Water Promoted One-pot Three-Step Synthesis of Novel N-Saccharin Isoxazolines/Isoxazoles Using KI/Oxone Under Ultrasonic Activation

Author(s): Hamza Tachallait, Mohsine Driowya, Eleuterio Álvarez, Rachid Benhida, Khalid Bougrin*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


A green and efficient regioselective protocol was developed for the preparation of novel isoxazolines and isoxazoles of N-saccharin derivatives via the water-promoted cycloaddition reaction of nitrile oxides with alkenes and alkynes. It is noteworthy that KI/Oxone/water-promoted one-pot three-component reactions of aldehyde, hydroxylamine hydrochloride, and alkene or alkyne were observed to be very satisfactory. The synthesis of all adducts (4a-j/5a-j) has been carried out by this method with high to excellent yields (70-95%) at 25°C within 30 min, using ultrasonic probe. All the new compounds were thoroughly characterized by spectroscopic techniques and also 5b, 5c and 5f were structurally identified by single-crystal X-ray diffraction methods. X-ray crystallography structure analysis clearly supported the regioselectivity of the cycloaddition reaction.

Keywords: One-pot synthesis, N-saccharin isoxazolines, N-saccharin isoxazoles, green chemistry, ultrasound irradiation, alkynes.

(a) Suslick, K.S. Sonochemistry In: Synthetic Organic Sonochemistry; Luche, J.-L. Ed.; Plenum Press: New York, 1990; p. 91-106. and references cited.
[http://dx.doi.org/10.1126/science.247.4949.1439]] [PMID: 17791211]
(b) Fillion, H.; Luche, J.-L.. Cycloadditions In: Science; , 1998; 247, pp. (4949)1439-1445.
(c)Mason, T.J.; Lorimer, J.P. Applied sonochemistry: Uses of power ultrasound in chemistry and processing; Wiley-VCH Verlag: Weinheim, 2002.
Patil, R.; Bhoir, P.; Deshpande, P.; Wattamwar, T.; Shirude, M.; Chaskar, P. Relevance of sonochemistry or ultrasound (US) as a proficient means for the synthesis of fused heterocycles. Ultrason. Sonochem., 2013, 20(6), 1327-1336.
[http://dx.doi.org/10.1016/j.ultsonch.2013.04.002] [PMID: 23669313]
(a) Some, S.; Kim, H.Y.B.M.J.; Zhang, Y.J.; Song, C.E. Ultrasound-promoted enantioselective decarboxylative protonation of α-aminomalonate hemiesters by chiral squaramides: A practical approach to both Enantiomers of α-Amino Esters. Eur. J. Org. Chem., 2017, 2017, 4562-4565.
(b) Li, J.T.; Li, Y.W.; Song, Y.L.; Chen, G.F. Improved synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound. Ultrason. Sonochem., 2012, 19(1), 1-4.
[http://dx.doi.org/10.1016/j.ultsonch.2011.05.001] [PMID: 21622016 ]
(c) Ghahremanzadeh, R.; Fereshtehnejad, F.; Mirzaei, P.; Bazgir, A. Ultrasound-assisted synthesis of 2,2′-(2-oxoindoline-3,3-diyl)bis(1H-indene-1,3(2H)-dione) derivatives. Ultrason. Sonochem., 2011, 18(1), 415-418.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.010] [PMID: 20708954 ]
(d)Kowsari, E.; Mallakmohammadi, M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason. Sonochem., 2011, 18(1), 447-454.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.020] [PMID: 20719553]
(e)He, J.Y.; Xin , H.X. Yan, H.; Song, X.Q.; Zhong, R.G. Convenient ultrasound- mediated synthesis of 1,4-diazabutadienes under solvent-free conditions. Ultrason. Sonochem., 2011, 18(1), 466-469.
