, 49(RR-6), 1-51.
[35]
Herrera, V.; Perry, S.; Parsonnet, J.; Banaei, N. Clinical application and limitations of interferon-gamma release assays for the diagnosis of latent tuberculosis infection. Clin. Infect. Dis., 2011, 52(8), 1031-1037.
[36]
Lessem, E. The tuberculosis diagnostics pipeline. Pipeline Report. 2016. http://pipelinereport.org/2016/tb-diagnostics (Accessed June 15, 2017).
[37]
Targeted tuberculin testing and treatment of latent tuberculosis infection. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. This is a Joint Statement of the American Thoracic Society (ATS) and the Centers for Disease Control and Prevention (CDC). This statement was endorsed by the Council of the Infectious Diseases Society of America. (IDSA), September 1999, and the sections of this statement. Am. J. Respir. Crit. Care Med., 2000, 161(4 Pt 2), S221-S247.
[38]
Ayub, A.; Yale, S.H.; Reed, K.D.; Nasser, R.M.; Gilbert, S.R. Testing for latent tuberculosis. Clin. Med. Res., 2004, 2(3), 191-194.
[39]
Schluger, N.W. Improving the Diagnosis of Latent TB Infection: Tools for TB Elimination? Chest, 2017, 151(6), 1207-1208.
[40]
Slutkin, G.; Perez-Stable, E.J.; Hopewell, P.C. Time course and boosting of tuberculin reactions in nursing home residents. Am. Rev. Respir. Dis., 1986, 134(5), 1048-1051.
[41]
Mazurek, G.H.; LoBue, P.A.; Daley, C.L.; Bernardo, J.; Lardizabal, A.A.; Bishai, W.R.; Iademarco, M.F.; Rothel, J.S. Comparison of a whole-blood interferon gamma assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. JAMA, 2001, 286(14), 1740-1747.
[42]
Lalvani, A.; Pathan, A.A.; Durkan, H.; Wilkinson, K.A.; Whelan, A.; Deeks, J.J.; Reece, W.H.; Latif, M.; Pasvol, G.; Hill, A.V. Enhanced contact tracing and spatial tracking of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Lancet, 2001, 357(9273), 2017-2021.
[43]
Pai, M.; Dheda, K.; Cunningham, J.; Scano, F.; O’Brien, R. T-cell assays for the diagnosis of latent tuberculosis infection: Moving the research agenda forward. Lancet Infect. Dis., 2007, 7(6), 428-438.
[44]
Du, F.; Zhang, Z.; Gao, T.; Liu, Z.; Jia, H.; Xing, A.; Du, B.; Sun, Q.; Cao, T. Diagnosis of latent tuberculosis by ELISPOT assay and tuberculin skin test. Medecine et maladies infectieuses, 2016, 46(3), 150-153.
[45]
Weiner, J.; Maertzdorf, J.; Kaufmann, S.H. The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Ann. N. Y. Acad. Sci., 2013, 1283, 22-29.
[46]
Berry, M.P.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.; Oni, T.; Wilkinson, K.A.; Banchereau, R.; Skinner, J.; Wilkinson, R.J.; Quinn, C.; Blankenship, D.; Dhawan, R.; Cush, J.J.; Mejias, A.; Ramilo, O.; Kon, O.M.; Pascual, V.; Banchereau, J.; Chaussabel, D.; O’Garra, A. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309), 973-977.
[47]
Jacobsen, M.; Repsilber, D.; Gutschmidt, A.; Neher, A.; Feldmann, K.; Mollenkopf, H.J.; Ziegler, A.; Kaufmann, S.H. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J. Mol. Med. (Berl.), 2007, 85(6), 613-621.
[48]
Frediani, J.K.; Jones, D.P.; Tukvadze, N.; Uppal, K.; Sanikidze, E.; Kipiani, M.; Tran, V.T.; Hebbar, G.; Walker, D.I.; Kempker, R.R.; Kurani, S.S.; Colas, R.A.; Dalli, J.; Tangpricha, V.; Serhan, C.N.; Blumberg, H.M.; Ziegler, T.R. Plasma metabolomics in human pulmonary tuberculosis disease: A pilot study. PLoS One, 2014, 9(10)e108854
[49]
Agranoff, D.; Fernandez-Reyes, D.; Papadopoulos, M.C.; Rojas, S.A.; Herbster, M.; Loosemore, A.; Tarelli, E.; Sheldon, J.; Schwenk, A.; Pollok, R.; Rayner, C.F.; Krishna, S. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet, 2006, 368(9540), 1012-1021.
