Nanoparticles Functionalized with Venom-Derived Peptides and Toxins for Pharmaceutical Applications

Author(s): Ana P. dos Santos, Tamara G. de Araújo, Gandhi Rádis-Baptista*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.

Keywords: Venom-derived peptides, therapeutic peptides, biopharmaceuticals, nanotechnology, drug delivery system, toxins.

[1]
Peigneur, S.; Tytgat, J. Toxins in drug discovery and pharmacology. Toxins (Basel), 2018, 10(3)E126
[http://dx.doi.org/10.3390/toxins10030126] [PMID: 29547537]
[2]
Takacs, Z.; Nathan, S. Animal Venoms in Medicine.Encyclopedia of Toxicology, 3rd ed; Wexler, P., Ed.; Academic Press: Oxford, 2014, pp. 252-259.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.01241-0]
[3]
Primon-Barros, M.; José Macedo, A. Animal venom peptides: Potential for new antimicrobial agents. Curr. Top. Med. Chem., 2017, 17(10), 1119-1156.
[http://dx.doi.org/10.2174/1568026616666160930151242] [PMID: 27697042]
[4]
Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; Renjifo, C.; de la Vega, R.C. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet., 2009, 10, 483-511.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164356] [PMID: 19640225]
[5]
Utkin, Y.N. Animal venom studies: Current benefits and future developments. World J. Biol. Chem., 2015, 6(2), 28-33.
[http://dx.doi.org/10.4331/wjbc.v6.i2.28] [PMID: 26009701]
[6]
Escoubas, P.; King, G.F. Venomics as a drug discovery platform. Expert Rev. Proteomics, 2009, 6(3), 221-224.
[http://dx.doi.org/10.1586/epr.09.45] [PMID: 19489692]
[7]
Zambelli, V.O.; Pasqualoto, K.F.; Picolo, G.; Chudzinski-Tavassi, A.M.; Cury, Y. Harnessing the knowledge of animal toxins to generate drugs. Pharmacol. Res., 2016, 112, 30-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.009] [PMID: 26826284]
[8]
Adams, D.J.; Lewis, R.J. Neuropharmacology of venom peptides. Neuropharmacology, 2017, 127, 1-3.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.025] [PMID: 29154773]
[9]
King, G.F. Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opin. Biol. Ther., 2011, 11(11), 1469-1484.
[http://dx.doi.org/10.1517/14712598.2011.621940] [PMID: 21939428]
[10]
Robinson, S.D.; Undheim, E.A.B.; Ueberheide, B.; King, G.F. Venom peptides as therapeutics: Advances, challenges and the future of venom-peptide discovery. Expert Rev. Proteomics, 2017, 14(10), 931-939.
[http://dx.doi.org/10.1080/14789450.2017.1377613] [PMID: 28879805]
[11]
Ye, C.; Chi, H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Mater. Sci. Eng. C, 2018, 83, 233-246.
[http://dx.doi.org/10.1016/j.msec.2017.10.003] [PMID: 29208283]
[12]
Saha, P.P.; Bhowmik, T.; Dasgupta, A.K.; Gomes, A. In vivo and in vitro toxicity of nanogold conjugated snake venom protein toxin GNP-NKCT1. Toxicol. Rep., 2014, 1, 74-84.
[http://dx.doi.org/10.1016/j.toxrep.2014.04.007] [PMID: 28962228]
[13]
Utkin, Y.N. Modern trends in animal venom research - omics and nanomaterials. World J. Biol. Chem., 2017, 8(1), 4-12.
[http://dx.doi.org/10.4331/wjbc.v8.i1.4] [PMID: 28289514]
[14]
Biswas, A.; Gomes, A.; Sengupta, J.; Datta, P.; Singha, S.; Dasgupta, A.K.; Gomes, A. Nanoparticle-conjugated animal venom-toxins and their possible therapeutic potential. J. Venom Res., 2012, 3, 15-21.
[PMID: 23236583]
[15]
Harvey, A.L. Toxins and drug discovery. Toxicon, 2014, 92, 193-200.