[http://dx.doi.org/10.1016/j.ultsonch.2010.08.002] [PMID: 20797893]
(f)Li, J.T.; Yin , Y.; Sun , M.X.. An efficient one-pot synthesis of 2,3-epoxyl- 1,3-diaryl-1-propanone directly from acetophenones and aromatic aldehydes under ultrasound irradiation. Ultrason. Sonochem., 2010, 17(2), 363-366.
[http://dx.doi.org/10.1016/j.ultsonch.2009.09.007] [PMID: 19853491]
(g)Ranu, B.C.; Jana , R. Direct halogenation of alcohols and their derivatives with tert-Butyl Halides in the Ionic Liquid [pmIm] Br under Sonication Conditions– A novel, efficient and green methodology. Eur. J. Org. Chem., 2005, 2005, 755-758..
(h)Cravotto , G.; Demetri, A..; Nano , G.M . Palmisano, G.; Penoni, A.; Tagliapietra, S. The aldol reaction under high-­‐intensity ultrasound: A novel approach to an old reaction.. Eur. J. Org. Chem., 2003, 2003, 4438-4444.
(i)Kegelaers, Y.; Eulaerts, O.; Reisse , J. Segebarth, N. On the quantitative measure of a sonochemical effect in heterogeneous sonochemistry. Eur. J. Org. Chem., 2001, 2001, 3683-3688.
[http://dx.doi.org/10.1002/1099-0690(200110)2001:193683:AIDEJOC3683 3.0.CO;2-N]
(a) Cintas, P.; Palmisano, G.; Cravotto, G. Power ultrasound in metal-assisted synthesis: From classical Barbier-like reactions to click chemistry. Ultrason. Sonochem., 2011, 18(4), 836-841.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.020] [PMID: 21216171 ]
(b) Jadidi, K.; Gharemanzadeh, R.; Mehrdad, M.; Darabi, H.R.; Khavasi, H.R.; Asgari, D. A facile synthesis of novel pyrrolizidines under classical and ultrasonic conditions. Ultrason. Sonochem., 2008, 15(2), 124-128.
[http://dx.doi.org/10.1016/j.ultsonch.2006.12.018] [PMID: 17475534]
Patil, R.; Bhoir, P.; Deshpande, P.; Wattamwar, T.; Shirude, M.; Chaskar, P. Relevance of sonochemistry or ultrasound (US) as a proficient means for the synthesis of fused heterocycles. Ultrason. Sonochem., 2013, 20(6), 1327-1336.
[http://dx.doi.org/10.1016/j.ultsonch.2013.04.002] [PMID: 23669313]
(a) Deng, B.L.; Hartman, T.L.; Buckheit, R.W., Jr; Pannecouque, C.; De Clercq, E.; Cushman, M. Replacement of the metabolically labile methyl esters in the alkenyldiarylmethane series of non-nucleoside reverse transcriptase inhibitors with isoxazolone, isoxazole, oxazolone, or cyano substituents. J. Med. Chem., 2006, 49(17), 5316-5323.
[http://dx.doi.org/10.1021/jm060449o] [PMID: 16913721 ]
(b) Lee, Y.S.; Kim, B.H. Heterocyclic nucleoside analogues: Design and synthesis of antiviral, modified nucleosides containing isoxazole heterocycles. Bioorg. Med. Chem. Lett., 2002, 12(10), 1395-1397.
[http://dx.doi.org/10.1016/S0960-894X(02)00182-8] [PMID: 11992785]
(a) Prajapti, S.K.; Shrivastava, S.; Bihade, U.; Gupta, A.K.; Naidu, V.G.M.; Banerjee, U.C.; Babu, B.N. Synthesis and biological evaluation of novel Δ 2-isoxazoline fused cyclopentane derivatives as potential antimicrobial and anticancer agents. MedChemComm, 2015, 6, 839-845.