[50]
Walzl, G.; Ronacher, K.; Hanekom, W.; Scriba, T.J.; Zumla, A. Immunological biomarkers of tuberculosis. Nat. Rev. Immunol., 2011, 11(5), 343-354.
[51]
Alsleben, N.; Ruhwald, M.; Russmann, H.; Marx, F.M.; Wahn, U.; Magdorf, K. Interferon-gamma inducible protein 10 as a biomarker for active tuberculosis and latent tuberculosis infection in children: A case-control study. Scand. J. Infect. Dis., 2012, 44(4), 256-262.
[52]
Lawn, S.D.; Myer, L.; Edwards, D.; Bekker, L.G.; Wood, R. Short-term and long-term risk of tuberculosis associated with CD4 cell recovery during antiretroviral therapy in South Africa. AIDS, 2009, 23(13), 1717-1725.
[53]
van Pinxteren, L.A.; Cassidy, J.P.; Smedegaard, B.H.; Agger, E.M.; Andersen, P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol., 2000, 30(12), 3689-3698.
[54]
Diedrich, C.R.; Mattila, J.T.; Klein, E.; Janssen, C.; Phuah, J.; Sturgeon, T.J.; Montelaro, R.C.; Lin, P.L.; Flynn, J.L. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One, 2010, 5(3)e9611
[55]
Serbina, N.V.; Flynn, J.L. Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect. Immun., 1999, 67(8), 3980-3988.
[56]
Wayne, L.G.; Lin, K.Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun., 1982, 37(3), 1042-1049.
[57]
Graham, J.E.; Clark-Curtiss, J.E. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci., 1999, 96(20), 11554-11559.
[58]
Zu Bentrup, K.H.; Miczak, A.; Swenson, D.L.; Russell, D.G. Characterization of Activity and Expression of Isocitrate Lyase in Mycobacterium avium and Mycobacterium tuberculosis. . J. Bacteriol., 1999, 181(23), 7161-7167.
[59]
Gould, T.A.; Van De Langemheen, H.; Muñoz-Elías, E.J.; McKinney, J.D.; Sacchettini, J.C. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. . Mol. Microbiol., 2006, 61(4), 940-947.
[60]
Smith, C.V.; Sharma, V.; Sacchettini, J.C. TB drug discovery: Addressing issues of persistence and resistance. Tuberculosis, 2004, 84(1), 45-55.
[61]
Smith, C.V.; Huang, C-c.; Miczak, A.; Russell, D.G.; Sacchettini, J.C.; zu Bentrup, K.H. Biochemical and structural studies of malate synthase from mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(3), 1735-1743.
[62]
Murphy, D.J.; Brown, J.R. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect. Dis., 2007, 7, 84.
[63]
Yuan, Y.; Crane, D.D.; Simpson, R.M.; Zhu, Y.Q.; Hickey, M.J.; Sherman, D.R.; Barry, C.E., III The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9578-9583.
[64]
He, H.; Zahrt, T.C. Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence regulator MprA. J. Bacteriol., 2005, 187, 202-212.
[65]
Bretl, D.J.; Bigley, T.M.; Terhune, S.S.; Zahrt, T.C. The MprB extracytoplasmic domain negatively regulates activation of the Mycobacterium tuberculosis MprAB two-component system. J. Bacteriol., 2014, 196(2), 391-406.
[66]
Weiss, L.A.; Stallings, C.L. Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p) ppGpp. J. Bacteriol., 2013, 195(24), 5629-5638.
[67]
Singh, N.; Tiwari, S.; Srivastava, K.K.; Siddiqi, M.I. Identification of novel inhibitors of mycobacterium tuberculosis pkng using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation. J. Chem. Inf. Model., 2015, 55(6), 1120-1129.
[68]
Godbole, A.A.; Ahmed, W.; Bhat, R.S.; Bradley, E.K.; Ekins, S.; Nagaraja, V. Inhibition of Mycobacterium tuberculosis topoisomerase I by m-AMSA, a eukaryotic type II topoisomerase poison. Biochem. Biophys. Res. Commun., 2014, 446(4), 916-920.
[69]
Tse-Dinh, Y.C. Targeting bacterial topoisomerases: How to counter mechanisms of resistance. Future Med. Chem., 2016, 8(10), 1085-1100.
[70]
Tse-Dinh, Y.C. Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med. Chem., 2015, 7(4), 459-471.
[71]
Sikder, D.; Nagaraja, V. Determination of the recognition sequence of Mycobacterium smegmatis topoisomerase I on mycobacterial genomic sequences. Nucleic Acids Res., 2000, 28(8), 1830-1837.
