Microwave-Assisted Hirao Reaction of Heteroaryl Bromides and >P(O)H Reagents Using Pd(OAc)2 as the Catalyst Precursor in the Absence of Added P-Ligands

Author(s): Réka Henyecz, Rafaella Oroszy, György Keglevich*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Bromopyridines, bromotiophenes and 3-bromofuran were reacted with diphenylphosphine oxide or diethyl phosphite under microwave irradiation using Pd(OAc)2 as the catalyst precursor together with some excess of the >P(O)H reagent. Hence, there was no need for the usual mono- and bidentate P-ligands. The >P(O)-functionalized heterocycles were obtained in variable (55-95%) yields. The results of our “green” protocol were in most cases better than those of the literature methods.

Keywords: Bromopyridine, bromotiophene, bromofuran, >P(O)H reagent, hirao reaction, microwave, P-ligand-free.

[1]
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Stereoselective synthesis of vinylphosphonate. Tetrahedron Lett., 1980, 21, 3595-3598. [http://dx.doi.org/10.1016/0040-4039(80)80245-0].
[2]
Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Palladium-catalyzed new carbon-phosphorus bond formation. Bull. Chem. Soc. Jpn., 1982, 55, 909-913. [http://dx.doi.org/10.1246/bcsj.55.909].
[3]
Jablonkai, E.; Keglevich, G. P–C bond formation by coupling reaction utilizing >P(O)H species as the reagents. Curr. Org. Synth., 2014, 11, 429-453. [http://dx.doi.org/10.2174/15701794113109990066].
[4]
Jablonkai, E.; Keglevich, G. Advances and new variations of the Hirao reaction. Org. Prep. Proced. Int., 2014, 46, 281-316. [http://dx.doi.org/10.1080/00304948.2014.922376].
[5]
Kabachnik, M.M.; Solntseva, M.D.; Izmer, V.V.; Novikova, Z.S.; Beletskaya, I.P. Palladium-catalyzed phase-transfer arylation of dialkyl phosphonates. Russ. J. Org. Chem., 1998, 34, 93-97.
[6]
Beletskaya, I.P.; Neganova, E.G.; Veits, Y.A. Arylation of 6H-Dibenzo[c,e][1,2λ5]oxaphosphinine 6-Oxide. Russ. J. Org. Chem., 2004, 40, 1782-1786. [http://dx.doi.org/10.1007/s11178-005-0099-9].
[7]
Beletskaya, I.P.; Karlstedt, N.B.; Nifant’ev, E.E.; Khodarev, D.V.; Kukhareva, T.S.; Nikolaev, A.V.; Ross, A.J. Palladium-Catalyzed P-arylation of hydrophosphoryl derivatives of protected monosaccharides. Russ. J. Org. Chem., 2006, 42, 1780-1785. [http://dx.doi.org/10.1134/S1070428006120049].
[8]
Kalek, M.; Ziadi, A.; Stawinski, J. Microwave-assisted palladium-catalyzed cross-coupling of aryl and vinyl halides with H-phosphonate diesters. Org. Lett., 2008, 10(20), 4637-4640. [http://dx.doi.org/10.1021/ol801935r]. [PMID: 18808138].
[9]
Andaloussi, M.; Lindh, J.; Sävmarker, J.; Sjöberg, P.J.R.; Larhed, M. Microwave-promoted palladium(II)-catalyzed C-P bond formation by using arylboronic acids or aryltrifluoroborates. Chemistry, 2009, 15(47), 13069-13074. [http://dx.doi.org/10.1002/chem.200901473]. [PMID: 19856344].
[10]
Rummelt, S.M.; Ranocchiari, M.; Van Bokhoven, J.A. Synthesis of water-soluble phosphine oxides by Pd/C-catalyzed P-C coupling in water. Org. Lett., 2012, 14(8), 2188-2190. [http://dx.doi.org/10.1021/ol300582y]. [PMID: 22463685].
[11]
Jablonkai, E.; Keglevich, G. P-Ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P–C coupling reaction of >P(O)H species and bromoarenes. Tetrahedron Lett., 2013, 54, 4185-4188. [http://dx.doi.org/10.1016/j.tetlet.2013.05.111].
[12]
Keglevich, G.; Jablonkai, E.; Balázs, L.B.A. “Green” variation of the Hirao reaction: the P–C coupling of diethyl phosphite, alkyl phenyl-H-phosphinates and secondary phosphine oxides with bromoarenes using P-ligand-free Pd(OAc)2 catalyst under microwave and solvent-free conditions. RSC Advances, 2014, 4, 22808-22816. [http://dx.doi.org/10.1039/C4RA03292F].
[13]
Keglevich, G.; Henyecz, R.; Mucsi, Z.; Kiss, N.Z. The palladium acetate-catalyzed microwave-assisted Hirao reaction without an added phosphorus ligand as a “green” protocol: a quantum chemical study on the mechanism. Adv. Synth. Catal., 2017, 359(24), 4322-4331. [http://dx.doi.org/10.1002/adsc.201700895]. [PMID: 29399016].
[14]
Henyecz, R.; Mucsi, Z.; Keglevich, G. Palladium-catalyzed microwave-assisted Hirao reaction utilizing the excess of the diarylphosphine oxide reagent as the P-ligand; a study on the activity and formation of the “PdP2” catalyst. Pure Appl. Chem., 2019, 91, 121-134. [http://dx.doi.org/10.1515/pac-2018-1004].
[15]
Zhao, Y-L.; Wu, G-J.; Li, Y.; Gao, L-X.; Han, F-S. [NiCl2(dppp)]-catalyzed cross-coupling of aryl halides with dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphine. Chemistry, 2012, 18(31), 9622-9627. [http://dx.doi.org/10.1002/chem.201103723]. [PMID: 22815217].
[16]
Belabassi, Y.; Alzghari, S.; Montchamp, J-L. Revisiting the Hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. J. Organomet. Chem., 2008, 693(19), 3171-3178. [http://dx.doi.org/10.1016/j.jorganchem.2008.07.020]. [PMID: 19156189].
[17]
Kalek, M.; Jezowska, M.; Stawinski, J. Preparation of Arylphosphonates by Palladium(0)-Catalyzed cross-coupling in the presence of acetate additives: synthetic and mechanistic studies. Adv. Synth. Catal., 2009, 351, 3207-3216. [http://dx.doi.org/10.1002/adsc.200900590].
[18]
Lilley, M.; Mambwe, B.; Jackson, R.F.W.; Muimo, R. 4-Phosphothiophen-2-yl alanine: a new 5-membered analogue of phosphotyrosine. Chem. Commun. (Camb.), 2014, 50(66), 9343-9345. [http://dx.doi.org/10.1039/C4CC03393K]. [PMID: 25002222].
[19]
Xuan, J.; Zeng, T-T.; Chen, J-R.; Lu, L-Q.; Xiao, W-J. Room temperature C-P bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis. Chemistry, 2015, 21(13), 4962-4965. [http://dx.doi.org/10.1002/chem.201500227]. [PMID: 25688851].
[20]
Yang, J.; Xiao, J.; Chen, T.; Yin, S-F.; Han, L-B. Efficient nickel-catalyzed phosphinylation of C-S bonds forming C-P bonds. Chem. Commun. (Camb.), 2016, 52(82), 12233-12236. [http://dx.doi.org/10.1039/C6CC06048J]. [PMID: 27711273].
[21]
Zhao, Y-L.; Wu, G-J.; Han, F-S. Ni-catalyzed construction of C-P bonds from electron-deficient phenols via the in situ aryl C-O activation by PyBroP. Chem. Commun. (Camb.), 2012, 48(47), 5868-5870. [http://dx.doi.org/10.1039/c2cc31718d]. [PMID: 22573216].
[22]
Bulot, J.J.; Aboujaoude, E.E.; Collignon, N. Preparation d’aminophenyl-, nitrophenyl, pyridyl-, et quinolylphosphonates sous photostimulation ou assistance metallique; Acces aux acides aminophosphoniques correspondants. Phosphorus Sulfur Silicon Relat. Elem., 1984, 21, 197-204.
[23]
Fu, T.; Qiao, H.; Peng, Z.; Hu, G.; Wu, X.; Gao, Y.; Zhao, Y. Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides. Org. Biomol. Chem., 2014, 12(18), 2895-2902. [http://dx.doi.org/10.1039/c3ob42470g]. [PMID: 24671217].
[24]
Yang, J.; Xiao, J.; Chen, T.; Han, L-B. Nickel-catalyzed phosphorylation of aryl triflates with P(O)–H compounds. J. Organomet. Chem., 2016, 820, 120-124. [http://dx.doi.org/10.1016/j.jorganchem.2016.07.026].
[25]
Fu, W.C.; So, C.M.; Kwong, F.Y. Palladium-catalyzed phosphorylation of aryl mesylates and tosylates. Org. Lett., 2015, 17(23), 5906-5909. [http://dx.doi.org/10.1021/acs.orglett.5b03104]. [PMID: 26574778].
[26]
Geng, Z.; Zhang, Y.; Zheng, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Pd-catalyzed C-P coupling of heteroaryl boronic acid with H-phosphonate diester. Tetrahedron Lett., 2016, 57, 3063-3066. [http://dx.doi.org/10.1016/j.tetlet.2016.05.038].
[27]
Xu, J.; Zhang, P.; Gao, Y.; Chen, Y.; Tang, G.; Zhao, Y. Copper-catalyzed P-arylation via direct coupling of diaryliodonium salts with phosphorus nucleophiles at room temperature. J. Org. Chem., 2013, 78(16), 8176-8183. [http://dx.doi.org/10.1021/jo4012199]. [PMID: 23865378].
[28]
Liu, C.; Szostak, M. Decarbonylative phosphorylation of amides by palladium and nickel catalysis: The hirao cross-coupling of amide derivatives. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12718-12722. [http://dx.doi.org/10.1002/anie.201707102]. [PMID: 28809072].
[29]
Luo, H.; Liu, H.; Chen, X.; Wang, K.; Luo, X.; Wang, K. Ar-P bond construction by the Pd-catalyzed oxidative cross-coupling of arylsilanes with H-phosphonates via C-Si bond cleavage. Chem. Commun. (Camb.), 2017, 53(5), 956-958. [http://dx.doi.org/10.1039/C6CC08408G]. [PMID: 28044148].
[30]
Isshiki, R.; Muto, K.; Yamaguchi, J. Decarbonylative C-P bond formation using aromatic esters and organophosphorus compounds. Org. Lett., 2018, 20(4), 1150-1153. [http://dx.doi.org/10.1021/acs.orglett.8b00080]. [PMID: 29392955].
[31]
Stalder, R.; Xie, D.; Zhou, R.; Xue, J.; Reynolds, J.R.; Schanze, K.S. Variable-gap conjugated oligomers grafted to CdSe nanocrystals. Chem. Mater., 2012, 24, 3143-3152. [http://dx.doi.org/10.1021/cm301351j].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 10
Year: 2019
Page: [1151 - 1157]
Pages: 7
DOI: 10.2174/1385272823666190621114915

Article Metrics

PDF: 21
HTML: 2
EPUB: 1
PRC: 1