[http://dx.doi.org/10.1016/j.toxicon.2014.10.020]
[16]
Perumal Samy, R.; Stiles, B.G.; Franco, O.L.; Sethi, G.; Lim, L.H.K. Animal venoms as antimicrobial agents. Biochem. Pharmacol., 2017, 134, 127-138.
[http://dx.doi.org/10.1016/j.bcp.2017.03.005] [PMID: 28288817]
[17]
Norton, R.S. Enhancing the therapeutic potential of peptide toxins. Expert Opin. Drug Discov., 2017, 12(6), 611-623.
[http://dx.doi.org/10.1080/17460441.2017.1317243] [PMID: 28398099]
[18]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[19]
Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom., 2014, 4, 58-69.
[http://dx.doi.org/10.1016/j.euprot.2014.05.003]
[20]
Falcao, C.B.; Pérez-Peinado, C.; de la Torre, B.G.; Mayol, X.; Zamora-Carreras, H.; Jiménez, M.A.; Rádis-Baptista, G.; Andreu, D. Structural dissection of crotalicidin, a rattlesnake venom cathelicidin, retrieves a fragment with antimicrobial and antitumor activity. J. Med. Chem., 2015, 58(21), 8553-8563.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01142] [PMID: 26465972]
[21]
Gao, B.; Zhu, S. Mesobuthus venom-derived antimicrobial peptides possess intrinsic multifunctionality and differential potential as drugs. Front. Microbiol., 2018, 9, 320.
[http://dx.doi.org/10.3389/fmicb.2018.00320] [PMID: 29599756]
[22]
Almaaytah, A.; Zhou, M.; Wang, L.; Chen, T.; Walker, B.; Shaw, C. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: Biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides, 2012, 35(2), 291-299.
[http://dx.doi.org/10.1016/j.peptides.2012.03.016] [PMID: 22484288]
[23]
Guo, X.; Ma, C.; Du, Q.; Wei, R.; Wang, L.; Zhou, M.; Chen, T.; Shaw, C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie, 2013, 95(9), 1784-1794.
[http://dx.doi.org/10.1016/j.biochi.2013.06.003] [PMID: 23770440]
[24]
Chen, X.; Zhang, L.; Wu, Y.; Wang, L.; Ma, C.; Xi, X.; Bininda-Emonds, O.R.P.; Shaw, C.; Chen, T.; Zhou, M. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering. Int. J. Biol. Sci., 2018, 14(6), 599-607.
[http://dx.doi.org/10.7150/ijbs.23419] [PMID: 29904274]
[25]
Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem., 2018, 26(10), 2738-2758.
[http://dx.doi.org/10.1016/j.bmc.2017.09.029] [PMID: 28988749]
[26]
Patel, A.; Patel, M.; Yang, X.; Mitra, A.K. Recent advances in protein and peptide drug delivery: A special emphasis on polymeric nanoparticles. Protein Pept. Lett., 2014, 21(11), 1102-1120.
[http://dx.doi.org/10.2174/0929866521666140807114240] [PMID: 25106908]
[27]
Dubovskii, P.V.; Vassilevski, A.A.; Kozlov, S.A.; Feofanov, A.V.; Grishin, E.V.; Efremov, R.G. Latarcins: Versatile spider venom peptides. Cell. Mol. Life Sci., 2015, 72(23), 4501-4522.
[http://dx.doi.org/10.1007/s00018-015-2016-x] [PMID: 26286896]
[28]
Tan, H.; Huang, Y.; Xu, J.; Chen, B.; Zhang, P.; Ye, Z.; Liang, S.; Xiao, L.; Liu, Z. Spider toxin peptide lycosin-i functionalized gold nanoparticles for in vivo tumor targeting and therapy. Theranostics, 2017, 7(12), 3168-3178.
[http://dx.doi.org/10.7150/thno.19780] [PMID: 28839471]
[29]
Mambelli-Lisboa, N.C.; Sciani, J.M.; Brandão Prieto da Silva, A.R.; Kerkis, I. Co-localization of crotamine with internal membranes and accentuated accumulation in tumor cells. Molecules, (Basel, Switzerland), 2018, 23(4), E968.
