Research Progress of Axl Inhibitors

Author(s): Zhi-Gang Sun* , Jian-Hua Liu , Jin-Mai Zhang , Yong Qian* .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 15 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Axl, a Receptor Tyrosine Kinase (RTK) belonging to the TAM (Axl, Mer, Tyro3) family, participates in many signal transduction cascades after mostly being stimulated by Growth arrestspecific 6(Gas6). Axl is widely expressed in many organs, such as macrophages, endothelial cells, heart, liver and skeletal muscle. Over-expression and activation of Axl are associated with promoting chemotherapy resistance, cell proliferation, invasion and metastasis in many human cancers, such as breast, lung, and pancreatic cancers. Therefore, the research and development of Axl inhibitors is of great significance to strengthen the means of cancer treatment, especially to solve the problem of drug resistance. Axl inhibitors have attracted more and more researchers' attention in recent years. This review discusses the research progress of Axl inhibitors in recent years.

Keywords: Axl, Drug resistance, Cancer, Targeted therapy, Gilteritinib, Natural products.

[1]
Mathew, A.; George, P.S. K M, J.K.; Vasudevan, D.; James, F.V. Transition of cancer in populations in India. Cancer Epidemiol., 2019, 58, 111-120. [http://dx.doi.org/10.1016/j.canep.2018.12.003]. [PMID: 30537646].
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer, 2018, 103, 356-387. [http://dx.doi.org/10.1016/j.ejca.2018.07.005]. [PMID: 30100160].
[3]
Allen, B.C.; Crump, K.S.; Shipp, A.M. Correlation between carcinogenic potency of chemicals in animals and humans. Risk Anal., 1988, 8(4), 531-544. [http://dx.doi.org/10.1111/j.1539-6924.1988.tb01193.x]. [PMID: 3266676].
[4]
Hecht, S.S. Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch. Surg., 2006, 391(6), 603-613. [http://dx.doi.org/10.1007/s00423-006-0111-z]. [PMID: 17031696].
[5]
Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata, T.; Campbell, P.J.; Vineis, P.; Phillips, D.H.; Stratton, M.R. Mutational signatures associated with tobacco smoking in human cancer. Science, 2016, 354(6312), 618-622. [http://dx.doi.org/10.1126/science.aag0299]. [PMID: 27811275].
[6]
Connor, J. Alcohol consumption as a cause of cancer. Addiction, 2017, 112(2), 222-228. [http://dx.doi.org/10.1111/add.13477]. [PMID: 27442501].
[7]
Praud, D.; Rota, M.; Rehm, J.; Shield, K.; Zatoński, W.; Hashibe, M.; La Vecchia, C.; Boffetta, P. Cancer incidence and mortality attributable to alcohol consumption. Int. J. Cancer, 2016, 138(6), 1380-1387. [http://dx.doi.org/10.1002/ijc.29890]. [PMID: 26455822].
[8]
Pearson-Stuttard, J.; Zhou, B.; Kontis, V.; Bentham, J.; Gunter, M.J.; Ezzati, M. Worldwide burden of cancer attributable to diabetes and high body-mass index: A comparative risk assessment. Lancet Diabetes Endocrinol., 2018, 6(6), e6-e15. [http://dx.doi.org/10.1016/S2213-8587(18)30150-5]. [PMID: 29803268].
[9]
Wang, X.; Lin, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G.; Pan, A.; Hu, F.B. Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies. Public Health Nutr., 2016, 19(5), 893-905. [http://dx.doi.org/10.1017/S1368980015002062]. [PMID: 26143683].
[10]
Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H-J.; Tveit, K-M.; Gibson, F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer, 2015, 14(1), 1-10. [http://dx.doi.org/10.1016/j.clcc.2014.11.002]. [PMID: 25579803].
[11]
Hutchinson, A.D.; Hosking, J.R.; Kichenadasse, G.; Mattiske, J.K.; Wilson, C. Objective and subjective cognitive impairment following chemotherapy for cancer: A systematic review. Cancer Treat. Rev., 2012, 38(7), 926-934. [http://dx.doi.org/10.1016/j.ctrv.2012.05.002]. [PMID: 22658913].
[12]
Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 2005, 104(6), 1129-1137. [http://dx.doi.org/10.1002/cncr.21324]. [PMID: 16080176].
[13]
Baker, S.; Dahele, M.; Lagerwaard, F.J.; Senan, S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat. Oncol., 2016, 11(1), 115. [http://dx.doi.org/10.1186/s13014-016-0693-8]. [PMID: 27600665].
[14]
Pisarska, M.; Małczak, P.; Major, P.; Wysocki, M.; Budzyński, A.; Pędziwiatr, M. Enhanced recovery after surgery protocol in oesophageal cancer surgery: Systematic review and meta-analysis. PLoS One, 2017, 12(3)e0174382 [http://dx.doi.org/10.1371/journal.pone.0174382]. [PMID: 28350805].
[15]
Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced recovery after surgery: A review. JAMA Surg., 2017, 152(3), 292-298. [http://dx.doi.org/10.1001/jamasurg.2016.4952]. [PMID: 28097305].
[16]
Nie, J.; Zhao, C.; Deng, L.I.; Chen, J.; Yu, B.; Wu, X.; Pang, P.; Chen, X. Efficacy of traditional Chinese medicine in treating cancer. Biomed. Rep., 2016, 4(1), 3-14. [http://dx.doi.org/10.3892/br.2015.537]. [PMID: 26870326].
[17]
Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic effects of chinese herbal medicine: A comprehensive review of methodology and current research. Front. Pharmacol., 2016, 7, 201. [http://dx.doi.org/10.3389/fphar.2016.00201]. [PMID: 27462269].
[18]
Ye, L.; Jia, Y.; Ji, K.E.; Sanders, A.J.; Xue, K.; Ji, J.; Mason, M.D.; Jiang, W.G. Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol. Lett., 2015, 10(3), 1240-1250. [http://dx.doi.org/10.3892/ol.2015.3459]. [PMID: 26622657].
[19]
Crafton, S.M.; Salani, R. Beyond chemotherapy: An overview and review of targeted therapy in cervical cancer. Clin. Ther., 2016, 38(3), 449-458. [http://dx.doi.org/10.1016/j.clinthera.2016.02.007]. [PMID: 26926322].
[20]
Kawalec, P.; Łopuch, S.; Mikrut, A. Effectiveness of targeted therapy in patients with previously untreated metastatic breast cancer: A systematic review and meta-analysis. Clinical breast cancer, 2016, 15(2), 90-100.e1.
[http://dx.doi.org/10.1016/j.clbc.2014.10.006]
[21]
Azim, H.A., Jr; de Azambuja, E.; Colozza, M.; Bines, J.; Piccart, M.J. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann. Oncol., 2011, 22(9), 1939-1947. [http://dx.doi.org/10.1093/annonc/mdq683]. [PMID: 21289366].
[22]
De Ruyck, K.; Van Eijkeren, M.; Claes, K.; Morthier, R.; De Paepe, A.; Vral, A.; De Ridder, L.; Thierens, H. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int. J. Radiat. Oncol. Biol. Phys., 2005, 62(4), 1140-1149.
[23]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196. [http://dx.doi.org/10.1016/j.ejphar.2018.07.034]. [PMID: 30031797].
[24]
Chan, B.A.; Hughes, B.G.M. Targeted therapy for non-small cell lung cancer: Current standards and the promise of the future. Transl. Lung Cancer Res., 2015, 4(1), 36-54. [PMID: 25806345].
[25]
Sapiezynski, J.; Taratula, O.; Rodriguez-Rodriguez, L.; Minko, T. Precision targeted therapy of ovarian cancer. J. Control. Release, 2016, 243, 250-268. [http://dx.doi.org/10.1016/j.jconrel.2016.10.014]. [PMID: 27746277].
[26]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39. [http://dx.doi.org/10.1038/nrc2559]. [PMID: 19104514].