[72]
Ahmed, W.; Menon, S.; Godbole, A.A.; Karthik, P.V.; Nagaraja, V. Conditional silencing of topoisomerase I gene of Mycobacterium tuberculosis validates its essentiality for cell survival. FEMS Microbiol. Lett., 2014, 353(2), 116-123.
[73]
Ravishankar, S.; Ambady, A.; Awasthy, D.; Mudugal, N.V.; Menasinakai, S.; Jatheendranath, S.; Guptha, S.; Sharma, S.; Balakrishnan, G.; Nandishaiah, R.; Ramachandran, V.; Eyermann, C.J.; Reck, F.; Rudrapatna, S.; Sambandamurthy, V.K.; Sharma, U.K. Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an attractive anti-tubercular target. Tuberculosis (Edinb.), 2015, 95(5), 589-598.
[74]
Nagaraja, V.; Godbole, A.A.; Henderson, S.R.; Maxwell, A. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov. Today, 2017, 22(3), 510-518.
[75]
Godbole, A.A.; Ahmed, W.; Bhat, R.S.; Bradley, E.K.; Ekins, S.; Nagaraja, V. Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors. Antimicrob. Agents Chemother., 2015, 59(3), 1549-1557.
[76]
Hayashi, H. Pyridoxal enzymes: Mechanistic diversity and uniformity. J. Biochem., 1995, 118(3), 463-473.
[77]
Soda, K.; Misono, H. L-Lysine: Alpha-ketoglutarate aminotransferase. II. Purification, crystallization, and properties. Biochemistry, 1968, 7(11), 4110-4119.
[78]
Duan, X.; Li, Y.; Du, Q.; Huang, Q.; Guo, S.; Xu, M.; Lin, Y.; Liu, Z.; Xie, J. Mycobacterium Lysine epsilon-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level. Sci. Rep., 2016, 6, 19695.
[79]
Peschel, A.; Sahl, H.G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol., 2006, 4(7), 529-536.
[80]
Gonzalez-Curiel, I.; Castañeda-Delgado, J.; Lopez-Lopez, N.; Araujo, Z.; Hernandez-Pando, R.; Gandara-Jasso, B.; Macias-Segura, N.; Enciso-Moreno, A.; Rivas-Santiago, B. Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Hum. Immunol., 2011, 72(8), 656-662.
[81]
Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: Beyond antimicrobial activity. Nat. Rev. Immunol., 2016, 16(5), 321-335.
[82]
Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol., 2002, 43(3), 717-731.
[83]
Ackart, D.F.; Hascall-Dove, L.; Caceres, S.M.; Kirk, N.M.; Podell, B.K.; Melander, C.; Orme, I.M.; Leid, J.G.; Nick, J.A.; Basaraba, R.J. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathog. Dis., 2014, 70(3), 359-369.
[84]
Reshma, R.S.; Jeankumar, V.U.; Kapoor, N.; Saxena, S.; Bobesh, K.A.; Vachaspathy, A.R.; Kolattukudy, P.E.; Sriram, D. Mycobacterium tuberculosis lysine-varepsilon-aminotransferase a potential target in dormancy: Benzothiazole based inhibitors. Bioorg. Med. Chem., 2017, 25(10), 2761-2771.
[85]
Devi, P.B.; Sridevi, J.P.; Kakan, S.S.; Saxena, S.; Jeankumar, V.U.; Soni, V.; Anantaraju, H.S.; Yogeeswari, P.; Sriram, D. Discovery of novel lysine varepsilon-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis. Tuberculosis (Edinb.), 2015, 95(6), 786-794.
[86]
Tripathi, S.M.; Ramachandran, R. Overexpression, purification and crystallization of lysine epsilon-aminotransferase (Rv3290c) from Mycobacterium tuberculosis H37Rv. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(6), 572-575.
[87]
Sharma, V.; Sharma, S.; Hoener zu Bentrup, K.; McKinney, J.D.; Russell, D.G.; Jacobs, W.R., Jr; Sacchettini, J.C. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat. Struct. Biol., 2000, 7(8), 663-668.
[88]
Munoz-Elias, E.J.; McKinney, J.D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med., 2005, 11(6), 638-644.
[89]
Honer Zu Bentrup, K.; Miczak, A.; Swenson, D.L.; Russell, D.G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol., 1999, 181(23), 7161-7167.
[90]
Liu, Y.; Zhou, S.; Deng, Q.; Li, X.; Meng, J.; Guan, Y.; Li, C.; Xiao, C. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2016, 97, 38-46.