(b) Kamal, A.; Bharathi, E.V.; Reddy, J.S.; Ramaiah, M.J.; Dastagiri, D.; Reddy, M.K.; Viswanath, A.; Reddy, T.L.; Shaik, T.B.; Pushpavalli, S.N.C.V.L.; Bhadra, M.P. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur. J. Med. Chem., 2011, 46(2), 691-703.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.004] [PMID: 21194809]
(a) Turan-Zitouni, G.; Ozdemir, A.; Güven, K. Synthesis of some 1-[(N, N-disubstituted thiocar bamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and investigation of their antibacterial and antifungal activities. Arch. Pharm. (Weinheim), 2005, 338(2-3), 96-104.
[http://dx.doi.org/10.1002/ardp.200400935] [PMID: 15765490 ]
(b) Agirbas, H.; Guner, S.; Budak, F.; Keceli, S.; Kandemirli, F.; Shvets, N.; Kovalishyn, V.; Dimoglo, A. Synthesis and structure-antibacterial activity relationship investigation of isomeric 2,3,5-substituted perhydropyrrolo[3,4-d]isoxazole-4,6-diones. Bioorg. Med. Chem., 2007, 15(6), 2322-2333.
[http://dx.doi.org/10.1016/j.bmc.2007.01.029] [PMID: 17276071]
Babu, M.; Pitchumani, K.; Ramesh, P. Isoxazoles incorporated N-substituted decahydroquinolines: A precursor to the next generation antimicrobial drug. Eur. J. Med. Chem., 2012, 47(1), 608-614.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.045] [PMID: 22133458]
Özdemir, Z.; Kandilci, H.B.; Gümüşel, B.; Caliş, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
Amin, K.M.; Kamel, M.M.; Anwar, M.M.; Khedr, M.; Syam, Y.M. Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1′- cyclohexan]-4(1H)- one derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(6), 2117-2131.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.078] [PMID: 20137837]
Liu, J.; Yu, L.F.; Eaton, J.B.; Caldarone, B.; Cavino, K.; Ruiz, C.; Terry, M.; Fedolak, A.; Wang, D.; Ghavami, A.; Lowe, D.A.; Brunner, D.; Lukas, R.J.; Kozikowski, A.P. Discovery of isoxazole analogues of sazetidine-A as selective α4β2-nicotinic acetylcholine receptor partial agonists for the treatment of depression. J. Med. Chem., 2011, 54(20), 7280-7288.
[http://dx.doi.org/10.1021/jm200855b] [PMID: 21905669]
(a) Shoop, W.L.; Hartline, E.J.; Gould, B.R.; Waddell, M.E.; McDowell, R.G.; Kinney, J.B.; Lahm, G.P.; Long, J.K.; Xu, M.; Wagerle, T.; Jones, G.S.; Dietrich, R.F.; Cordova, D.; Schroeder, M.E.; Rhoades, D.F.; Benner, E.A.; Confalone, P.N. Discovery and mode of action of afoxolaner, a new isoxazoline parasiticide for dogs. Vet. Parasitol., 2014, 201(3-4), 179-189.
[http://dx.doi.org/10.1016/j.vetpar.2014.02.020] [PMID: 24631502 ]
(b) Gassel, M.; Wolf, C.; Noack, S.; Williams, H.; Ilg, T. The novel isoxazoline ectoparasiticide fluralaner: Selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. Insect Biochem. Mol. Biol., 2014, 45, 111-124.
[http://dx.doi.org/10.1016/j.ibmb.2013.11.009] [PMID: 24365472 ]
(c) McTier, T.L.; Chubb, N.; Curtis, M.P.; Hedges, L.; Inskeep, G.A.; Knauer, C.S.; Menon, S.; Mills, B.; Pullins, A.; Zinser, E.; Woods, D.J.; Meeus, P. Discovery of sarolaner: A novel, orally administered, broad-spectrum, isoxazoline ectoparasiticide for dogs. Vet. Parasitol., 2016, 222, 3-11.
[http://dx.doi.org/10.1016/j.vetpar.2016.02.019] [PMID: 26961590]
(a) Beltrame, P.; Comotti, A.; Veglio, C. Kinetic evidence for a two-step 1, 3-cycloaddition. Chem. Commun., 1967, 19, 996-997.