[http://dx.doi.org/10.3390/molecules23040968] [PMID: 29693555]
[30]
Tansi, F.L.; Filatova, M.P.; Koroev, D.O.; Volpina, O.M.; Lange, S.; Schumann, C.; Teichgräber, U.K.; Reissmann, S.; Hilger, I. New generation CPPs show distinct selectivity for cancer and noncancer cells. J. Cell. Biochem., 2019, 120(4), 6528-6541.
[http://dx.doi.org/10.1002/jcb.27943] [PMID: 30362167]
[31]
Cohen, G.; Burks, S.R.; Frank, J.A. Chlorotoxin-A multimodal imaging platform for targeting glioma tumors. Toxins (Basel), 2018, 10(12)E496
[http://dx.doi.org/10.3390/toxins10120496] [PMID: 30486274]
[32]
Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol. Rep., 2017, 38(2), 637-651.
[http://dx.doi.org/10.3892/or.2017.5778] [PMID: 28677775]
[33]
Liu, C.C.; Hao, D.J.; Zhang, Q.; An, J.; Zhao, J.J.; Chen, B.; Zhang, L.L.; Yang, H. Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother. Pharmacol., 2016, 78(6), 1113-1130.
[http://dx.doi.org/10.1007/s00280-016-3160-1] [PMID: 27677623]
[34]
Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett., 2017, 402, 16-31.
[http://dx.doi.org/10.1016/j.canlet.2017.05.010] [PMID: 28536009]
[35]
Mahadevappa, R.; Ma, R.; Kwok, H.F. Venom peptides: Improving specificity in cancer therapy. Trends Cancer, 2017, 3(9), 611-614.
[http://dx.doi.org/10.1016/j.trecan.2017.07.004] [PMID: 28867164]
[36]
Robinson, S.D.; Safavi-Hemami, H. Venom peptides as pharmacological tools and therapeutics for diabetes. Neuropharmacology, 2017, 127, 79-86.
[http://dx.doi.org/10.1016/j.neuropharm.2017.07.001] [PMID: 28689026]
[37]
Camargo, A.C.; Ianzer, D.; Guerreiro, J.R.; Serrano, S.M. Bradykinin-potentiating peptides: beyond captopril. Toxicon, 2012, 59(4), 516-523.
[http://dx.doi.org/10.1016/j.toxicon.2011.07.013]
[38]
Rebello Horta, C.C.; Chatzaki, M.; Rezende, B.A. Magalhães, Bde.F.; Duarte, C.G.; Felicori, L.F.; Ribeiro Oliveira-Mendes, B.B.; do Carmo, A.O.; Chávez-Olórtegui, C.; Kalapothakis, E. Cardiovascular-active venom toxins: An overview. Curr. Med. Chem., 2016, 23(6), 603-622.
[http://dx.doi.org/10.2174/0929867323666160126142837] [PMID: 26812904]
[39]
de Queiroz, M.R.; de Sousa, B.B.; da Cunha Pereira, D.F.; Mamede, C.C.N.; Matias, M.S.; de Morais, N.C.G.; de Oliveira Costa, J.; de Oliveira, F. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon, 2017, 133, 33-47.
[http://dx.doi.org/10.1016/j.toxicon.2017.04.013]
[40]
Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics-cardiovascular examples. Toxicon, 2012, 59(4), 497-506.
[41]
Sajevic, T.; Leonardi, A.; Krizaj, I. Haemostatically active proteins in snake venoms. Toxicon, 2011, 57(5), 627-645.
[http://dx.doi.org/10.1016/j.toxicon.2011.01.006]
[42]
Sadeghi, M.; McArthur, J.R.; Finol-Urdaneta, R.K.; Adams, D.J. Analgesic conopeptides targeting G protein-coupled receptors reduce excitability of sensory neurons. Neuropharmacology, 2017, 127, 116-123.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.020] [PMID: 28533165]
[43]
Trim, S.A.; Trim, C.M. Venom: The sharp end of pain therapeutics. Br. J. Pain, 2013, 7(4), 179-188.
[http://dx.doi.org/10.1177/2049463713502005] [PMID: 26516522]
[44]
Thayer, A.M. Improving peptides (small firms develop better peptide drug candidates to expand this pharmaceutical class and attract big pharma partners). Chem. Eng. News, 2011, 89(22), 13-20.
[http://dx.doi.org/10.1021/cen-v089n022.p013]
[45]
Fox, J.W.; Serrano, S.M. Approaching the golden age of natural product pharmaceuticals from venom libraries: An overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr. Pharm. Des., 2007, 13(28), 2927-2934.
[http://dx.doi.org/10.2174/138161207782023739] [PMID: 17979737]
[46]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012]
[47]
Jain, K.K. Nanobiotechnology. Reference Module in Life Sciences; Elsevier, 2017.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.09044-0]
[48]
Jurj, A.; Braicu, C.; Pop, L.A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2871-2890.
[http://dx.doi.org/10.2147/DDDT.S142337] [PMID: 29033548]
[49]
Badr, G.; Al-Sadoon, M.K.; Rabah, D.M. Therapeutic efficacy and molecular mechanisms of snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles in the treatment of breast cancer- and prostate cancer-bearing experimental mouse models. Free Radic. Biol. Med., 2013, 65, 175-189.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.018] [PMID: 23811005]
[50]
Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release, 2016, 224, 86-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.008]
[51]
Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm., 2017, 523(1), 15-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.019] [PMID: 28323096]
[52]
Palmer, B.C.; DeLouise, L.A. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016, 21(12)E1719
[http://dx.doi.org/10.3390/molecules21121719] [PMID: 27983701]
[53]
Saraiva, C.; Praca, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[54]
Chen, J.; Guo, Z.; Tian, H.; Chen, X. Production and clinical development of nanoparticles for gene delivery. Mol. Ther. Methods Clin. Dev., 2016, 3, 16023.
[http://dx.doi.org/10.1038/mtm.2016.23] [PMID: 27088105]
[55]
Shreya, A.B.; Raut, S.Y.; Managuli, R.S.; Udupa, N.; Mutalik, S. Active targeting of drugs and bioactive molecules via oral administration by ligand-conjugated lipidic nanocarriers: Recent advances. AAPS PharmSciTech, 2018, 20(1), 15.
[http://dx.doi.org/10.1208/s12249-018-1262-2] [PMID: 30564942]
[56]
Yu, M.; Wu, J.; Shi, J.; Farokhzad, O.C. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release, 2016, 240, 24-37.
[57]
Santalices, I.; Gonella, A.; Torres, D.; José Alonso, M. Advances on the formulation of proteins using nanotechnologies. J. Drug Deliv. Sci. Technol., 2017, 42, 155-180.
[http://dx.doi.org/10.1016/j.jddst.2017.06.018]
[58]
Misra, S.K.; Schwartz-Duval, A.S.; Pan, D. Genomic DNA interactions mechanize peptidotoxin-mediated anticancer nanotherapy. Mol. Pharm., 2017, 14(7), 2254-2261.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00083] [PMID: 28544846]
[59]
Jallouk, A.P.; Palekar, R.U.; Pan, H.; Schlesinger, P.H.; Wickline, S.A. Modifications of natural peptides for nanoparticle and drug design. Adv. Protein Chem. Struct. Biol., 2015, 98, 57-91.
[http://dx.doi.org/10.1016/bs.apcsb.2014.12.001] [PMID: 25819276]
[60]
Wilczewska, A. Z.; Niemirowicz, K.; Markiewicz, K. H.; Car, H. Nanoparticles as drug delivery systems. Pharmacologic. Reports, 2012, (5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5]
[61]
Lee, B.K.; Yun, Y.H.; Park, K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chem. Eng. Sci., 2015, 125, 158-164.