[91]
Saini, D.K.; Malhotra, V.; Dey, D.; Pant, N.; Das, T.K.; Tyagi, J.S. DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology, 2004, 150(4), 865-875.
[92]
Sassetti, C.M.; Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12989-12994.
[93]
Talaat, A.M.; Lyons, R.; Howard, S.T.; Johnston, S.A. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4602-4607.
[94]
Voskuil, M.I.; Visconti, K.C.; Schoolnik, G.K. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb.), 2004, 84(3-4), 218-227.
[95]
Hampshire, T.; Soneji, S.; Bacon, J.; James, B.W.; Hinds, J.; Laing, K.; Stabler, R.A.; Marsh, P.D.; Butcher, P.D. Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: A model for persistent organisms? Tuberculosis (Edinb.), 2004, 84(3-4), 228-238.
[96]
Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8327-8332.
[97]
Wilkinson, R.J.; Wilkinson, K.A.; De Smet, K.A.; Haslov, K.; Pasvol, G.; Singh, M.; Svarcova, I.; Ivanyi, J. Human T- and B-cell reactivity to the 16kDa alpha-crystallin protein of Mycobacterium tuberculosis. Scand. J. Immunol., 1998, 48(4), 403-409.
[98]
Caccamo, N.; Barera, A.; Di Sano, C.; Meraviglia, S.; Ivanyi, J.; Hudecz, F.; Bosze, S.; Dieli, F.; Salerno, A. Cytokine profile, HLA restriction and TCR sequence analysis of human CD4+ T clones specific for an immunodominant epitope of Mycobacterium tuberculosis 16-kDa protein. Clin. Exp. Immunol., 2003, 133(2), 260-266.
[99]
Geluk, A.; Lin, M.Y.; van Meijgaarden, K.E.; Leyten, E.M.; Franken, K.L.; Ottenhoff, T.H.; Klein, M.R. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect. Immun., 2007, 75(6), 2914-2921.
[100]
Caccamo, N.; Milano, S.; Di Sano, C.; Cigna, D.; Ivanyi, J.; Krensky, A.M.; Dieli, F.; Salerno, A. Identification of epitopes of Mycobacterium tuberculosis 16-kDa protein recognized by human leukocyte antigen-A*0201 CD8(+) T lymphocytes. J. Infect. Dis., 2002, 186(7), 991-998.
[101]
Leyten, E.M.; Lin, M.Y.; Franken, K.L.; Friggen, A.H.; Prins, C.; van Meijgaarden, K.E.; Voskuil, M.I.; Weldingh, K.; Andersen, P.; Schoolnik, G.K.; Arend, S.M.; Ottenhoff, T.H.; Klein, M.R. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect., 2006, 8(8), 2052-2060.
[102]
Demissie, A.; Leyten, E.M.; Abebe, M.; Wassie, L.; Aseffa, A.; Abate, G.; Fletcher, H.; Owiafe, P.; Hill, P.C.; Brookes, R.; Rook, G.; Zumla, A.; Arend, S.M.; Klein, M.; Ottenhoff, T.H.; Andersen, P.; Doherty, T.M.; Group, V.S. Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin. Vaccine Immunol., 2006, 13(2), 179-186.
[103]
Sivaramakrishnan, S.; Ortiz de Montellano, P.R. The DosS-DosT/DosR Mycobacterial Sensor System. Biosensors, 2013, 3(3), 259-282.
[104]
Giffin, M.M.; Shi, L.; Gennaro, M.L.; Sohaskey, C.D. Role of alanine dehydrogenase of Mycobacterium tuberculosis during recovery from hypoxic nonreplicating persistence. PLoS One, 2016, 11(5)e0155522
[105]
Brunner, K.; Maric, S.; Reshma, R.S.; Almqvist, H.; Seashore-Ludlow, B.; Gustavsson, A-L.; Poyraz, O.m.; Yogeeswari, P.; Lundbäk, T.; Vallin, M. Inhibitors of the cysteine synthase CysM with antibacterial potency against dormant Mycobacterium tuberculosis. J. Med. Chem., 2016, 59(14), 6848-6859.
[106]
Huang, H-L.; Krieger, I.V.; Parai, M.K.; Gawandi, V.B.; Sacchettini, J.C. Mycobacterium tuberculosis malate synthase structures with fragments reveal a portal for substrate/product exchange. J. Biol. Chem., 2016, 291(53), 27421-27432.
[107]
Sellamuthu, S.; Singh, M.; Kumar, A.; Singh, S.K. Type-II NADH Dehydrogenase (NDH-2): A promising therapeutic target for antitubercular and antibacterial drug discovery. Expert Opin. Ther. Targets, 2017, 21(6), 559-570.