(b) Dondoni, A.; Mangini, A.; Ghersetti, S. Kinetics of dimerization of benzonitrile N-oxides to diphenylfuroxans. Tetrahedron Lett., 1966, 7, 4789-4791.
(c) Tilvi, S.S.; Singh, K. Synthesis of oxazole, oxazoline and isoxazoline derived marine natural products: A review. Curr. Org. Chem., 2016, 20, 898-929.
(d) Vitale, P.; Scilimati, A. Recent developments in the chemistry of 3-Arylisoxazoles and 3-Aryl-2-isoxazolines. Adv. Heterocycl. Chem., 2017, 122, 1-41.
(e) Hashimoto, T.; Maruoka, K. Recent advances of catalytic asymmetric 1,3-dipolar cycloadditions. Chem. Rev., 2015, 115(11), 5366-5412.
[http://dx.doi.org/10.1021/cr5007182] [PMID: 25961125 ]
(f) Morita, T.; Yugandar, S.; Fuse, S.; Nakamura, H. Recent progresses in the synthesis of functionalized isoxazoles. Tetrahedron Lett., 2018, 59, 1159-1171.
(a)Wirth, T. Oxidations and rearrangements.Hypervalent Iodine Chemistry; Wirth, T., Ed.; Springer: Berlin, 2003, Vol. 224, pp. 185-208.
(b) Brand, J.P.; Fernández González, D.; Nicolai, S.; Waser, J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem. Commun., 2011, 47(1), 102-115.
[http://dx.doi.org/10.1039/C0CC02265A] [PMID: 20820531]
(a) Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673 ]
(b) Murarka, S.; Antonchick, A.P. Oxidative heterocycle formation using hypervalent iodine(III) reagents. Top. Curr. Chem., 2016, 373, 75-104.
[http://dx.doi.org/10.1007/128_2015_647] [PMID: 26160138]
Jawalekar, A.M.; Reubsaet, E.; Rutjes, F.P.J.T.; van Delft, F.L. Synthesis of isoxazoles by hypervalent iodine-induced cycloaddition of nitrile oxides to alkynes. Chem. Commun., 2011, 47(11), 3198-3200.
[http://dx.doi.org/10.1039/c0cc04646a] [PMID: 21286620]
Yoshimura, A.; Middleton, K.R.; Todora, A.D.; Kastern, B.J.; Koski, S.R.; Maskaev, A.V.; Zhdankin, V.V. Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Org. Lett., 2013, 15(15), 4010-4013.
[http://dx.doi.org/10.1021/ol401815n] [PMID: 23865434]
(a) Sekhar, K.V.G.C.; Sasank, T.V.N.V.T.; Nagesh, H.N.; Suresh, N.; Naidu, K.M.; Suresh, A. Synthesis of 3, 5-diarylisoxazoles under solvent-free conditions using iodobenzene diacetate. Chin. Chem. Lett., 2013, 24, 1045-1048.
(b) Singhal, A.; Parumala, S.K.R.; Sharma, A.; Peddinti, R.K. Hypervalent iodine mediated synthesis of di-and tri-substituted isoxazoles via [3+ 2] cycloaddition of nitrile oxides. Tetrahedron Lett., 2016, 57, 719-722.
Raihan, M.J.; Kavala, V.; Kuo, C.W.; Raju, B.R.; Yao, C.F. ‘On-water’synthesis of chromeno-isoxazoles mediated by [hydroxy (tosyloxy) iodo] benzene (HTIB). Green Chem., 2010, 12, 1090-1096.
(a) Tanaka, S.; Ito, M.; Kishikawa, K.; Kohmoto, S.; Yamamoto, M. A convenient method of generation of nitrile oxides by iodosylbenzene and its reaction. Nippon Kagaku Kaishi, 2002, 3, 471-473.
(b) Chatterjee, N.; Pandit, P.; Halder, S.; Patra, A.; Maiti, D.K. Generation of nitrile oxides under nanometer micelles built in neutral aqueous media: Synthesis of novel glycal-based chiral synthons and optically pure 2,8-dioxabicyclo[4.4.0]decene core. J. Org. Chem., 2008, 73(19), 7775-7778.
[http://dx.doi.org/10.1021/jo801337k] [PMID: 18767807]
(c) Pandit, P.; Chatterjee, N.; Halder, S.; Hota, S.K.; Patra, A.; Maiti, D.K. PhIO as a powerful cyclizing reagent: Regiospecific [3+2]-tandem oxidative cyclization of imine toward cofacially self-aggregated low molecular mass organic materials. J. Org. Chem., 2009, 74(6), 2581-2584.
[http://dx.doi.org/10.1021/jo8028136] [PMID: 19284739]
(a) Kaffy, J.; Monneret, C.; Mailliet, P.; Commerçon, A.; Pontikis, R. 1, 3-Dipolar cycloaddition route to novel isoxazole-type derivatives related to combretastatin A-4. Tetrahedron Lett., 2004, 45, 3359-3362.
(b) Lee, Y.S.; Park, S.M.; Kim, B.H. Synthesis of 5-isoxazol-5-yl-2′-deoxyuridines exhibiting antiviral activity against HSV and several RNA viruses. Bioorg. Med. Chem. Lett., 2009, 19(4), 1126-1128.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.103] [PMID: 19147352]
(a) Sheng, S.R.; Liu, X.L. Xu, Q.; Song, C.S. One-pot synthesis of 3-substituted isoxazoles from phenyl vinylic selenide. Synthesis, 2003, 2763-2764.
(b) Sato, S.; Sakata, K.; Hashimoto, Y.; Takikawa, H.; Suzuki, K. First total syntheses of Tetracenomycins C and X. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12608-12613.
[http://dx.doi.org/10.1002/anie.201707099] [PMID: 28762249]
Moriya, O.; Nakamura, H.; Kageyama, T.; Urata, Y. Synthesis of isoxazolines and isoxazoles from aldoximes by the use of sodium bromite with organotin halide. Tetrahedron Lett., 1989, 30, 3987-3990.
Jackowski, O.; Lecourt, T.; Micouin, L. Direct synthesis of polysubstituted aluminoisoxazoles and pyrazoles by a metalative cyclization. Org. Lett., 2011, 13(20), 5664-5667.
[http://dx.doi.org/10.1021/ol202389u] [PMID: 21942717]
(a) Bhosale, S.; Kurhade, S.; Prasad, U.V.; Palle, V.P.; Bhuniya, D. Efficient synthesis of isoxazoles and isoxazolines from aldoximes using Magtrieve (CrO2). Tetrahedron Lett., 2009, 50, 3948-3951.
(b) Bhosale, S.; Kurhade, S.; Vyas, S.; Palle, V.P.; Bhuniya, D. Magtrieve (CrO2) and MnO2 mediated oxidation of aldoximes: Studying the reaction course. Tetrahedron, 2010, 66, 9582-9588.
Ueda, M.; Ikeda, Y.; Sato, A.; Ito, Y.; Kakiuchi, M.; Shono, H.; Miyoshi, T.; Naito, T.; Miyata, O. Silver-catalyzed synthesis of disubstituted isoxazoles by cyclization of alkynyl oxime ethers. Tetrahedron, 2011, 67, 4612-4615.
Moriya, O.; Urata, Y.; Endo, T. Dehydrochlorination of hydroximic acid chlorides by the use of organotin compounds: A application for synthesis of isoxazolines and isoxazoles. J. Chem. Soc. Chem. Commun., 1991, 22(1), 17-18.
Just, G.; Dahl, K. Lead tetraacetate oxidation of aldoximes. Tetrahedron, 1968, 24, 5251-5269.
Mikami, K. Green reaction media in organic synthesis; Blackwell publishing Ltd: Oxford, 2005.
(a) Kiyani, H.; Mosallanezhad, A. Sulfanilic Acid-catalyzed Synthesis of 4-arylidene-3-substituted isoxazole-5 (4H)-ones. Curr. Org. Synth., 2018, 15, 715-722.
(b) Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162 ]
(c)Grieco, P.A. Organic synthesis in water; Springer Science & Business Media: Berlin, 2012.
(d) Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
(e) Kolla, S.R.; Lee, Y.R. EDTA-catalyzed synthesis of 3, 4-dihydroquinoxalin-2-amine derivatives by a three-component coupling of one-pot condensation reactions in an aqueous medium. Tetrahedron, 2010, 66, 8938-8944.
(f) Hardin Narayan, A.R.; Sarpong, R. Remarkable facilitation of hetero-cycloisomerizations with water and other polar protic solvents: Metal-free synthesis of indolizines. Green Chem., 2010, 12(9), 1556-1559.
[http://dx.doi.org/10.1039/c0gc00198h] [PMID: 21572597]
Yoshimura, A.; Zhu, C.; Middleton, K.R.; Todora, A.D.; Kastern, B.J.; Maskaev, A.V.; Zhdankin, V.V. Hypoiodite mediated synthesis of isoxazolines from aldoximes and alkenes using catalytic KI and Oxone as the terminal oxidant. Chem. Commun., 2013, 49(42), 4800-4802.
[http://dx.doi.org/10.1039/c3cc41164h] [PMID: 23609208]
Han, L.; Zhang, B.; Zhu, M.; Yan, J. An environmentally benign synthesis of isoxazolines and isoxazoles mediated by potassium chloride in water. Tetrahedron Lett., 2014, 55, 2308-2311.
(a) Alaoui, S.; Driowya, M.; Demange, L.; Benhida, R.; Bougrin, K. Ultrasound- assisted facile one-pot sequential synthesis of novel sulfonamideisoxazoles using cerium (IV) ammonium nitrate (CAN) as an efficient oxidant in aqueous medium Ultrason. Sonochem, 2018, 40(Pt A), 289-297.
[http://dx.doi.org/10.1016/j.ultsonch.2017.07.019] [PMID: 28946427]
(b) Marzag, H.; Robert, G.; Dufies, M.; Bougrin, K.; Auberger, P.; Benhida, R. FeCl3-promoted and ultrasound-assisted synthesis of resveratrol O-derived glycoside analogs. Ultrason. Sonochem., 2015, 22, 15-21.
[http://dx.doi.org/10.1016/j.ultsonch.2014.05.022] [PMID: 24961448 ]
(c) Marzag, H.; Alaoui, S.; Amdouni, H.; Martin, A.R.; Bougrin, K.; Benhida, R. Efficient and selective azidation of per-O-acetylated sugars using ultrasound activation: Application to the one-pot synthesis of 1, 2, 3-triazole glycosides. New J. Chem., 2015, 39, 5437-5444.
(d) Saber, A.; Marzag, H.; Benhida, R.; Bougrin, K. Microwave-assisted cycloaddition reactions in carbo-and heterocyclic chemistry. Curr. Org. Chem., 2014, 18, 2139-2180.
(a) Barona-Castaño, J.C.; Carmona-Vargas, C.C.; Brocksom, T.J.; de Oliveira, K.T. Porphyrins as catalysts in scalable organic reactions. Molecules, 2016, 21(3), 310-337.
[http://dx.doi.org/10.3390/molecules21030310] [PMID: 27005601]
(b) Ackerson, C.J.; Jadzinsky, P.D.; Kornberg, R.D. Thiolate ligands for synthesis of water-soluble gold clusters. J. Am. Chem. Soc., 2005, 127(18), 6550-6551.
[http://dx.doi.org/10.1021/ja046114i] [PMID: 15869273]
Zhao, G.; Liang, L.; Wen, C.H.E.; Tong, R. In Situ generation of nitrile oxides from NaCl-Oxone oxidation of various aldoximes and their 1,3-Dipolar cycloaddition. Org. Lett., 2019, 21(1), 315-319.
[http://dx.doi.org/10.1021/acs.orglett.8b03829] [PMID: 30576159]
Crystallographic data for 5b, 5c and 5f have been deposited at the Cambridge Crystallographic Data Centre with the deposition numbers CCDC (5b:1881718; 5c: 1881717 and 5f: 1881719). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cifor from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; Tel. +44 1223 336 408 Fax: +44 1223 336 033; or e-mail. www.deposit@ccdc.cam.ac.uk)
(a) Huisgen, R. Mechanism of 1, 3-dipolar cycloadditions. Reply. J. Org. Chem., 2002, 33, 2291-2297.
(b) Huisgen, R. 1, 3-Dipolar cycloadditions. 76. Concerted nature of 1, 3-dipolar cycloadditions and the question of diradical intermediates. J. Org. Chem., 1976, 41, 403-419.
(c)Huisgen, R. Steric course and mechanism of 1,3-Dipolar Cycloadditions. In: Advances in Cycloaddition; JAI Press: New York, 1988; Vol. 1, pp. 1-31.
(d)Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984, Vol. 1, pp. 1-76.
(e) Firestone, R.A. Mechanism of 1, 3-dipolar cycloadditions. J. Org. Chem., 1968, 33, 2285-2290.
(f) Firestone, R.A. Orientation in the 1,3-dipolar cycloaddition of diazomethane and ethyl vinyl ether. J. Org. Chem., 1976, 41, 2212-2214.
(a) Lorimer, J.P.; Mason, T.J. Sonochemistry. Part 1-the physical aspects. Chem. Soc. Rev., 1987, 16, 239-274.
(b) Lindley, J.; Mason, T.J. Sonochemistry. Part2-Synthetic applications.Chem. Soc. Rev; , 1998, 16, pp. 275-311.
Luche, J.L. Synthetic Organic Sonochemistry; Plenum Press: New York, 1998.
(d) Einhorn , C. Einhorn, J.; Luche, J.L. Sonochemistry-The use of ultrasonic waves in synthetic organic chemistrySynthesis; , 1989, 11, pp. 787-813.
(a) Luche, J.L. Effect of ultrasound on heterogeneous systems. Ultrason. Sonochem., 1994, 1, S111-S118.
(b) Kardos, N.; Luche, J.L. Sonochemistry of carbohydrate compounds. Carbohydr. Res., 2001, 332(2), 115-131.
[http://dx.doi.org/10.1016/S0008-6215(01)00081-7] [PMID: 11434369]
(a) Neumann, R.; Sasson, Y. The autoxidation of alkylnitroaromatic compounds in base-catalysed phase-transfer catalysis by polythylene glycol under ultrasonic radiation. J. Chem. Soc. Chem. Commun., 1985, 9, 616-617.
(b) Ono, Y.; Nishiki, Y.; Nonaka, T. Electrolysis using composite plated electrodes. Preparation of a Binary type composite plated nickel electrode with poly (tetrafluoroethylene) and silica gel and Its application in electroreduction of aldehydes. Chem. Lett., 1994, 23, 1623-1626.
(c) Ando, T.; Kimura, T.; Levêque, J.M.; Lorimer, J.P.; Luche, J.L.; Mason, T.J. Sonochemical reactions of lead tetracarboxylates with styrene. J. Org. Chem., 1998, 63, 9561-9564.
(d) Meciarova, M.; Toma, S.; Luche, J.L. The sonochemical arylation of malonic esters mediated by manganese triacetate. Ultrason. Sonochem., 2001, 8(2), 119-122.
[http://dx.doi.org/10.1016/S1350-4177(00)00029-8] [PMID: 11326605]
(e) Cravotto, G.; Gaudino, E.C.; Cintas, P. On the mechanochemical activation by ultrasound. Chem. Soc. Rev., 2013, 42(18), 7521-7534.
[http://dx.doi.org/10.1039/c2cs35456j] [PMID: 23321794]
(a) Leong, T.S.; Martin, G.J.; Ashokkumar, M. Ultrasonic encapsulation - A review Ultrason. Sonochem, 2017, 35(Pt B), 605-614.
[http://dx.doi.org/10.1016/j.ultsonch.2016.03.017] [PMID: 27053430 ]
(b) Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev., 2013, 42(7), 2555-2567.
[http://dx.doi.org/10.1039/C2CS35282F] [PMID: 23165883 ]
(c) Cravotto, G.; Borretto, E.; Oliverio, M.; Procopio, A.; Penoni, A. Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects. Catal. Commun., 2015, 63, 2-9.
(d) Mohapatra, H.; Kleiman, M.; Esser-Kahn, A.P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem., 2017, 9, 135-139.
(a) Abele, E.; Abele, R. Recent advances in the synthesis of heterocycles from Oximes (2014-2017). Curr. Org. Chem., 2018, 22, 1486-1504.
(b) Peng, X.X.; Deng, Y.J.; Yang, X.L.; Zhang, L.; Yu, W.; Han, B. Iminoxyl radical-promoted dichotomous cyclizations: Efficient oxyoximation and aminooximation of alkenes. Org. Lett., 2014, 16(17), 4650-4653.
[http://dx.doi.org/10.1021/ol502258n] [PMID: 25154041]
(c) Chen, F.; Zhu, F.F.; Zhang, M.; Liu, R.H.; Yu, W.; Han, B. Iminoxyl radical-promoted oxycyanation and aminocyanation of unactivated alkenes: Synthesis of cyano-featured isoxazolines and cyclic nitrones. Org. Lett., 2017, 19(12), 3255-3258.
[http://dx.doi.org/10.1021/acs.orglett.7b00826] [PMID: 28590746]
Pratt, D.A.; Blake, J.A.; Mulder, P.; Walton, J.C.; Korth, H.G.; Ingold, K.U. O-H bond dissociation enthalpies in oximes: Order restored. J. Am. Chem. Soc., 2004, 126(34), 10667-10675.
[http://dx.doi.org/10.1021/ja047566y] [PMID: 15327325]
Poole, J.S. Recent Advances in the Photochemistry of Heterocyclic N-Oxides and Their Derivatives;; Springer: Cham, 2017, pp. 111-151.
(b)Walton, J.C. Functionalised oximes: Emergent precursors for carbon-, nitrogen-and oxygen-centred radicals.Molecules,; , 2016, 21, pp. (1)63-85.
[http://dx.doi.org/10.3390/molecules21010063] [PMID: 26751437]]
(c)Ingold, K.U.; dEverett, S.A.; Naylor, M.A. Stratford, M.R.; Patel, K.B.; Ford, E.; Mortensen, A.; Wardman, P. Iminoxyl radicals and stable products from the one-electron oxidation of 1-methylindole-3-carbaldehyde oximesJ. Chem. Soc. Perkin Trans; , 2001, 2, pp. 1989-1997.
Bruker Advanced X-ray Solutions, Bruker AXS Inc.,. Madison, Wisconsin, USA, 2007.
Bruker Advanced X-ray Solutions, Bruker AXS Inc. Madison, Wisconsin, USA., 2001.
Burla, M.C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: An improved tool for crystal structure determination and refinement. J. Appl. Cryst., 2005, 38, 381-388.
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(Pt 1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]
Mabrour, M.; Bougrin, K.; Benhida, R.; Loupy, A.; Soufiaoui, M. An efficient one-step regiospecific synthesis of novel isoxazolines and isoxazoles of N-substituted saccharin derivatives through solvent-free microwave-assisted [3+2] cycloaddition. Tetrahedron Lett., 2007, 48, 443-447.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [1270 - 1281]
Pages: 12
DOI: 10.2174/1385272823666190621115726
Price: $58

Article Metrics

PDF: 24