[http://dx.doi.org/10.1016/j.ces.2014.06.042] [PMID: 25684780]
[62]
Karpel, R.L.; da Silva Liberato, M.; Campeiro, J.D.; Bergeon, L.; Szychowski, B.; Butler, A.; Marino, G.; Cusic, J.F.; de Oliveira, L.C.G.; Oliveira, E.B.; de Farias, M.A.; Portugal, R.V.; Alves, W.A.; Daniel, M.C.; Hayashi, M.A.F. Design and characterization of crotamine-functionalized gold nanoparticles. Colloids Surf. B Biointerfaces, 2018, 163, 1-8.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.013] [PMID: 29268209]
[63]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine (Lond.), 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[64]
Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[65]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[66]
Mir, M.; Ahmed, N.; Rehman, A.U. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[67]
Mohammadpourdounighi, N.; Behfar, A.; Ezabadi, A.; Zolfagharian, H.; Heydari, M. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom. Nanomedicine (Lond.), 2010, 6(1), 137-143.
[http://dx.doi.org/10.1016/j.nano.2009.06.002] [PMID: 19616121]
[68]
Nobre Almeida, L. Solid lipid nanoparticles: The efficiency carrier for topical delivery of hydrophylic drugs. World J. Pharm. Pharm. Sci., 2017, 6(4), 175-189.
[69]
Beloqui, A.; Solinís, M.A.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond.), 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[70]
Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids, 2014, 177, 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011] [PMID: 24220497]
[71]
Li, X.; Sui, Z.; Li, X.; Xu, W.; Guo, Q.; Sun, J.; Jing, F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int. J. Nanomedicine, 2018, 13, 3053-3067.
[http://dx.doi.org/10.2147/IJN.S164905] [PMID: 29872293]
[72]
Jacob, S.; Nair, A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res., 2018, 79(5), 201-217.
[http://dx.doi.org/10.1002/ddr.21452] [PMID: 30188584]
[73]
Pugazhendhi, A.; Edison, T.N.J.I.; Karuppusamy, I.; Kathirvel, B. Inorganic nanoparticles: A potential cancer therapy for human welfare. Int. J. Pharm., 2018, 539(1-2), 104-111.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.034] [PMID: 29366941]
[74]
Nafisi, S.; Samadi, N.; Houshiar, M.; Maibach, H.I. Mesoporous silica nanoparticles for enhanced lidocaine skin delivery. Int. J. Pharm., 2018, 550(1-2), 325-332.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.004] [PMID: 30081227]
[75]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2017, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[76]
Kumar, B.; Jajodia, K.; Kumar, P.; Gautam, H. Recent advances in nanoparticle-mediated drug delivery. J. Drug Deliv. Sci. Technol., 2017, 41.
[77]
Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[78]
Ding, C.; Li, Z. A review of drug release mechanisms from nanoca rier systems. Mater. Sci. Eng. C, 2017, 76, 1440-1453.
[http://dx.doi.org/10.1016/j.msec.2017.03.130] [PMID: 28482511]
[79]
Villegas, M.R.; Baeza, A.; Vallet-Regí, M. Nanotechnological strategies for protein delivery. Molecules, 2018, 23(5)E1008
[http://dx.doi.org/10.3390/molecules23051008] [PMID: 29693640]
[80]
Mousavizadeh, A.; Jabbari, A.; Akrami, M.; Bardania, H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: A systematic review. Colloids Surf. B Biointerfaces, 2017, 158, 507-517.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.012] [PMID: 28738290]
[81]
Garcia-Fuentes, M.; Gonzalez-Díaz, H.; Csaba, N. Nanocarriers & drug delivery: Rational design and applications. Curr. Top. Med. Chem., 2014, 14(9), 1095-1096.
[http://dx.doi.org/10.2174/1568026614666140329223843] [PMID: 24678712]
[82]
Mishra, R.K.; Tiwari, S.K.; Mohapatra, S.; Thomas, S. Efficient nanocarriers for drug-delivery systems: Types and fabrication. Nano carriers for drug delivery; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K; Thomas, S., Ed.; Elsevier, 2019, pp. 1-41.
[http://dx.doi.org/10.1016/B978-0-12-814033-8.00001-1]
[83]
Rani, S.; Sharma, A.K.; Khan, I.; Gothwal, A.; Chaudhary, S.; Gupta, U. Polymeric nanoparticles in targeting and delivery of drugs. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes; Mishra, V.; Kesharwani, P.; Mohd Amin, M.C.I; Iyer, A., Ed.; Academic Press, 2017, pp. 223-255.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00008-7]
[84]
Wang, M.; Zhang, Y.; Feng, J.; Gu, T.; Dong, Q.; Yang, X.; Sun, Y.; Wu, Y.; Chen, Y.; Kong, W. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. Int. J. Nanomedicine, 2013, 8, 1141-1154.
[PMID: 23658482]
[85]
Chen, C.; Zhu, X.; Dou, Y.; Xu, J.; Zhang, J.; Fan, T.; Du, J.; Liu, K.; Deng, Y.; Zhao, L.; Huang, Y. Exendin-4 loaded nanoparticles with a lipid shell and aqueous core containing micelles for enhanced intestinal absorption. J. Biomed. Nanotechnol., 2015, 11(5), 865-876.
[http://dx.doi.org/10.1166/jbn.2015.1971] [PMID: 26349398]
[86]
Jun, H-S.; Bae, G.; Ko, Y.T.; Oh, Y.S. Cytotoxicity and biological efficacy of exendin-4-encapsulated solid lipid nanoparticles in INS-1 Cells. J. Nanomater., 2015, 2015, 6.
[http://dx.doi.org/10.1155/2015/753569]
[87]
Zhang, X.; Liu, L.; Chai, G.; Zhang, X.; Li, F. Brain pharmacokinetics of neurotoxin-loaded PLA nanoparticles modified with chitosan after intranasal administration in awake rats. Drug Dev. Ind. Pharm., 2013, 39(11), 1618-1624.
[http://dx.doi.org/10.3109/03639045.2012.727828] [PMID: 24087853]
[88]
Hood, J.L.; Jallouk, A.P.; Campbell, N.; Ratner, L.; Wickline, S.A. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir. Ther. (Lond.), 2013, 18(1), 95-103.
[http://dx.doi.org/10.3851/IMP2346] [PMID: 22954649]
[89]
Jallouk, A.P.; Moley, K.H.; Omurtag, K.; Hu, G.; Lanza, G.M.; Wickline, S.A.; Hood, J.L. Nanoparticle incorporation of melittin reduces sperm and vaginal epithelium cytotoxicity. PLoS One, 2014, 9(4)e95411
[http://dx.doi.org/10.1371/journal.pone.0095411] [PMID: 24748389]
[90]
Soman, N.R.; Baldwin, S.L.; Hu, G.; Marsh, J.N.; Lanza, G.M.; Heuser, J.E.; Arbeit, J.M.; Wickline, S.A.; Schlesinger, P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest., 2009, 119(9), 2830-2842.
[http://dx.doi.org/10.1172/JCI38842] [PMID: 19726870]
[91]
Mao, J.; Liu, S.; Ai, M.; Wang, Z.; Wang, D.; Li, X.; Hu, K.; Gao, X.; Yang, Y. A novel melittin nano-liposome exerted excellent anti-hepatocellular carcinoma efficacy with better biological safety. J. Hematol. Oncol., 2017, 10(1), 71.
[http://dx.doi.org/10.1186/s13045-017-0442-y] [PMID: 28320480]
[92]
Li, Y.; Xu, N.; Zhu, W.; Wang, L.; Liu, B.; Zhang, J.; Xie, Z.; Liu, W. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Appl. Mater. Interfaces, 2018, 10(27), 22974-22984.
[http://dx.doi.org/10.1021/acsami.8b06125]
[93]
Yang, L.; Cui, F.; Shi, K.; Cun, D.; Wang, R. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique. Drug Dev. Ind. Pharm., 2009, 35(8), 959-968.
[http://dx.doi.org/10.1080/03639040902718039] [PMID: 19274512]
[94]
Bhowmik, T.; Saha, P.P.; Sarkar, A.; Gomes, A. Evaluation of cytotoxicity of a purified venom protein from Naja kaouthia (NKCT1) using gold nanoparticles for targeted delivery to cancer cell. Chem. Biol. Interact., 2017, 261, 35-49.
[http://dx.doi.org/10.1016/j.cbi.2016.11.007] [PMID: 27836789]
[95]
Bhowmik, T.; Saha, P.P.; Dasgupta, A.; Gomes, A. Antileukemic potential of PEGylated gold nanoparticle conjugated with protein toxin (NKCT1) isolated from Indian cobra (Naja kaouthia) venom. Cancer Nanotechnol., 2013, 4(1-3), 39-55.
[http://dx.doi.org/10.1007/s12645-013-0036-5] [PMID: 26069500]
[96]
Moradhaseli, S.; Zare Mirakabadi, A.; Sarzaeem, A.; Kamalzadeh, M.; Haji Hosseini, R. Cytotoxicity of ICD-85 NPs on human cervical carcinoma hela cells through caspase-8 mediated pathway. Iran. J. Pharm. Res., 2013, 12(1), 155-163.
[PMID: 24250584]
[97]
Zare Mirakabadi, A.; Moradhaseli, S. Comparative cytotoxic evaluation of free and sodium alginate nanoparticle-encapsulated ICD-85 on primary lamb kidney cells. Iran. J. Cancer Prev., 2013, 6(3), 151-159.
[PMID: 25250126]
[98]
de Barros, N.B.; Macedo, S.R.A.; Ferreira, A.S.; Tagliari, M.P.; Zanchi, F.B.; Kayano, A.M.; Soares, A.M.; Nicolete, R. Liposomes containing an ASP49-phospholipase A2 from Bothrops jararacussu snake venom as experimental therapy against cutaneous leishmaniasis. Int. Immunopharmacol., 2016, 36, 225-231.
[http://dx.doi.org/10.1016/j.intimp.2016.04.025] [PMID: 27174621]
[99]
Bond, A. Exenatide (Byetta) as a novel treatment option for type 2 diabetes mellitus. Proc. Bayl. Univ. Med. Cent., 2006, 19(3), 281-284.
[http://dx.doi.org/10.1080/08998280.2006.11928181] [PMID: 17252050]
[100]
Pencek, R.; Blickensderfer, A.; Li, Y.; Brunell, S.C.; Chen, S. Exenatide once weekly for the treatment of type 2 diabetes: Effectiveness and tolerability in patient subpopulations. Int. J. Clin. Pract., 2012, 66(11), 1021-1032.
[http://dx.doi.org/10.1111/j.1742-1241.2012.03006.x] [PMID: 22925173]
[101]
Shi, Y.; Sun, X.; Zhang, L.; Sun, K.; Li, K.; Li, Y.; Zhang, Q. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci. Rep., 2018, 8(1), 726.
[http://dx.doi.org/10.1038/s41598-018-19170-y] [PMID: 29335533]
[102]
Soman, N.R.; Lanza, G.M.; Heuser, J.M.; Schlesinger, P.H.; Wickline, S.A. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett., 2008, 8(4), 1131-1136.
[http://dx.doi.org/10.1021/nl073290r] [PMID: 18302330]
[103]
Venkatesan, C.; Vimal, S.; Hameed, A.S. Synthesis and characterization of chitosan tripolyphosphate nanoparticles and its encapsulation efficiency containing Russell’s viper snake venom. J. Biochem. Mol. Toxicol., 2013, 27(8), 406-411.
[http://dx.doi.org/10.1002/jbt.21502] [PMID: 23712553]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 21
ISSUE: 2
Year: 2020
Page: [97 - 109]
Pages: 13
DOI: 10.2174/1389201020666190621104624
Price: $65

Article Metrics

PDF: 20
HTML: 2