[108]
Salaemae, W.; Azhar, A.; Booker, G.W.; Polyak, S.W. Biotin biosynthesis in Mycobacterium tuberculosis: Physiology, Biochemistry and Molecular intervention. Protein Cell, 2011, 2(9), 691-695.
[109]
Bashiri, G.; Squire, C.J.; Moreland, N.J.; Baker, E.N. Crystal structures of F420-dependent glucose-6-phosphate dehydrogenase FGD1 involved in the activation of the anti-tuberculosis drug candidate PA-824 reveal the basis of coenzyme and substrate binding. J. Biol. Chem., 2008, 283(25), 17531-17541.
[110]
Behr, M.A.; Wilson, M.A.; Gill, W.P.; Salamon, H.; Schoolnik, G.K.; Rane, S.; Small, P.M. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 1999, 284(5419), 1520-1523.
[111]
Fine, P.E. Variation in protection by BCG: Implications of and for heterologous immunity. Lancet, 1995, 346(8986), 1339-1345.
[112]
Ponnighaus, J.M.; Fine, P.E.; Sterne, J.A.; Wilson, R.J.; Msosa, E.; Gruer, P.J.; Jenkins, P.A.; Lucas, S.B.; Liomba, N.G.; Bliss, L. Efficacy of BCG vaccine against leprosy and tuberculosis in northern Malawi. Lancet, 1992, 339(8794), 636-639.
[113]
Palmer, C.E.; Long, M.W. Effects of infection with atypical mycobacteria on BCG vaccination and tuberculosis. Am. Rev. Respir. Dis., 1966, 94(4), 553-568.
[114]
Andersen, P.; Doherty, T.M. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol., 2005, 3(8), 656-662.
[115]
Fine, P.E. BCG: The challenge continues. Scand. J. Infect. Dis., 2001, 33(4), 243-245.
[116]
Turner, J.; Rhoades, E.R.; Keen, M.; Belisle, J.T.; Frank, A.A.; Orme, I.M. Effective preexposure tuberculosis vaccines fail to protect when they are given in an immunotherapeutic mode. Infect. Immun., 2000, 68(3), 1706-1709.
[117]
Roe, V.A. Antimicrobial agents: Pharmacology and clinical application in obstetric, gynecologic, and perinatal infections. J. Obstet. Gynecol. Neonatal Nurs., 1999, 28(6), 639-648.
[118]
Veldhuyzen van Zanten, S.J.; Sherman, P.M.; Hunt, R.H. Helicobacter pylori: New developments and treatments. CMAJ, 1997, 156(11), 1565-1574.
[119]
Wayne, L.G.; Sramek, H.A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1994, 38(9), 2054-2058.
[120]
Mukherjee, T.; Boshoff, H. Nitroimidazoles for the treatment of TB: past, present and future. Future Med. Chem., 2011, 3(11), 1427-1454.
[121]
Barry, C.E., III; Boshoff, H.I.; Dowd, C.S. Prospects for clinical introduction of nitroimidazole antibiotics for the treatment of tuberculosis. Curr. Pharm. Des., 2004, 10(26), 3239-3262.
[122]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11)e466
[123]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962.
[124]
Iona, E.; Giannoni, F.; Pardini, M.; Brunori, L.; Orefici, G.; Fattorini, L. Metronidazole plus rifampin sterilizes long-term dormant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(4), 1537-1540.
[125]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[126]
Tomioka, H.; Tatano, Y.; Yasumoto, K.; Shimizu, T. Recent advances in antituberculous drug development and novel drug targets. Expert Rev. Respir. Med., 2008, 2(4), 455-471.
[127]
Hooper, D.C.; Wolfson, J.S. The fluoroquinolones: Pharmacology, clinical uses, and toxicities in humans. Antimicrob. Agents Chemother., 1985, 28(5), 716-721.
[128]
Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3(7), 432-442.
[129]
Ji, B.; Lounis, N.; Maslo, C.; Truffot-Pernot, C.; Bonnafous, P.; Grosset, J. In vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1998, 42(8), 2066-2069.
[130]
Tomioka, H.; Sato, K.; Akaki, T.; Kajitani, H.; Kawahara, S.; Sakatani, M. Comparative in vitro antimicrobial activities of the newly synthesized quinolone HSR-903, sitafloxacin (DU-6859a), gatifloxacin (AM-1155), and levofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex. Antimicrob. Agents Chemother., 1999, 43(12), 3001-3004.
[131]
Alvirez-Freites, E.J.; Carter, J.L.; Cynamon, M.H. In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(4), 1022-1025.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy