Synthesis and Antitumor Activity Assay of Epoxy Bicyclo[4.2.2]deca-2,4,7,(9)- tri(tetra)enes and Tricyclo[9.4.2.02,10]heptadeca-2,12,14,16-tetraene

Author(s): Vladimir A. D'yakonov, Gulnara N. Kadikova*, Guzel F. Gazizullina, Lilya U. Dzhemileva, Artur R. Tulyabaev, Usein M. Dzhemilev.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Triepoxides were synthesized for the first time in high yields (80-85%) by oxidation of substituted bicyclo[4.2.2]deca-2,4,7,9-tetraenes, bicyclo[4.2.2]deca-2,4,7-trienes, and tricyclo[9.4.2.02,10]heptadeca-2,12,14,16-tetraene with an excess of m-chloroperbenzoic acid. The structures of the epoxy derivatives were reliably proved using modern spectral methods and X-ray diffraction analysis. A high antitumor activity in vitro was found for triepoxides against the Jurkat, K562, U937 tumor cell lines and normal fibroblasts.

Keywords: Oxidation, bicyclo[4.2.2]deca-2, 4, 7, (9)-tri(tetra)enes, tricyclo[9.4.2.02, 10]heptadeca-2, 12, 14, 16-tetraene, m-chloroperbenzoic acid, triepoxides, antitumor activity.

[1]
Lautens, M.; Klute, W.; Tam, W. Transition metal-mediated cycloaddition reactions. Chem. Rew., 1996, 96, 49-92.
[2]
Yu, Z.X.; Wang, Y.; Wang, Y. Transition‐metal‐catalyzed cycloadditions for the synthesis of eight-membered carbocycles. Chem. Asian J., 2010, 5, 1072-1088.
[3]
Rigby, J.H. Chromium(0)-promoted higher-order ccloaddition reactions in organic synthesis. Tetrahedron, 1999, 55, 4521-4538.
[4]
D’yakonov, V.A.; Kadikova, G.N.; Dzhemilev, U.M. Transition metal complex-mediated chemistry of 1,3,5-cycloheptatrienes. Russ. Chem. Rev., 2018, 87, 797-820.
[5]
D’yakonov, V.A.; Kadikova, G.N.; Dzhemilev, U.M. Ti-catalyzed [6p+2p] cycloadditions of allenes with 1,3,5-cycloheptatriene. Tetrahedron Lett., 2011, 52, 2780-2782.
[6]
D’yakonov, V.A.; Kadikova, G.N.; Khalilov, L.M.; Dzhemilev, U.M. Titanium-catalyzed cyclocodimerization of cyclohepta-1,3,5-triene with spiro. [cyclopropane-1,7′-norborna-2,5-diene]. Russ. Chem. Bull., 2011, 1, 182-184.
[7]
D’yakonov, V.A.; Kadikova, G.N.; Kolokoltsev, D.I.; Khalilov, L.M.; Dzhemilev, U.M. Transition metal-catalyzed homodimerization of 1,3,5-cycloheptatrienes. Russ. Chem. Bull., 2013, 2, 441-443.
[8]
Dzhemilev, U.M.; Kadikova, G.N.; Kolokoltsev, D.I.; D’yakonov, V.A. Catalytic [6π+2π]-cycloaddition of alkynes, 1,2- and 1,3-dienes to 1,3,5-cycloheptatrienes involving Ti complexes. Tetrahedron, 2013, 69, 4609-4611.
[9]
D’yakonov, V.A.; Kadikova, G.N.; Khalilov, L.M.; Dzhemilev, U.M. [6π+2π]-cycloaddition of α,ω-diallenes and α,ω-diacetylenes to 1,3,5-cycloheptatriene in the presence of TiCl4-Et2AlCl. Russ. J. Org. Chem., 2013, 49, 1139-1142.
[10]
D’yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Khalilov, L.M.; Dzhemilev, U.M. Cobalt(I)-catalyzed [6π+2π] cycloadditions of 1,2-dienes to 1,3,5,7-cyclooctatetraene. Tetrahedron Lett., 2015, 56, 2005-2007.
[11]
D’yakonov, V.A.; Kadikova, G.N.; Kolokoltsev, D.I.; Ramazanov, I.R.; Dzhemilev, U.M. Titanium-catalyzed [6π+2π]-cycloaddition of alkynes and allenes to 7-substituted 1,3,5-cycloheptatrienes. Eur. J. Org. Chem., 2015, 4464-4470.
[12]
Kadikova, G.N.; Kolokoltsev, D.I.; Meshcheryakova, E.S.; D’yakonov, V.A.; Dzhemilev, U.M. Regioselective [6π+2π] cycloaddition of 1,2-dienes to 7-substituted 1,3,5-cycloheptatrienes catalyzed by Ti(acac)2Cl2-Et2AlCl. Russ. Chem. Bull., 2016, 1, 195-199.
[13]
D’yakonov, V.A.; Kadikova, G.N.; Dzhemileva, L.U.; Gazizullina, G.F.; Ramazanov, I.R.; Dzhemilev, U.M. Cobalt-catalyzed [6+2] cycloaddition of alkynes with 1,3,5,7-cyclooctatetraene as a key element in the direct construction of substituted bicyclo[4.3.1]decanes. J. Org. Chem., 2017, 82, 471-480.
[14]
D’yakonov, V.A.; Kadikova, G.N.; Dzhemileva, L.U.; Gazizullina, G.F.; Unusbaeva, M.M.; Dzhemilev, U.M. Oxidative skeletal rearrangement of bicyclo[4.2.2]deca-2,4,7,9-tetraenes to bicyclo[4.3.1]deca-2,4,8-triene-7,10-diols and study of the antitumor activity of the products in vitro. Tetrahedron, 2018, 74, 4071-4077.
[15]
Achard, M.; Mosrin, M.; Tenaglia, A.; Buono, G. J. Cobalt(I)-Catalyzed [6+2] Cycloadditions of Cyclooctatetra(tri)ene with Alkynes. Org. Chem., 2006, 71, 2907-2910.
[16]
CCDC № 1887625 and CCDC № 1887629 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/deposit.
[17]
Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. J. Chem. Soc. Perkin Trans., 1987, 2, 1-19.
[http://dx.doi.org/10.1039/P298700000S1]
[18]
Rozas, I.; Alkorta, I.; Elguero, J. Bifurcated hydrogen bonds: three-centered interactions. J. Phys. Chem. A, 1998, 102, 9925-9932.
[19]
Thomas, S.P.; Pavan, M.S.; Guru Row, T.N. Charge density analysis of ferulic acid: robustness of a trifurcated C–H···O hydrogen bond. Cryst. Growth Des., 2012, 12, 6083-6091.
[20]
D’yakonov, V.A.; Kadikova, G.N.; Gazizullina, G.F.; Dzhemilev, U.M. First example of [6π+2π] cycloaddition of 1,2-dienes to 1,3,5,7-cyclooctatetraene catalyzed by CoI compounds. Russ. Chem. Bull., 2016, 65, 200-202.
[21]
CCDC № 1887621 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/deposit.
[22]
CCDC № 1887634 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/deposit.
[23]
Sheldrick, G.M. A short history of shelx. ActaCryst, 2008, A64, 112-122.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 10
Year: 2019
Page: [1158 - 1165]
Pages: 8
DOI: 10.2174/1385272823666190621104843
Price: $58

Article Metrics

PDF: 21
HTML: 2
EPUB: 1
PRC: 1