[27]
Harris, M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol., 2004, 5(5), 292-302. [http://dx.doi.org/10.1016/S1470-2045(04)01467-6]. [PMID: 15120666].
[28]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355. [http://dx.doi.org/10.1126/science.aar4060]. [PMID: 29567705].
[29]
Graham, D.K.; DeRyckere, D.; Davies, K.D.; Earp, H.S. The TAM family: Phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer, 2014, 14(12), 769-785. [http://dx.doi.org/10.1038/nrc3847]. [PMID: 25568918].
[30]
Ran, A.; Bo, H.; Lang, X.; Qiao, C.; Chang, H. Axl-targeting drugs in tumor therapy: Research advances. J. Int. Pharm. Res., 2016, 43(3), 420-424. [DOI: 10.18632/oncotarget.2542].
[31]
Tsukita, Y.; Fujino, N.; Miyauchi, E.; Saito, R.; Fujishima, F.; Itakura, K.; Kyogoku, Y.; Okutomo, K.; Yamada, M.; Okazaki, T.; Sugiura, H.; Inoue, A.; Okada, Y.; Ichinose, M. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Mol. Cancer, 2019, 18(1), 24. [http://dx.doi.org/10.1186/s12943-019-0953-y]. [PMID: 30744655].
[32]
Nagata, K.; Ohashi, K.; Nakano, T.; Arita, H.; Zong, C.; Hanafusa, H.; Mizuno, K. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J. Biol. Chem., 1996, 271(47), 30022-30027. [http://dx.doi.org/10.1074/jbc.271.47.30022]. [PMID: 8939948].
[33]
Linger, R.M.; Keating, A.K.; Earp, H.S.; Graham, D.K. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv. Cancer Res., 2008, 100, 35-83. [http://dx.doi.org/10.1016/S0065-230X(08)00002-X]. [PMID: 18620092].
[34]
Elkabets, M.; Pazarentzos, E.; Juric, D.; Sheng, Q.; Pelossof, R.A.; Brook, S.; Benzaken, A.O.; Rodon, J.; Morse, N.; Yan, J.J.; Liu, M.; Das, R.; Chen, Y.; Tam, A.; Wang, H.; Liang, J.; Gurski, J.M.; Kerr, D.A.; Rosell, R.; Teixidó, C.; Huang, A.; Ghossein, R.A.; Rosen, N.; Bivona, T.G.; Scaltriti, M.; Baselga, J. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell, 2015, 27(4), 533-546. [http://dx.doi.org/10.1016/j.ccell.2015.03.010]. [PMID: 25873175].
[35]
Müller, J.; Krijgsman, O.; Tsoi, J.; Robert, L.; Hugo, W.; Song, C.; Kong, X.; Possik, P.A.; Cornelissen-Steijger, P.D.; Geukes Foppen, M.H.; Kemper, K.; Goding, C.R.; McDermott, U.; Blank, C.; Haanen, J.; Graeber, T.G.; Ribas, A.; Lo, R.S.; Peeper, D.S. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun., 2014, 5, 5712. [http://dx.doi.org/10.1038/ncomms6712]. [PMID: 25502142].
[36]
Debruyne, D.N.; Bhatnagar, N.; Sharma, B.; Luther, W.; Moore, N.F.; Cheung, N-K.; Gray, N.S.; George, R.E. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene, 2016, 35(28), 3681-3691. [http://dx.doi.org/10.1038/onc.2015.434]. [PMID: 26616860].
[37]
Giles, K.M.; Kalinowski, F.C.; Candy, P.A.; Epis, M.R.; Zhang, P.M.; Redfern, A.D.; Stuart, L.M.; Goodall, G.J.; Leedman, P.J. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol. Cancer Ther., 2013, 12(11), 2541-2558. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0170]. [PMID: 24026012].
[38]
Brand, T.M.; Iida, M.; Stein, A.P.; Corrigan, K.L.; Braverman, C.M.; Luthar, N.; Toulany, M.; Gill, P.S.; Salgia, R.; Kimple, R.J.; Wheeler, D.L. AXL mediates resistance to cetuximab therapy. Cancer Res., 2014, 74(18), 5152-5164. [http://dx.doi.org/10.1158/0008-5472.CAN-14-0294]. [PMID: 25136066].
[39]
Zhang, Z.; Lee, J.C.; Lin, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; Choi, Y.J.; Choi, C.M.; Kim, S.W.; Jang, S.J.; Park, Y.S.; Kim, W.S.; Lee, D.H.; Lee, J.S.; Miller, V.A.; Arcila, M.; Ladanyi, M.; Moonsamy, P.; Sawyers, C.; Boggon, T.J.; Ma, P.C.; Costa, C.; Taron, M.; Rosell, R.; Halmos, B.; Bivona, T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet., 2012, 44(8), 852-860. [http://dx.doi.org/10.1038/ng.2330]. [PMID: 22751098].
[40]
Brand, T.M.; Iida, M.; Corrigan, K.L.; Braverman, C.M.; Coan, J.P.; Flanigan, B.G.; Stein, A.P.; Salgia, R.; Rolff, J.; Kimple, R.J.; Wheeler, D.L. The receptor tyrosine kinase AXL mediates nuclear translocation of the epidermal growth factor receptor. Sci. Signal., 2017, 10(460)eaag1064 [http://dx.doi.org/10.1126/scisignal.aag1064]. [PMID: 28049763].
[41]
Zhao, Z.; Wu, H.; Wang, L.; Liu, Y.; Knapp, S.; Liu, Q.; Gray, N.S. Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chem. Biol., 2014, 9(6), 1230-1241. [http://dx.doi.org/10.1021/cb500129t]. [PMID: 24730530].
[42]
Holland, S.J.; Pan, A.; Franci, C.; Hu, Y.; Chang, B.; Li, W.; Duan, M.; Torneros, A.; Yu, J.; Heckrodt, T.J.; Zhang, J.; Ding, P.; Apatira, A.; Chua, J.; Brandt, R.; Pine, P.; Goff, D.; Singh, R.; Payan, D.G.; Hitoshi, Y. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res., 2010, 70(4), 1544-1554. [http://dx.doi.org/10.1158/0008-5472.CAN-09-2997]. [PMID: 20145120].
[43]
Sheridan, C. First Axl inhibitor enters clinical trials. Nat. Biotechnol., 2013, 31(9), 775-776. [http://dx.doi.org/10.1038/nbt0913-775a]. [PMID: 24022140].
[44]
Fleuren, E.D.; Hillebrandt-Roeffen, M.H.; Flucke, U.E.; Te Loo, D.M.W.; Boerman, O.C.; van der Graaf, W.T.; Versleijen-Jonkers, Y.M. The role of AXL and the in vitro activity of the receptor tyrosine kinase inhibitor BGB324 in Ewing sarcoma. Oncotarget, 2014, 5(24), 12753-12768. [http://dx.doi.org/10.18632/oncotarget.2648]. [PMID: 25528764].
[45]
Ben-Batalla, I.; Erdmann, R.; Jørgensen, H.; Mitchell, R.; Ernst, T.; von Amsberg, G.; Schafhausen, P.; Velthaus, J.L.; Rankin, S.; Clark, R.E.; Koschmieder, S.; Schultze, A.; Mitra, S.; Vandenberghe, P.; Brümmendorf, T.H.; Carmeliet, P.; Hochhaus, A.; Pantel, K.; Bokemeyer, C.; Helgason, G.V.; Holyoake, T.L.; Loges, S. Axl blockade by BGB324 inhibits BCR-ABL tyrosine kinase inhibitor-sensitive and -resistant chronic myeloid leukemia. Clin. Cancer Res., 2017, 23(9), 2289-2300. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1930]. [PMID: 27856601].
[46]
Blood, P.; Blood, P. The immunomodulatory activity of bemcentinib (BGB324)–a first-in-class selective, oral AXL inhibitor in patients with relapsed/refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome. J. Clin. Oncol, 2018, 36(5_Suppl.). , 70.
[47]
Yule, M.; Davidsen, K.; Bloe, M.; Hodneland, L.; Engelsen, A.; Lie, M.; Bougnaud, S.; D’Mello, S.; Aguilera, K.; Ahmed, L. Combination of bemcentinib (BGB324): A first-in-class selective oral AXL inhibitor, with pembrolizumab in patients with triple negative breast cancer and adenocarcinoma of the lung. J. Clin. Oncol, 2018, 36(5_Suppl.) TPS43.
[http://dx.doi.org/10.1200/JCO.2018.36.5_suppl.]
[48]
Schroeder, G.M.; An, Y.; Cai, Z-W.; Chen, X-T.; Clark, C.; Cornelius, L.A.; Dai, J.; Gullo-Brown, J.; Gupta, A.; Henley, B.; Hunt, J.T.; Jeyaseelan, R.; Kamath, A.; Kim, K.; Lippy, J.; Lombardo, L.J.; Manne, V.; Oppenheimer, S.; Sack, J.S.; Schmidt, R.J.; Shen, G.; Stefanski, K.; Tokarski, J.S.; Trainor, G.L.; Wautlet, B.S.; Wei, D.; Williams, D.K.; Zhang, Y.; Zhang, Y.; Fargnoli, J.; Borzilleri, R.M. Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily. J. Med. Chem., 2009, 52(5), 1251-1254. [http://dx.doi.org/10.1021/jm801586s]. [PMID: 19260711].
[49]
Zeng, J-Y.; Sharma, S.; Zhou, Y-Q.; Yao, H-P.; Hu, X.; Zhang, R.; Wang, M-H. Synergistic activities of MET/RON inhibitor BMS-777607 and mTOR inhibitor AZD8055 to polyploid cells derived from pancreatic cancer and cancer stem cells. Mol. Cancer Ther., 2014, 13(1), 37-48. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0242]. [PMID: 24233399].
[50]
Nurhayati, R.W.; Ojima, Y.; Taya, M. BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells. Hum. Cell, 2015, 28(2), 65-72. [http://dx.doi.org/10.1007/s13577-014-0102-2]. [PMID: 25304900].
[51]
Onken, J.; Torka, R.; Korsing, S.; Radke, J.; Krementeskaia, I.; Nieminen, M.; Bai, X.; Ullrich, A.; Heppner, F.; Vajkoczy, P. Inhibiting receptor tyrosine kinase AXL with small molecule inhibitor BMS-777607 reduces glioblastoma growth, migration, and invasion in vitro and in vivo. Oncotarget, 2016, 7(9), 9876-9889. [http://dx.doi.org/10.18632/oncotarget.7130]. [PMID: 26848524].
[52]
Wu, C-C.; Weng, C-S.; Hsu, Y-T.; Chang, C-L. Antitumor effects of BMS-777607 on ovarian cancer cells with constitutively activated c-MET. Taiwan. J. Obstet. Gynecol., 2019, 58(1), 145-152. [http://dx.doi.org/10.1016/j.tjog.2018.11.027]. [PMID: 30638469].
[53]
Katayama, R.; Kobayashi, Y.; Friboulet, L.; Lockerman, E.L.; Koike, S.; Shaw, A.T.; Engelman, J.A.; Fujita, N. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin. Cancer Res., 2015, 21(1), 166-174. [http://dx.doi.org/10.1158/1078-0432.CCR-14-1385]. [PMID: 25351743].
[54]
Neal, J.W.; Dahlberg, S.E.; Wakelee, H.A.; Aisner, S.C.; Bowden, M.; Huang, Y.; Carbone, D.P.; Gerstner, G.J.; Lerner, R.E.; Rubin, J.L.; Owonikoko, T.K.; Stella, P.J.; Steen, P.D.; Khalid, A.A.; Ramalingam, S.S. ECOG-ACRIN 1512 Investigators Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): a randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol., 2016, 17(12), 1661-1671. [http://dx.doi.org/10.1016/S1470-2045(16)30561-7]. [PMID: 27825638].
[55]
Tolaney, S.M.; Ziehr, D.R.; Guo, H.; Ng, M.R.; Barry, W.T.; Higgins, M.J.; Isakoff, S.J.; Brock, J.E.; Ivanova, E.V.; Paweletz, C.P.; Demeo, M.K.; Ramaiya, N.H.; Overmoyer, B.A.; Jain, R.K.; Winer, E.P.; Duda, D.G. Phase II and biomarker study of cabozantinib in metastatic triple‐negative breast cancer patients. Oncologist, 2017, 22(1), 25-32. [http://dx.doi.org/10.1634/theoncologist.2016-0229]. [PMID: 27789775].
[56]
Kelley, R.K.; Verslype, C.; Cohn, A.L.; Yang, T-S.; Su, W-C.; Burris, H.; Braiteh, F.; Vogelzang, N.; Spira, A.; Foster, P.; Lee, Y.; Van Cutsem, E. Cabozantinib in hepatocellular carcinoma: results of a phase 2 placebo-controlled randomized discontinuation study. Ann. Oncol., 2017, 28(3), 528-534. [http://dx.doi.org/10.1093/annonc/mdw651]. [PMID: 28426123].
[57]
Choueiri, T.K.; Escudier, B.; Powles, T.; Tannir, N.M.; Mainwaring, P.N.; Rini, B.I.; Hammers, H.J.; Donskov, F.; Roth, B.J.; Peltola, K.; Lee, J.L.; Heng, D.Y.C.; Schmidinger, M.; Agarwal, N.; Sternberg, C.N.; McDermott, D.F.; Aftab, D.T.; Hessel, C.; Scheffold, C.; Schwab, G.; Hutson, T.E.; Pal, S.; Motzer, R.J. METEOR investigators Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol., 2016, 17(7), 917-927. [http://dx.doi.org/10.1016/S1470-2045(16)30107-3]. [PMID: 27279544].
[58]
Smith, M.; De Bono, J.; Sternberg, C.; Le Moulec, S.; Oudard, S.; De Giorgi, U.; Krainer, M.; Bergman, A.; Hoelzer, W.; De Wit, R.; Bögemann, M.; Saad, F.; Cruciani, G.; Thiery-Vuillemin, A.; Feyerabend, S.; Miller, K.; Houédé, N.; Hussain, S.; Lam, E.; Polikoff, J.; Stenzl, A.; Mainwaring, P.; Ramies, D.; Hessel, C.; Weitzman, A.; Fizazi, K. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J. Clin. Oncol., 2016, 34(25), 3005-3013. [http://dx.doi.org/10.1200/JCO.2015.65.5597]. [PMID: 27400947].
[59]
Schlumberger, M.; Elisei, R.; Müller, S.; Schöffski, P.; Brose, M.; Shah, M.; Licitra, L.; Krajewska, J.; Kreissl, M.C.; Niederle, B.; Cohen, E.E.W.; Wirth, L.; Ali, H.; Clary, D.O.; Yaron, Y.; Mangeshkar, M.; Ball, D.; Nelkin, B.; Sherman, S. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann. Oncol., 2017, 28(11), 2813-2819. [http://dx.doi.org/10.1093/annonc/mdx479]. [PMID: 29045520].
[60]
Abou-Alfa, G.K.; Meyer, T.; Cheng, A-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J-W.; Blanc, J.F.; Bolondi, L.; Klümpen, H.J.; Chan, S.L.; Zagonel, V.; Pressiani, T.; Ryu, M.H.; Venook, A.P.; Hessel, C.; Borgman-Hagey, A.E.; Schwab, G.; Kelley, R.K. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med., 2018, 379(1), 54-63. [http://dx.doi.org/10.1056/NEJMoa1717002]. [PMID: 29972759].
[61]
Singh, H.; Brave, M.; Beaver, J.A.; Cheng, J.; Tang, S.; Zahalka, E.; Palmby, T.R.; Venugopal, R.; Song, P.; Liu, Q.; Liu, C.; Yu, J.; Chen, X.H.; Wang, X.; Wang, Y.; Kluetz, P.G.; Daniels, S.R.; Papadopoulos, E.J.; Sridhara, R.; McKee, A.E.; Ibrahim, A.; Kim, G.; Pazdur, R. US food and drug administration approval: cabozantinib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res., 2017, 23(2), 330-335. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1073]. [PMID: 27793960].
[62]
Martínez Chanzá, N.; Xie, W.; Asim Bilen, M.; Dzimitrowicz, H.; Burkart, J.; Geynisman, D.M.; Balakrishnan, A.; Bowman, I.A.; Jain, R.; Stadler, W.; Zakharia, Y.; Narayan, V.; Beuselinck, B.; McKay, R.R.; Tripathi, A.; Pachynski, R.; Hahn, A.W.; Hsu, J.; Shah, S.A.; Lam, E.T.; Rose, T.L.; Mega, A.E.; Vogelzang, N.; Harrison, M.R.; Mortazavi, A.; Plimack, E.R.; Vaishampayan, U.; Hammers, H.; George, S.; Haas, N.; Agarwal, N.; Pal, S.K.; Srinivas, S.; Carneiro, B.A.; Heng, D.Y.C.; Bosse, D.; Choueiri, T.K.; Harshman, L.C. Cabozantinib in advanced non-clear-cell renal cell carcinoma: a multicentre, retrospective, cohort study. Lancet Oncol., 2019, 20(4), 581-590. [http://dx.doi.org/10.1016/S1470-2045(18)30907-0]. [PMID: 30827746].
[63]
Zillhardt, M.; Park, S-M.; Romero, I.L.; Sawada, K.; Montag, A.; Krausz, T.; Yamada, S.D.; Peter, M.E.; Lengyel, E. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin. Cancer Res., 2011, 17(12), 4042-4051. [http://dx.doi.org/10.1158/1078-0432.CCR-10-3387]. [PMID: 21551255].
[64]
Davare, M.A.; Saborowski, A.; Eide, C.A.; Tognon, C.; Smith, R.L.; Elferich, J.; Agarwal, A.; Tyner, J.W.; Shinde, U.P.; Lowe, S.W.; Druker, B.J. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19519-19524. [http://dx.doi.org/10.1073/pnas.1319583110]. [PMID: 24218589].
[65]
Faria, C.C.; Golbourn, B.J.; Dubuc, A.M.; Remke, M.; Diaz, R.J.; Agnihotri, S.; Luck, A.; Sabha, N.; Olsen, S.; Wu, X.; Garzia, L.; Ramaswamy, V.; Mack, S.C.; Wang, X.; Leadley, M.; Reynaud, D.; Ermini, L.; Post, M.; Northcott, P.A.; Pfister, S.M.; Croul, S.E.; Kool, M.; Korshunov, A.; Smith, C.A.; Taylor, M.D.; Rutka, J.T. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma. Cancer Res., 2015, 75(1), 134-146. [http://dx.doi.org/10.1158/0008-5472.CAN-13-3629]. [PMID: 25391241].
[66]
Yau, T.C.C.; Lencioni, R.; Sukeepaisarnjaroen, W.; Chao, Y.; Yen, C-J.; Lausoontornsiri, W.; Chen, P-J.; Sanpajit, T.; Camp, A.; Cox, D.S.; Gagnon, R.C.; Liu, Y.; Raffensperger, K.E.; Kulkarni, D.A.; Kallender, H.; Ottesen, L.H.; Poon, R.T.P.; Bottaro, D.P. A phase I/II multicenter study of single-agent foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin. Cancer Res., 2017, 23(10), 2405-2413. [http://dx.doi.org/10.1158/1078-0432.CCR-16-1789]. [PMID: 27821605].
[67]
Chen, G-Z.; Dai, W-S.; Zhu, H-C.; Song, H-M.; Yang, X.; Wang, Y-D.; Min, H.; Lu, Q.; Liu, S.; Sun, X-C.; Zeng, X.N. Foretinib enhances the radiosensitivity in esophageal squamous cell carcinoma by inhibiting phosphorylation of c-Met. J. Cancer, 2017, 8(6), 983-992. [http://dx.doi.org/10.7150/jca.18135]. [PMID: 28529610].
[68]
Nishiyama, A.; Yamada, T.; Kita, K.; Wang, R.; Arai, S.; Fukuda, K.; Tanimoto, A.; Takeuchi, S.; Tange, S.; Tajima, A.; Furuya, N.; Kinoshita, T.; Yano, S. Foretinib overcomes entrectinib resistance associated with the NTRK1 G667C Mutation in NTRK1 fusion-positive tumor cells in a brain metastasis model. Clin. Cancer Res., 2018, 24(10), 2357-2369. [http://dx.doi.org/10.1158/1078-0432.CCR-17-1623]. [PMID: 29463555].
[69]
Kogata, Y.; Tanaka, T.; Ono, Y.J.; Hayashi, M.; Terai, Y.; Ohmichi, M. Foretinib (GSK1363089) induces p53-dependent apoptosis in endometrial cancer. Oncotarget, 2018, 9(32), 22769-22784. [http://dx.doi.org/10.18632/oncotarget.25232]. [PMID: 29854314].
[70]
Dratkiewicz, E.; Pietraszek-Gremplewicz, K.; Simiczyjew, A.; Mazur, A.J.; Nowak, D. Gefitinib or lapatinib with foretinib synergistically induce a cytotoxic effect in melanoma cell lines. Oncotarget, 2018, 9(26), 18254-18268. [http://dx.doi.org/10.18632/oncotarget.24810]. [PMID: 29719603].
[71]
Boschelli, F.; Arndt, K.; Gambacorti-Passerini, C. Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur. J. Cancer, 2010, 46(10), 1781-1789. [http://dx.doi.org/10.1016/j.ejca.2010.02.032]. [PMID: 20399641].
[72]
Gambacorti-Passerini, C.; Kantarjian, H.M.; Kim, D.W.; Khoury, H.J.; Turkina, A.G.; Brümmendorf, T.H.; Matczak, E.; Bardy-Bouxin, N.; Shapiro, M.; Turnbull, K.; Leip, E.; Cortes, J.E. Long-term efficacy and safety of bosutinib in patients with advanced leukemia following resistance/intolerance to imatinib and other tyrosine kinase inhibitors. Am. J. Hematol., 2015, 90(9), 755-768. [http://dx.doi.org/10.1002/ajh.24034]. [PMID: 26040495].
[73]
Cortes, J.E.; Khoury, H.J.; Kantarjian, H.M.; Lipton, J.H.; Kim, D.W.; Schafhausen, P.; Matczak, E.; Leip, E.; Noonan, K.; Brümmendorf, T.H.; Gambacorti-Passerini, C. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am. J. Hematol., 2016, 91(12), 1206-1214. [http://dx.doi.org/10.1002/ajh.24536]. [PMID: 27531525].
[74]
Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D-W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; Garcia-Gutierrez, V.; Reilly, L.; Jeynes-Ellis, A.; Leip, E.; Bardy-Bouxin, N.; Hochhaus, A.; Brümmendorf, T.H. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J. Clin. Oncol., 2018, 36(3), 231-237. [http://dx.doi.org/10.1200/JCO.2017.74.7162]. [PMID: 29091516].
[75]
Segrelles, C.; Contreras, D.; Navarro, E.M.; Gutiérrez-Muñoz, C.; García-Escudero, R.; Paramio, J.M.; Lorz, C. Bosutinib Inhibits EGFR activation in head and neck cancer. Int. J. Mol. Sci., 2018, 19(7), 1824. [http://dx.doi.org/10.3390/ijms19071824]. [PMID: 29933569].
[76]
García-Gutiérrez, V.; Milojkovic, D.; Hernandez-Boluda, J.C.; Claudiani, S.; Martin Mateos, M.L.; Casado-Montero, L.F.; González, G.; Jimenez-Velasco, A.; Boque, C.; Martinez-Trillos, A.; Vázquez, I.M.; Payer, Á.R.; Senín, A.; Amustio Díez, E.; García, A.B.; Carrascosa, G.B.; Ortí, G.; Ruiz, B.C.; Fernández, M.Á.; Del Carmen García Garay, M.; Giraldo, P.; Guinea, J.M.; De Las Heras Rodríguez, N.; Hernán, N.; Pérez, A.I.; Piris-Villaespesa, M.; Lorenzo, J.L.L.; Martí-Tutusaus, J.M.M.; Vallansot, R.O.; Ortega Rivas, F.; Puerta, J.M.; Ramirez, M.J.; Romero, E.; Romo, A.; Rosell, A.; Saavedra, S.S.; Sebrango, A.; Tallon, J.; Valencia, S.; Portero, A.; Steegmann, J.L. Grupo español de leucemia mieloide crónica (GELMC). Safety and efficacy of bosutinib in fourth-line therapy of chronic myeloid leukemia patients. Ann. Hematol., 2019, 98(2), 321-330. [http://dx.doi.org/10.1007/s00277-018-3507-2]. [PMID: 30446802].
[77]
Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs, 2017, 35(5), 556-565. [http://dx.doi.org/10.1007/s10637-017-0470-z]. [PMID: 28516360].
[78]
Lee, L.Y.; Hernandez, D.; Rajkhowa, T.; Smith, S.C.; Raman, J.R.; Nguyen, B.; Small, D.; Levis, M. Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood, 2017, 129(2), 257-260. [http://dx.doi.org/10.1182/blood-2016-10-745133]. [PMID: 27908881].
[79]
Pratz, K.; Cherry, M.; Altman, J.K.; Cooper, B.W.; Cruz, J.C.; Jurcic, J.G.; Levis, M.J.; Lin, T.L.; Perl, A.E.; Podoltsev, N.A. Preliminary results from a phase 1 study of gilteritinib in combination with induction and consolidation chemotherapy in subjects with newly diagnosed acute myeloid leukemia (AML). Blood, 2017, 130, 722.
[80]
Pratz, K.W.; Cherry, M.; Altman, J.K.; Cooper, B.; Cruz, J.C.; Jurcic, J.G.; Levis, M.J.; Lin, T.L.; Perl, A.E.; Podoltsev, N.A. Updated results from a phase 1 study of gilteritinib in combination with induction and consolidation chemotherapy in subjects with newly diagnosed acute myeloid leukemia (AML). Blood, 2018, 132, 564. [https://doi.org/10.1182/blood-2018-99-110975].
[81]
Dhillon, S. Gilteritinib: First Global Approval. Drugs, 2019, 79(3), 331-339. [http://dx.doi.org/10.1007/s40265-019-1062-3]. [PMID: 30721452].
[82]
Burbridge, M.F.; Bossard, C.J.; Saunier, C.; Fejes, I.; Bruno, A.; Léonce, S.; Ferry, G.; Da Violante, G.; Bouzom, F.; Cattan, V.; Jacquet-Bescond, A.; Comoglio, P.M.; Lockhart, B.P.; Boutin, J.A.; Cordi, A.; Ortuno, J.C.; Pierré, A.; Hickman, J.A.; Cruzalegui, F.H.; Depil, S. S49076 is a novel kinase inhibitor of MET, AXL, and FGFR with strong preclinical activity alone and in association with bevacizumab. Mol. Cancer Ther., 2013, 12(9), 1749-1762. [http://dx.doi.org/10.1158/1535-7163.MCT-13-0075]. [PMID: 23804704].
[83]
Rodon, J.; Postel-Vinay, S.; Hollebecque, A.; Nuciforo, P.; Azaro, A.; Cattan, V.; Marfai, L.; Sudey, I.; Brendel, K.; Delmas, A.; Malasse, S.; Soria, J.C. First-in-human phase I study of oral S49076, a unique MET/AXL/FGFR inhibitor, in advanced solid tumours. Eur. J. Cancer, 2017, 81, 142-150. [http://dx.doi.org/10.1016/j.ejca.2017.05.007]. [PMID: 28624695].
[84]
Clémenson, C.; Chargari, C.; Liu, W.; Mondini, M.; Ferté, C.; Burbridge, M.F.; Cattan, V.; Jacquet-Bescond, A.; Deutsch, E. The MET/AXL/FGFR inhibitor S49076 impairs Aurora B activity and improves the antitumor efficacy of radiotherapy. Mol. Cancer Ther., 2017, 16(10), 2107-2119. [http://dx.doi.org/10.1158/1535-7163.MCT-17-0112]. [PMID: 28619752].
[85]
Bertran-Alamillo, J.; Cattan, V.; Schoumacher, M.; Codony-Servat, J.; Giménez-Capitán, A.; Cantero, F.; Burbridge, M.; Rodríguez, S.; Teixidó, C.; Roman, R.; Castellví, J.; García-Román, S.; Codony-Servat, C.; Viteri, S.; Cardona, A-F.; Karachaliou, N.; Rosell, R.; Molina-Vila, M-A. AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy. Nat. Commun., 2019, 10(1), 1812. [http://dx.doi.org/10.1038/s41467-019-09734-5]. [PMID: 31000705].
[86]
Shahin, M.I.; Roy, J.; Hanafi, M.; Wang, D.; Luesakul, U.; Chai, Y.; Muangsin, N.; Lasheen, D.S.; Abou El Ella, D.A.; Abouzid, K.A.; Neamati, N. Synthesis and biological evaluation of novel 2-oxo-1,2-dihydroquinoline-4-carboxamide derivatives for the treatment of esophageal squamous cell carcinoma. Eur. J. Med. Chem., 2018, 155, 516-530. [http://dx.doi.org/10.1016/j.ejmech.2018.05.042]. [PMID: 29908444].
[87]
Şener, N.; Mohammed, H.J.A.; Yerlikaya, S.; Celik Altunoglu, Y.; Gür, M.; Baloglu, M.C.; Şener, İ. Anticancer, antimicrobial, and DNA protection analysis of novel 2,4-dihydroxyquinoline dyes. Dyes Pigments, 2018, 157, 11-19. [http://dx.doi.org/10.1016/j.dyepig.2018.04.040].
[88]
Ma, X.; Wu, Y.I.; Yang, X.; Yang, S.; Li, Y.; Huang, Y.; Lee, R.J.; Bai, T.; Luo, Y. A Novel 1,2-Dihydroquinoline anticancer agent and its delivery to tumor cells using cationic liposomes. Anticancer Res., 2016, 36(5), 2105-2111. [PMID: 27127110].
[89]
Facchinetti, V.; Guimaraes, F.A.; de Souza, M.V.N.; Gomes, C.R.B.; de Souza, M.C.B.; Wardell, J.L.; Wardell, S.M.; Vasconce-los, T.R. Synthesis of novel ethyl (substituted) phenyl‐4‐oxothia-zolidin‐3‐yl)‐1‐ethyl‐4‐oxo‐1, 4‐dihydroquinoline‐3‐carboxylates as potential anticancer agents. J. Heterocycl. Chem., 2015, 52(4), 1245-1252. [http://dx.doi.org/10.1002/jhet.2212].
[90]
Tan, L.; Zhang, Z.; Gao, D.; Luo, J.; Tu, Z-C.; Li, Z.; Peng, L.; Ren, X.; Ding, K. 4-Oxo-1, 4-dihydroquinoline-3-carboxamide derivatives as new Axl kinase inhibitors. J. Med. Chem., 2016, 59(14), 6807-6825. [http://dx.doi.org/10.1021/acs.jmedchem.6b00608]. [PMID: 27379978].
[91]
Keung, W.; Boloor, A.; Brown, J.; Kiryanov, A.; Gangloff, A.; Lawson, J.D.; Skene, R.; Hoffman, I.; Atienza, J.; Kahana, J.; De Jong, R.; Farrell, P.; Balakrishna, D.; Halkowycz, P. Structure-based optimization of 1H-imidazole-2-carboxamides as Axl kinase inhibitors utilizing a Mer mutant surrogate. Bioorg. Med. Chem. Lett., 2017, 27(4), 1099-1104. [http://dx.doi.org/10.1016/j.bmcl.2016.12.024]. [PMID: 28082036].
[92]
Daydé-Cazals, B.; Fauvel, B.; Singer, M.; Feneyrolles, C.; Bestgen, B.; Gassiot, F.; Spenlinhauer, A.; Warnault, P.; Van Hijfte, N.; Borjini, N.; Chevé, G.; Yasri, A. Rational design, synthesis, and biological evaluation of 7-azaindole derivatives as potent focused multi-targeted kinase inhibitors. J. Med. Chem., 2016, 59(8), 3886-3905. [http://dx.doi.org/10.1021/acs.jmedchem.6b00087]. [PMID: 27010810].
[93]
Tang, Q.; Wang, L.; Duan, Y.; Wang, W.; Huang, S.; Zhi, J.; Jia, S.; Zhu, W.; Wang, P.; Luo, R.; Zheng, P. Discovery of novel 7-azaindole derivatives bearing dihydropyridazine moiety as c-Met kinase inhibitors. Eur. J. Med. Chem., 2017, 133, 97-106. [http://dx.doi.org/10.1016/j.ejmech.2017.03.045]. [PMID: 28384549].
[94]
Yang, C.; Zhang, X.; Wang, Y.; Yang, Y.; Liu, X.; Deng, M.; Jia, Y.; Ling, Y.; Meng, L.H.; Zhou, Y. Discovery of a novel series of 7-azaindole scaffold derivatives as PI3K inhibitors with potent activity. ACS Med. Chem. Lett., 2017, 8(8), 875-880. [http://dx.doi.org/10.1021/acsmedchemlett.7b00222]. [PMID: 28835805].
[95]
Feneyrolles, C.; Guiet, L.; Singer, M.; Van Hijfte, N.; Daydé-Cazals, B.; Fauvel, B.; Chevé, G.; Yasri, A. Discovering novel 7-azaindole-based series as potent AXL kinase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 862-866. [http://dx.doi.org/10.1016/j.bmcl.2017.01.015]. [PMID: 28094183].
[96]
Gul, H.I.; Kucukoglu, K.; Yamali, C.; Bilginer, S.; Yuca, H.; Ozturk, I.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis of 4-(2-substituted hydrazinyl)benzenesulfonamides and their carbonic anhydrase inhibitory effects. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 568-573. [http://dx.doi.org/10.3109/14756366.2015.1047359]. [PMID: 26044365].
[97]
Mete, E.; Comez, B.; Inci Gul, H.; Gulcin, I.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory activities of new thienyl-substituted pyrazoline benzenesulfonamides. J. Enzyme Inhib. Med. Chem, 2016, 31(sup2). , 1-5. [http://dx.doi.org/10.1080/14756366.2016.1181627] [PMID: 27435177]
[98]
Mishra, C.B.; Kumari, S.; Angeli, A.; Bua, S.; Tiwari, M.; Supuran, C.T. Discovery of benzenesulfonamide derivatives as carbonic anhydrase inhibitors with effective anticonvulsant action: Design, synthesis, and pharmacological evaluation. J. Med. Chem., 2018, 61(7), 3151-3165. [http://dx.doi.org/10.1021/acs.jmedchem.8b00208]. [PMID: 29566486].
[99]
Alsaid, M.S.; Al-Mishari, A.A.; Soliman, A.M.; Ragab, F.A.; Ghorab, M.M. Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Eur. J. Med. Chem., 2017, 141, 84-91. [http://dx.doi.org/10.1016/j.ejmech.2017.09.061]. [PMID: 29028534].
[100]
Szabadkai, I.; Torka, R.; Garamvölgyi, R.; Baska, F.; Gyulavári, P.; Boros, S.; Illyés, E.; Choidas, A.; Ullrich, A.; Őrfi, L. Discovery of N-[4-(Quinolin-4-yloxy)phenyl]benzenesulfonamides as Novel AXL Kinase Inhibitors. J. Med. Chem., 2018, 61(14), 6277-6292. [http://dx.doi.org/10.1021/acs.jmedchem.8b00672]. [PMID: 29928803].
[101]
Choi, M.J.; Roh, E.J.; Hur, W.; Lee, S.H.; Sim, T.; Oh, C-H.; Lee, S-H.; Kim, J.S.; Yoo, K.H. Design, synthesis, and biological evaluation of novel aminopyrimidinylisoindolines as AXL kinase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3761-3765. [http://dx.doi.org/10.1016/j.bmcl.2018.10.013]. [PMID: 30340900].
[102]
Tan, L.; Zhang, Z.; Gao, D.; Chan, S.; Luo, J.; Tu, Z-C.; Zhang, Z-M.; Ding, K.; Ren, X.; Lu, X. Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. Eur. J. Med. Chem., 2019, 166, 318-327. [http://dx.doi.org/10.1016/j.ejmech.2019.01.065]. [PMID: 30731400].
[103]
Wang, Y.; Xing, L.; Ji, Y.; Ye, J.; Dai, Y.; Gu, W.; Ai, J.; Song, Z. Discovery of a potent tyrosine kinase AXL inhibitor bearing the 3-((2,3,4,5-tetrahydro-1H-benzo[d]azepin-7-yl)amino)pyrazine core. Bioorg. Med. Chem. Lett., 2019, 29(6), 836-838. [http://dx.doi.org/10.1016/j.bmcl.2019.01.018]. [PMID: 30685094].
[104]
Goff, D.; Zhang, J.; Heckrodt, T.; Yu, J.; Ding, P.; Singh, R.; Holland, S.; Li, W.; Irving, M. Discovery of dual Axl/VEGF-R2 inhibitors as potential anti-angiogenic and anti-metastatic drugs for cancer chemotherapy. Bioorg. Med. Chem. Lett., 2017, 27(16), 3766-3771. [http://dx.doi.org/10.1016/j.bmcl.2017.06.071]. [PMID: 28711351].
[105]
Qi, B.; Yang, Y.; He, H.; Yue, X.; Zhou, Y.; Zhou, X.; Chen, Y.; Liu, M.; Zhang, A.; Wei, F. Identification of novel N1-(2-aryl-1, 3-thiazolidin-4-one)-N3-aryl ureas showing potent multi-tyrosine kinase inhibitory activities. Eur. J. Med. Chem., 2018, 146, 368-380. [http://dx.doi.org/10.1016/j.ejmech.2018.01.061]. [PMID: 29407963].
[106]
Qi, B.; Yang, Y.; Gong, G.; He, H.; Yue, X.; Xu, X.; Hu, Y.; Li, J.; Chen, T.; Wan, X.; Zhang, A.; Zhou, G. Discovery of N1-(4-((7-(3-(4-ethylpiperazin-1-yl)propoxy)-6-methoxyquinolin-4-yl)oxy)-3,5-difluorophenyl)-N3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)urea as a multi-tyrosine kinase inhibitor for drug-sensitive and drug-resistant cancers treatment. Eur. J. Med. Chem., 2019, 163, 10-27. [http://dx.doi.org/10.1016/j.ejmech.2018.11.057]. [PMID: 30503936].
[107]
Myers, S.H.; Temps, C.; Houston, D.R.; Brunton, V.G.; Unciti-Broceta, A. Development of potent inhibitors of receptor tyrosine kinases by ligand-based drug design and target-biased phenotypic screening. J. Med. Chem., 2018, 61(5), 2104-2110. [http://dx.doi.org/10.1021/acs.jmedchem.7b01605]. [PMID: 29466002].
[108]
Zhang, L.; Bu, T.; Bao, X.; Liang, T.; Ge, Y.; Xu, Y.; Zhu, Q. Design, synthesis and biological evaluation of novel 3H-imidazole [4,5-b] pyridine derivatives as selective mTOR inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(15), 3395-3398. [http://dx.doi.org/10.1016/j.bmcl.2017.06.010]. [PMID: 28633896].
[109]
Ghanem, N.M.; Farouk, F.; George, R.F.; Abbas, S.E.S.; El-Badry, O.M. Design and synthesis of novel imidazo[4,5-b]pyridine based compounds as potent anticancer agents with CDK9 inhibitory activity. Bioorg. Chem., 2018, 80, 565-576. [http://dx.doi.org/10.1016/j.bioorg.2018.07.006]. [PMID: 30025343].
[110]
An, X-D.; Liu, H.; Xu, Z-L.; Jin, Y.; Peng, X.; Yao, Y-M.; Geng, M.; Long, Y-Q. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization. Bioorg. Med. Chem. Lett., 2015, 25(3), 708-716. [http://dx.doi.org/10.1016/j.bmcl.2014.11.070]. [PMID: 25529740].
[111]
Baladi, T.; Aziz, J.; Dufour, F.; Abet, V.; Stoven, V.; Radvanyi, F.; Poyer, F.; Wu, T-D.; Guerquin-Kern, J-L.; Bernard-Pierrot, I.; Garrido, S.M.; Piguel, S. Design, synthesis, biological evaluation and cellular imaging of imidazo[4,5-b]pyridine derivatives as potent and selective TAM inhibitors. Bioorg. Med. Chem., 2018, 26(20), 5510-5530. [http://dx.doi.org/10.1016/j.bmc.2018.09.031]. [PMID: 30309671].
[112]
Sun, Z-G.; Yang, Y-A.; Zhang, Z-G.; Zhu, H-L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69. [http://dx.doi.org/10.1080/17460441.2019.1551355]. [PMID: 30518273].
[113]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541. [http://dx.doi.org/10.1038/nchem.2479]. [PMID: 27219696].
[114]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614. [http://dx.doi.org/10.1016/j.biotechadv.2015.08.001]. [PMID: 26281720].
[115]
Huang, C.; Huang, Y.L.; Wang, C.C.; Pan, Y.L.; Lai, Y.H.; Huang, H.C. Ampelopsins A and C induce apoptosis and metastasis through downregulating AxL, TYRO3, and FYN expressions in MDA-MB-231 breast cancer cells. J. Agric. Food Chem., 2019, 67(10), 2818-2830. [http://dx.doi.org/10.1021/acs.jafc.8b06444]. [PMID: 30789269].
[116]
Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R.; Phase, I.I. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res., 2008, 14(14), 4491-4499. [http://dx.doi.org/10.1158/1078-0432.CCR-08-0024]. [PMID: 18628464].
[117]
Johnson, J.J.; Mukhtar, H. Curcumin for chemoprevention of colon cancer. Cancer Lett., 2007, 255(2), 170-181. [http://dx.doi.org/10.1016/j.canlet.2007.03.005]. [PMID: 17448598].
[118]
Seo, J.A.; Kim, B.; Dhanasekaran, D.N.; Tsang, B.K.; Song, Y.S. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Lett., 2016, 371(1), 30-37. [http://dx.doi.org/10.1016/j.canlet.2015.11.021]. [PMID: 26607901].
[119]
Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; Chauhan, S.C. Curcumin Nanoformulation for cervical cancer treatment. Sci. Rep., 2016, 6, 20051. [http://dx.doi.org/10.1038/srep20051]. [PMID: 26837852].
[120]
Lin, C-C.; Kuo, C-L.; Huang, Y-P.; Chen, C-Y.; Hsu, M-J.; Chu, Y.L.; Chueh, F-S.; Chung, J-G. demethoxycurcumin suppresses migration and invasion of human cervical cancer HeLa cells via inhibition of NF-κB pathways. Anticancer Res., 2018, 38(5), 2761-2769. [PMID: 29715097].
[121]
Du, Z.; Sha, X. Demethoxycurcumin inhibited human epithelia ovarian cancer cells’ growth via up-regulating miR-551a. Tumour Biol., 2017, 39(3)1010428317694302 [http://dx.doi.org/10.1177/1010428317694302]. [PMID: 28345465].
[122]
Pei, H.; Yang, Y.; Cui, L.; Yang, J.; Li, X.; Yang, Y.; Duan, H. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci. Rep., 2016, 6, 28773. [http://dx.doi.org/10.1038/srep28773]. [PMID: 27349797].
[123]
Liao, C-L.; Chu, Y.L.; Lin, H-Y.; Chen, C-Y.; Hsu, M-J.; Liu, K-C.; Lai, K-C.; Huang, A-C.; Chung, J-G. Bisdemethoxycurcumin suppresses migration and invasion of human cervical cancer HeLa cells via inhibition of NF-ĸB, MMP-2 and -9 pathways. Anticancer Res., 2018, 38(7), 3989-3997. [http://dx.doi.org/10.21873/anticanres.12686]. [PMID: 29970522].
[124]
Fatima, G.; Loubna, A.; Wiame, L.; Azeddine, I. In Silico inhibition studies of AXL kinase by curcumin and its natural derivatives. J. Appl. Bioinforma. Comput. Biol., 2017, 6(3)1000142 [http://dx.doi.org/10.4172/2329-9533.1000142].
[125]
Qingzhi, Z.; Yacheng, Y.; Yaoyuan, Q.; Jiasu, L. Science-based innovation in china: A case study of artemisinin from laboratory to the market. J. Ind. Integr. Manag., 2018, 3(02)1850011 [http://dx.doi.org/10.1142/S2424862218500112].
[126]
Konstat-Korzenny, E.; Ascencio-Aragón, J.A.; Niezen-Lugo, S.; Vázquez-López, R. Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med. Sci., 2018, 6(1), 19. [http://dx.doi.org/10.3390/medsci6010019]. [PMID: 29495461].
[127]
Paccez, J.D.; Duncan, K.; Sekar, D.; Correa, R.G.; Wang, Y.; Gu, X.; Bashin, M.; Chibale, K.; Libermann, T.A.; Zerbini, L.F. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis, 2019, 8(3), 14. [http://dx.doi.org/10.1038/s41389-019-0122-6]. [PMID: 30783079].
[128]
Lim, S.M.; Syn, N.L.; Cho, B.C.; Soo, R.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat. Rev., 2018, 65, 1-10. [http://dx.doi.org/10.1016/j.ctrv.2018.02.006]. [PMID: 29477930].
[129]
Li, A.; Yang, J.J.; Zhang, X.C.; Zhang, Z.; Su, J.; Gou, L.Y.; Bai, Y.; Zhou, Q.; Yang, Z.; Han-Zhang, H.; Zhong, W-Z.; Chuai, S.; Zhang, Q.; Xie, Z.; Gao, H.; Chen, H.; Wang, Z.; Wang, Z.; Yang, X.N.; Wang, B.C.; Gan, B.; Chen, Z.H.; Jiang, B.Y.; Wu, S.P.; Liu, S.Y.; Xu, C.R.; Wu, Y.L.; Acquired, M.E.T. acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non-small cell lung cancer. Clin. Cancer Res., 2017, 23(16), 4929-4937. [http://dx.doi.org/10.1158/1078-0432.CCR-16-3273]. [PMID: 28396313].
[130]
Tricker, E.M.; Xu, C.; Uddin, S.; Capelletti, M.; Ercan, D.; Ogino, A.; Pratilas, C.A.; Rosen, N.; Gray, N.S.; Wong, K-K.; Jänne, P.A. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer. Cancer Discov., 2015, 5(9), 960-971. [http://dx.doi.org/10.1158/2159-8290.CD-15-0063]. [PMID: 26036643].
[131]
Huang, X.; Finerty, P., Jr; Walker, J.R.; Butler-Cole, C.; Vedadi, M.; Schapira, M.; Parker, S.A.; Turk, B.E.; Thompson, D.A.; Dhe-Paganon, S. Structural insights into the inhibited states of the Mer receptor tyrosine kinase. J. Struct. Biol., 2009, 165(2), 88-96. [http://dx.doi.org/10.1016/j.jsb.2008.10.003]. [PMID: 19028587].
[132]
Liu, J.; Yang, C.; Simpson, C.; Deryckere, D.; Van Deusen, A.; Miley, M.J.; Kireev, D.; Norris-Drouin, J.; Sather, S.; Hunter, D.; Korboukh, V.K.; Patel, H.S.; Janzen, W.P.; Machius, M.; Johnson, G.L.; Earp, H.S.; Graham, D.K.; Frye, S.V.; Wang, X. Discovery of small molecule Mer kinase inhibitors for the treatment of pediatric acute lymphoblastic leukemia. ACS Med. Chem. Lett., 2012, 3(2), 129-134. [http://dx.doi.org/10.1021/ml200239k]. [PMID: 22662287].
[133]
Zhang, W.; Zhang, D.; Stashko, M.A.; DeRyckere, D.; Hunter, D.; Kireev, D.; Miley, M.J.; Cummings, C.; Lee, M.; Norris-Drouin, J.; Stewart, W.M.; Sather, S.; Zhou, Y.; Kirkpatrick, G.; Machius, M.; Janzen, W.P.; Earp, H.S.; Graham, D.K.; Frye, S.V.; Wang, X. Pseudo-cyclization through intramolecular hydrogen bond enables discovery of pyridine substituted pyrimidines as new Mer kinase inhibitors. J. Med. Chem., 2013, 56(23), 9683-9692. [http://dx.doi.org/10.1021/jm401387j]. [PMID: 24195762].
[134]
Zhang, W.; McIver, A.L.; Stashko, M.A.; DeRyckere, D.; Branchford, B.R.; Hunter, D.; Kireev, D.; Miley, M.J.; Norris-Drouin, J.; Stewart, W.M.; Lee, M.; Sather, S.; Zhou, Y.; Di Paola, J.A.; Machius, M.; Janzen, W.P.; Earp, H.S.; Graham, D.K.; Frye, S.V.; Wang, X. Discovery of Mer specific tyrosine kinase inhibitors for the treatment and prevention of thrombosis. J. Med. Chem., 2013, 56(23), 9693-9700. [http://dx.doi.org/10.1021/jm4013888]. [PMID: 24219778].
[135]
Wang, X.; Liu, J.; Zhang, W.; Stashko, M.A.; Nichols, J.; Miley, M.J.; Norris-Drouin, J.; Chen, Z.; Machius, M.; DeRyckere, D.; Wood, E.; Graham, D.K.; Earp, H.S.; Kireev, D.; Frye, S.V. Design and synthesis of novel macrocyclic Mer tyrosine kinase inhibitors. ACS Med. Chem. Lett., 2016, 7(12), 1044-1049. [http://dx.doi.org/10.1021/acsmedchemlett.6b00221]. [PMID: 27994735].
[136]
McIver, A.L.; Zhang, W.; Liu, Q.; Jiang, X.; Stashko, M.A.; Nichols, J.; Miley, M.J.; Norris-Drouin, J.; Machius, M.; DeRyckere, D.; Wood, E.; Graham, D.K.; Earp, H.S.; Kireev, D.; Frye, S.V.; Wang, X. Discovery of macrocyclic pyrimidines as MerTK‐specific inhibitors. ChemMedChem, 2017, 12(3), 207-213. [http://dx.doi.org/10.1002/cmdc.201600589]. [PMID: 28032464].
[137]
Heiring, C.; Dahlbäck, B.; Muller, Y.A. Ligand recognition and homophilic interactions in Tyro3: Structural insights into the Axl/Tyro3 receptor tyrosine kinase family. J. Biol. Chem., 2004, 279(8), 6952-6958. [http://dx.doi.org/10.1074/jbc.M311750200]. [PMID: 14623883].
[138]
Powell, N.A.; Kohrt, J.T.; Filipski, K.J.; Kaufman, M.; Sheehan, D.; Edmunds, J.E.; Delaney, A.; Wang, Y.; Bourbonais, F.; Lee, D-Y.; Schwende, F.; Sun, F.; McConnell, P.; Catana, C.; Chen, H.; Ohren, J.; Perrin, L.A. Novel and selective spiroindoline-based inhibitors of Sky kinase. Bioorg. Med. Chem. Lett., 2012, 22(1), 190-193. [http://dx.doi.org/10.1016/j.bmcl.2011.11.036]. [PMID: 22119469].
[139]
Powell, N.A.; Hoffman, J.K.; Ciske, F.L.; Kaufman, M.D.; Kohrt, J.T.; Quin, J., III; Sheehan, D.J.; Delaney, A.; Baxi, S.M.; Catana, C.; McConnell, P.; Ohren, J.; Perrin, L.A.; Edmunds, J.J. Highly selective 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase. Bioorg. Med. Chem. Lett., 2013, 23(4), 1046-1050. [http://dx.doi.org/10.1016/j.bmcl.2012.12.013]. [PMID: 23312472].
[140]
Gajiwala, K.S.; Grodsky, N.; Bolaños, B.; Feng, J.; Ferre, R.; Timofeevski, S.; Xu, M.; Murray, B.W.; Johnson, T.W.; Stewart, A. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase. J. Biol. Chem., 2017, 292(38), 15705-15716. [http://dx.doi.org/10.1074/jbc.M116.771485]. [PMID: 28724631].
[141]
Mohammad, T.; Khan, F.I.; Lobb, K.A.; Islam, A.; Ahmad, F.; Hassan, M.I. Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). J. Biomol. Struct. Dyn., 2019, 37(7), 1813-1829. [http://dx.doi.org/10.1080/07391102.2018.1468282]. [PMID: 29683402].
[142]
Zhou, Y.; Zhang, W.; Liu, X.; Yu, H.; Lu, X.; Jiao, B. Inhibitors of protein tyrosine phosphatase 1B from marine natural products. Chem. Biodivers., 2017, 14(7)e1600462 [http://dx.doi.org/10.1002/cbdv.201600462]. [PMID: 28261970].
[143]
Chandel, P.; Rawal, R.K.; Kaur, R. Natural products and their derivatives as cyclooxygenase-2 inhibitors. Future Med. Chem., 2018, 10(20), 2471-2492. [http://dx.doi.org/10.4155/fmc-2018-0120]. [PMID: 30325206].
[144]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. [http://dx.doi.org/10.1021/acs.jnatprod.5b01055]. [PMID: 26852623].
[145]
Guo, Q.; Cao, H.; Qi, X.; Li, H.; Ye, P.; Wang, Z.; Wang, D.; Sun, M. Research progress in reversal of tumor multi-drug resistance via natural products. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents 2017, 79(3), 629-661.
[http://dx.doi.org/10.2174/1871520617666171016105704]
[146]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043. [http://dx.doi.org/10.1021/cr900019j]. [PMID: 19422222].
[147]
Montbriand, M.J. Herbs or natural products that decrease cancer growth part one of a four-part series. Oncol. Nurs. Forum, 2004, 31(4), E75-E90. [http://dx.doi.org/10.1188/04.ONF.E75-E90]. [PMID: 15252440].
[148]
Kumazawa, Y.; Takimoto, H.; Matsumoto, T.; Kawaguchi, K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des., 2014, 20(6), 857-863. [http://dx.doi.org/10.2174/138161282006140220120344]. [PMID: 23701564].
[149]
Wu, S-L.; Yu, L.; Meng, K-W.; Ma, Z-H.; Pan, C-E. Resveratrol prolongs allograft survival after liver transplantation in rats. World J. Gastroenterol., 2005, 11(30), 4745-4749. [http://dx.doi.org/10.3748/wjg.v11.i30.4745]. [PMID: 16094722].
[150]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207. [http://dx.doi.org/10.1016/j.drudis.2015.01.009]. [PMID: 25617672].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 15
Year: 2019
Page: [1338 - 1349]
Pages: 12
DOI: 10.2174/1568026619666190620155613
Price: $58

Article Metrics

PDF: 20
HTML: 2
EPUB: 1
PRC: 1