Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

In Vitro and In Vivo Antifilarial Activity of Standardized Extract of Calotropis procera Flowers against Brugia malayi

Author(s): Vikas Kushwaha, Subha Rastogi, Madan Mohan Pandey, Kirti Saxena, Sayyada Khatoon, Ajay Kumar Singh Rawat and P. Kaplana Murthy*

Volume 19, Issue 14, 2019

Page: [1252 - 1262] Pages: 11

DOI: 10.2174/1568026619666190620154054

Price: $65

Abstract

Background: Lymphatic filariasis (LF) is a parasitic disease that causes permanent disability (elephantiasis). Currently used antifilarial drugs are failing to control LF and there is resurgence in some areas. Looking for new antifilarial leads, we found that Calotropis procera plant parts have been used in traditional medicine for alleviating elephantiasis but the antifilarial activity is not known.

Objective: In the present study, the antifilarial activity of ethanolic extract (A001) and its hexane fraction (F001) of C. procera flowers was investigated using the human filarial parasite Brugia malayi.

Methods: A001 and F001 were tested for antifilarial activity using motility and 3-(4,5-dimethylthiazol-2- yl)-2,5 diphenyltetrazolium bromide (MTT) assays (in vitro) and in the rodent models B. malayi- Meriones unguiculatus and B. malayi-Mastomys coucha. In the rodent models, A001 and F001 were administered orally for 5 consecutive days, and the adult worm burden and course of microfilaraemia were determined.

Results: Both A001 and F001 showed microfilaricidal and macrofilaricidal activity in vitro. In animal models, A001 killed ~49-54% adult worms. In M. coucha model, F001 killed 12-60% adult worms in a dose (125-500 mg/kg) dependent manner; A001 and F001 suppressed microfilaraemia till days 91 and 35 post initiation of treatment, respectively. HPTLC revealed 0.61% lupeol, 0.50% β-sitosterol and 1.50% triacontanol in F001.

Conclusion: Flowers of C. procera have definite microfilaricidal and macrofilaricidal activities. Whether this activity is due to lupeol, β-sitosterol and triacontanol found in the hexane fraction remains to be investigated. This is the first report on the antifilarial efficacy of flowers of the plant C. procera.

Keywords: Calotropis procera, Brugia malayi, In vitro assays, Mastomys coucha, Meriones unguiculatus, Macrofilaricide, Diethylcarbamazine, Ivermectin, HPTLC.

Graphical Abstract
[1]
Perera, M.; Whitehead, M.; Molyneux, D.; Weerasooriya, M.; Gunatilleke, G. Neglected patients with a neglected disease? A qualitative study of lymphatic filariasis. PLoS Negl. Trop. Dis., 2007, 1(2)e128
[http://dx.doi.org/10.1371/journal.pntd.0000128] [PMID: 18060080]
[2]
Global programme to eliminate lymphatic filariasis: Progress report, 2015. Wkly. Epidemiol. Rec., 2016, 91(39), 441-455.
[PMID: 27758091]
[3]
Ramaiah, K.D.; Ottesen, E.A. Progress and impact of 13 years of the global programme to eliminate lymphatic filariasis on reducing the burden of filarial disease. PLoS Negl. Trop. Dis., 2014, 8(11)e3319
[http://dx.doi.org/10.1371/journal.pntd.0003319] [PMID: 25412180]
[4]
Raju, K.; Jambulingam, P.; Sabesan, S.; Vanamail, P. Lymphatic filariasis in India: Epidemiology and control measures. J. Postgrad. Med., 2010, 56(3), 232-238.
[http://dx.doi.org/10.4103/0022-3859.68650] [PMID: 20739779]
[5]
Molyneux, D.H.; Bradley, M.; Hoerauf, A.; Kyelem, D.; Taylor, M.J. Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends Parasitol., 2003, 19(11), 516-522.
[http://dx.doi.org/10.1016/j.pt.2003.09.004] [PMID: 14580963]
[6]
Ichimori, K.; King, J.D.; Engels, D.; Yajima, A.; Mikhailov, A.; Lammie, P.; Ottesen, E.A. Global programme to eliminate lymphatic filariasis: The processes underlying programme success. PLoS Negl. Trop. Dis., 2014, 8(12)e3328
[http://dx.doi.org/10.1371/journal.pntd.0003328] [PMID: 25502758]
[7]
Molyneux, D.H.; Savioli, L.; Engels, D. Neglected tropical diseases: Progress towards addressing the chronic pandemic. Lancet, 2017, 389(10066), 312-325.
[http://dx.doi.org/10.1016/S0140-6736(16)30171-4] [PMID: 27639954]
[8]
Rao, R.U.; Samarasekera, S.D.; Nagodavithana, K.C.; Dassanayaka, T.D.M.; Punchihewa, M.W.; Ranasinghe, U.S.B.; Weil, G.J. Reassessment of areas with persistent lymphatic filariasis nine years after cessation of mass drug administration in Sri Lanka. PLoS Negl. Trop. Dis., 2017, 11(10)e0006066
[http://dx.doi.org/10.1371/journal.pntd.0006066] [PMID: 29084213]
[9]
Sashidhara, K.V.; Kumar, A.; Rao, K.B.; Kushwaha, V.; Saxena, K.; Murthy, P.K. In vitro and in vivo antifilarial activity evaluation of 3,6-epoxy [1,5]dioxocines: A new class of antifilarial agents. Bioorg. Med. Chem. Lett., 2012, 22(4), 1527-1532.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.009] [PMID: 22284816]
[10]
Murthy, P.K.; Khan, M.A.; Rajani, H.B.; Srivastava, V.M.L. Preadult stage of parasite is involved in the development of filarial limb edema in Brugia malayi-infected Indian leaf monkey (Presbytis entellus). Clin. Diagn. Lab. Immunol., 2002, 9(4), 913-918.
[PMID: 12093695]
[11]
Babu, S.; Nutman, T.B. Immunopathogenesis of lymphatic filarial disease. Semin. Immunopathol., 2012, 34(6), 847-861.
[http://dx.doi.org/10.1007/s00281-012-0346-4] [PMID: 23053393]
[12]
Lustigman, S.; McCarter, J.P. Ivermectin resistance in Onchocerca volvulus: Toward a genetic basis. PLoS Negl. Trop. Dis., 2007, 1(1)e76
[http://dx.doi.org/10.1371/journal.pntd.0000076] [PMID: 17989789]
[13]
Schwab, A.E.; Boakye, D.A.; Kyelem, D.; Prichard, R.K. Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am. J. Trop. Med. Hyg., 2005, 73(2), 234-238.
[http://dx.doi.org/10.4269/ajtmh.2005.73.234] [PMID: 16103581]
[14]
Chatterjee, R.K.; Fatma, N.; Murthy, P.K.; Sinha, P.; Kulshrestha, D.K.; Dhawan, B.N. Macrofilaricidal activity of the stembark of Streblus asper and its major active constituents. Drug Dev. Res., 1992, 26(1), 67-68.
[http://dx.doi.org/10.1002/ddr.430260106]
[15]
Yadav, D.; Singh, S.C.; Verma, R.K.; Saxena, K.; Verma, R.; Murthy, P.K.; Gupta, M.M. Antifilarial diarylheptanoids from Alnus nepalensis leaves growing in high altitude areas of Uttarakhand, India. Phytomedicine, 2013, 20(2), 124-132.
[http://dx.doi.org/10.1016/j.phymed.2012.10.017] [PMID: 23219341]
[16]
Kushwaha, V.; Saxena, K.; Verma, R.; Verma, S.K.; Katoch, D.; Kumar, N.; Lal, B.; Murthy, P.K.; Singh, B. Antifilarial activity of diterpenoids from Taxodium distichum. Parasit. Vectors, 2016, 9(1), 312-322.
[http://dx.doi.org/10.1186/s13071-016-1592-4] [PMID: 27245322]
[17]
Singh, R.K.; Mittal, P.K.; Dhiman, R.C. Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae. J. Commun. Dis., 2005, 37(2), 109-113.
[PMID: 16749273]
[18]
Verma, R.; Satsangi, G.P.; Shrivastava, J.N. Ethno-Medicinal profile of different plant parts of Calotropis procera (Ait.). R. Br. Ethnobotanical Leaflets, 2010, 14, 721-742.
[19]
Murthy, P.K.; Tyagi, K.; Roy Chowdhury, T.K.; Sen, A.B. Susceptibility of Mastomys natalensis (GRA strain) to a subperiodic strain of human Brugia malayi. Indian J. Med. Res., 1983, 77, 623-630.
[PMID: 6618535]
[20]
Murthy, P.K.; Murthy, P.S.; Tyagi, K.; Chatterjee, R.K. Fate of infective larvae of Brugia malayi in the peritoneal cavity of Mastomys natalensis and Meriones unguiculatus. Folia Parasitol. (Praha), 1997, 44(4), 302-304.
[PMID: 9437845]
[21]
Murthy, P.K.; Chatterjee, R.K. Evaluation of two in vitro test systems employing Brugia malayi parasite for screening of potential antifilarials. Curr. Sci., 1999, 77, 1084-1089.
[22]
Lakshmi, V.; Joseph, S.K.; Srivastava, S.; Verma, S.K.; Sahoo, M.K.; Dube, V.; Mishra, S.K.; Murthy, P.K. Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi. Acta Trop., 2010, 116(2), 127-133.
[http://dx.doi.org/10.1016/j.actatropica.2010.06.006] [PMID: 20609356]
[23]
Page, B.; Page, M.; Noel, C. A new fluorometric assay for cytotoxicity measurements in-vitro. Int. J. Oncol., 1993, 3(3), 473-476.
[http://dx.doi.org/10.3892/ijo.3.3.473] [PMID: 21573387]
[24]
Huber, W.; Koella, J.C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop., 1993, 55(4), 257-261.
[http://dx.doi.org/10.1016/0001-706X(93)90083-N] [PMID: 8147282]
[25]
Murthy, P.K.; Joseph, S.K.; Abbas, M.; Murthy, P.S.R. Pathobiology of lymphatic filariasis: Understanding at molecular level. Proc. Nat. Acad. Sci. India, 2009, 79(special issue), 177-194.
[26]
Tyagi, K.; Murthy, P.K.; Sen, A.B. Sequential changes in the antibody response of Mastomys natalensis consequent to Brugia malayi infection. Indian J. Med. Res., 1985, 81, 269-274.
[PMID: 3894227]
[27]
Murthy, P.K.; Agarwal, A.; Katiyar, J.C.; Sahib, M.K. Immune response patterns in different stages of active Brugia malayi infection in Mastomys coucha. Indian J. Parasit. Dis., 1995, 19, 135-140.
[28]
Gaur, R.L.; Sahoo, M.K.; Dixit, S.; Fatma, N.; Rastogi, S.; Kulshreshtha, D.K.; Chatterjee, R.K.; Murthy, P.K. Antifilarial activity of Caesalpinia bonducella against experimental filarial infections. Indian J. Med. Res., 2008, 128(1), 65-70.
[PMID: 18820361]
[29]
Tripathi, R.P.; Tiwari, V.K.; Misra-Bhattacharya, S.; Tyagi, K.; Srivastava, V.M.; Murthy, P.K. 7-O-[4-methyl piperazine-1-(2-acetyl)]-2H-1-benzopyran-2-one: a novel antifilarial lead compound. Acta Trop., 2003, 87(2), 215-224.
[http://dx.doi.org/10.1016/S0001-706X(03)00066-4] [PMID: 12826297]
[30]
Edeson, J.F.; Laing, A.B. Studies on filariasis in Malaya: the effect of diethylcarbamazine on Brugia malayi and B. pahangi in domestic cats. Ann. Trop. Med. Parasitol., 1959, 53(4), 394-399.
[http://dx.doi.org/10.1080/00034983.1959.11685938] [PMID: 13819289]
[31]
Wilson, T. Hetrazan in the treatment of filariasis due to Wuchereria malayi. Trans. R. Soc. Trop. Med. Hyg., 1950, 44(1), 49-66.
[http://dx.doi.org/10.1016/0035-9203(50)90071-X] [PMID: 15443040]
[32]
Sashidhara, K.V.; Rao, K.B.; Kushwaha, V.; Modukuri, R.K.; Verma, R.; Murthy, P.K. Synthesis and antifilarial activity of chalcone-thiazole derivatives against a human lymphatic filarial parasite, Brugia malayi. Eur. J. Med. Chem., 2014, 81, 473-480.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.029] [PMID: 24863844]
[33]
Ottesen, E.A.; Ismail, M.M.; Horton, J. The role of albendazole in programmes to eliminate lymphatic filariasis. In: Parasitol. Today (Regul. Ed.); , 1999; 15, pp. (9)382-386.
[http://dx.doi.org/10.1016/S0169-4758(99)01486-6] [PMID: 10461168]
[34]
Gallo, Margareth B.C.; Sarachine, Miranda J. Biological activity of Lupeol. Int. J. Biomed. Pharm. Sci., 2009, 3(special issue 1), 46-66.
[35]
Wilt, T.; Ishani, A.; MacDonald, R.; Stark, G.; Mulrow, C.; Lau, J. Beta-sitosterols for benign prostatic hyperplasia. Cochrane Database Syst. Rev., 2000, 2CD001043
[http://dx.doi.org/10.1002/14651858.CD001043] [PMID: 10796740]
[36]
Kim, T.H.; Lim, H.J.; Kim, M.S.; Lee, M.S. Dietary supplements for benign prostatic hyperplasia: An overview of systematic reviews. Maturitas, 2012, 73(3), 180-185.
[http://dx.doi.org/10.1016/j.maturitas.2012.07.007] [PMID: 22883375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy