Applications of Molecular Simulation in the Discovery of Antituberculosis Drugs: A Review

Author(s): Jian-Ping Hu, Zhi-Xiang Wu, Tao Xie, Xin-Yu Liu, Xiao Yan, Xin Sun, Wei Liu, Li Liang, Gang He, Ya Gan, Xiao-Jun Gou, Zheng Shi, Qiang Zou, Hua Wan, Hu-Bing Shi*, Shan Chang*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

After decades of efforts, tuberculosis has been well controlled in most places. The existing drugs are no longer sufficient for the treatment of drug-resistant Mycobacterium tuberculosis due to significant toxicity and selective pressure, especially for XDR-TB. In order to accelerate the development of high-efficiency, low-toxic antituberculosis drugs, it is particularly important to use Computer Aided Drug Design (CADD) for rational drug design. Here, we systematically reviewed the specific role of molecular simulation in the discovery of new antituberculosis drugs.

The purpose of this review is to overview current applications of molecular simulation methods in the discovery of antituberculosis drugs. Furthermore, the unique advantages of molecular simulation was discussed in revealing the mechanism of drug resistance.

The comprehensive use of different molecular simulation methods will help reveal the mechanism of drug resistance and improve the efficiency of rational drug design.

With the help of molecular simulation methods such as QM/MM method, the mechanisms of biochemical reactions catalyzed by enzymes at atomic level in Mycobacterium tuberculosis has been deeply analyzed. QSAR and virtual screening both accelerate the development of highefficiency, low-toxic potential antituberculosis drugs. Improving the accuracy of existing algorithms and developing more efficient new methods for CADD will always be a hot topic in the future. It is of great value to utilize molecular dynamics simulation to investigate complex systems that cannot be studied in experiments, especially for drug resistance of Mycobacterium tuberculosis.

Keywords: Mycobacterium tuberculosis, molecular simulation, computer aided drug design, inhibition mechanism, drug resistance, cell wall.

[1]
Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med., 2013, 368(8), 745-755.
[http://dx.doi.org/10.1056/NEJMra1200894] [PMID: 23425167]
[2]
Schaaf, S.; Zumla, A. Tuberculosis: A comprehensive clinical reference. JAMA, 2009, 302, 2488-2489.
[http://dx.doi.org/10.1001/jama.2009.1815]
[3]
Hershkovitz, I.; Donoghue, H.D.; Minnikin, D.E.; May, H.; Lee, O.Y.; Feldman, M.; Galili, E.; Spigelman, M.; Rothschild, B.M.; Bar-Gal, G.K. Tuberculosis origin: The Neolithic scenario. Tuberculosis (Edinb.), 2015, 95(Suppl. 1), S122-S126.
[http://dx.doi.org/10.1016/j.tube.2015.02.021] [PMID: 25726364]
[4]
Sakula, A. Centenary of the discovery of the tubercle bacillus. Lancet, 1982, 1(8274), 750.
[http://dx.doi.org/10.1016/S0140-6736(82)92671-X] [PMID: 6122049]
[5]
World Health OrganizationGlobal tuberculosis report 2012; WHO, 2012.
[6]
Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M.C. Consensus statement. Global burden of tuberculosis: Estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA, 1999, 282(7), 677-686.
[http://dx.doi.org/10.1001/jama.282.7.677] [PMID: 10517722]
[7]
Diel, R.; Loddenkemper, R.; Zellweger, J.P.; Sotgiu, G.; D’Ambrosio, L.; Centis, R.; van der Werf, M.J.; Dara, M.; Detjen, A.; Gondrie, P.; Reichman, L.; Blasi, F.; Migliori, G.B.; Giovanni, B.M. Old ideas to innovate tuberculosis control: Preventive treatment to achieve elimination. Eur. Respir. J., 2013, 42(3), 785-801.
[http://dx.doi.org/10.1183/09031936.00205512] [PMID: 23397299]
[8]
Schatz, A.; Bugie, E.; Waksman, S.A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. Med., 1944, 55, 66-69.
[http://dx.doi.org/10.3181/00379727-55-14461]
[9]
Wassersug, J.D. Pulmonary tuberculosis. N. Engl. J. Med., 1946, 235(7), 220-229.
[http://dx.doi.org/10.1056/NEJM194608152350704] [PMID: 21001772]
[10]
Wax, R.; Lewis, K.; Salyers, A.; Taber, H. Bacterial resistance to antimicrobials, 2nd ed; CRC Press: Boca Raton, FL, 2008.
[11]
Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E., III; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011, 333(6049), 1630-1632.
[http://dx.doi.org/10.1126/science.1208813] [PMID: 21835980]
[12]
Blumberg, H.M.; Burman, W.J.; Chaisson, R.E.; Daley, C.L.; Etkind, S.C.; Friedman, L.N.; Fujiwara, P.; Grzemska, M.; Hopewell, P.C.; Iseman, M.D.; Jasmer, R.M.; Koppaka, V.; Menzies, R.I.; O’Brien, R.J.; Reves, R.R.; Reichman, L.B.; Simone, P.M.; Starke, J.R.; Vernon, A.A. Treatment of tuberculosis. Am. J. Respir. Crit. Care Med., 2003, 167(4), 603-662.
[http://dx.doi.org/10.1164/rccm.167.4.603] [PMID: 12588714]
[13]
World Health Organization Treatment of tuberculosis guidelines. In: Guidelines for treatment of tuberculosis. WHO, 4th ed; , 2010.
[14]
Tuberculosis Coalition for Technical Assistance.International standards for tuberculosis care (ISTC), 2nd ed; Tuberculosis Coalition for Technical Assistance, 2009.
[15]
World Health Organization.Considerations for adoption and use of multidisease testing devices in integrated laboratory networks; WHO Geneva, 2017.
[16]
World Health OrganizationWHO treatment guidelines for drug-resistant tuberculosis; WHO Geneva, 2016.
[17]
Jacobson, K.R.; Tierney, D.B.; Jeon, C.Y.; Mitnick, C.D.; Murray, M.B. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin. Infect. Dis., 2010, 51(1), 6-14.
[http://dx.doi.org/10.1086/653115] [PMID: 20504231]
[18]
Migliori, G.B.; Sotgiu, G.; Gandhi, N.R.; Falzon, D.; De-Riemer, K. Centis1, R.; Hollm-Delgado, M.G.; Palmero, D.; Pérez-Guzmán, C.; Vargas, M.H.; Ambrosio1, L.D.; Spanevello, A.; Bauer, M.; Chan, E.D.; Schaaf, H.S.; Keshavjee, S.; Holtz, T.H.; Menzies, D. “The collaborative group for meta-analysis of individual patient data in MDR-TB”. Drug resistance beyond XDR-TB: results from a large individual patient data meta-analysis. Eur. Respir. J., 2013, 42, 169-179.
[http://dx.doi.org/10.1183/09031936.00136312] [PMID: 23060633]
[19]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[20]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[21]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des, 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[22]
Ou-Yang, S.S.; Lu, J.Y.; Kong, X.Q.; Liang, Z.J.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 33(9), 1131-1140.
[http://dx.doi.org/10.1038/aps.2012.109] [PMID: 22922346]
[23]
Warshel, A.; Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol., 1976, 103(2), 227-249.
[http://dx.doi.org/10.1016/0022-2836(76)90311-9] [PMID: 985660]
[24]
McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature, 1977, 267(5612), 585-590.
[http://dx.doi.org/10.1038/267585a0] [PMID: 301613]
[25]
Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz-Jr, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-moleculars. J. Am. Chem. Soc., 1995, 117, 5179-5197.
[http://dx.doi.org/10.1021/ja00124a002]
[26]
Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. Charmm – a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 1983, 4, 187-217.
[http://dx.doi.org/10.1002/jcc.540040211]
[27]
Scott, W.R.; Hunenberger, P.H.; Tironi, I.G.; Mark, A.E.; Billeter, S.R.; Fennen, J.; Torda, A.E.; Huber, T.; Kruger, P.; Van-Gunsteren, W.F. The gromos biomolecular simulation program package. J. Phys. Chem. A, 1999, 103, 3596-3607.
[http://dx.doi.org/10.1021/jp984217f]
[28]
Jorgensen, W.L.; Tiradorives, J. The OPLS potential functions for proteins-energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem. Soc., 1988, 110, 1657-1666.
[http://dx.doi.org/10.1021/ja00214a001] [PMID: 27557051]
[29]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23, 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[30]
Berendsen, H.J.C.; Postma, J.P.M.; van-Gunsteren, W.F.; Di-Nola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81, 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[31]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[32]
Berendsen, H.J.C.; Spoel, D.V.D.; Drunen, R.V. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91, 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[33]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[34]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[35]
Mccammon, J.A.; Karplus, M. The dynamic picture of protein structure. Acc. Chem. Res., 1983, 16, 187-193.
[http://dx.doi.org/10.1021/ar00090a001]
[36]
Tuckerman, M.E.; Martyna, G.J. Understanding modern molecular dynamics: Techniques and applications. J. Phys. Chem. B, 2000, 104, 159-178.
[http://dx.doi.org/10.1021/jp992433y]
[37]
Cheatham, T.E., III; Kollman, P.A. Molecular dynamics simulation of nucleic acids. Annu. Rev. Phys. Chem., 2000, 51, 435-471.
[http://dx.doi.org/10.1146/annurev.physchem.51.1.435] [PMID: 11031289]
[38]
Leach, A.R. Molecular Modeling. In: Prentice Hall, 2nd ed; Pearson: Harlow,; , 2001.
[39]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615.
[http://dx.doi.org/10.1021/cr040426m] [PMID: 16683746]
[40]
Head-Gordon, M. Quantum chemistry and molecular processes. J. Phys. Chem., 1996, 100, 13213-13225.
[http://dx.doi.org/10.1021/jp953665+]
[41]
Siegbahn, P.E.M.; Blomberg, M.R.A. Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. Chem. Rev., 2000, 100(2), 421-438.
[http://dx.doi.org/10.1021/cr980390w] [PMID: 11749242]
[42]
Parr, R.G.; Yang, W. Density functional theory of atoms and molecules. In:; Oxford University Press: New York, 1989.
[43]
Hariharan, P.; Pople, J.A. Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol. Phys., 1974, 27, 209-214.
[http://dx.doi.org/10.1080/00268977400100171]
[44]
Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem., 1990, 94, 8897-8909.
[http://dx.doi.org/10.1021/j100389a010]
[45]
Svensson, M.; Humbel, S.; Froese, R.D.J.; Matsubara, T.; Sieber, S.; Morokuma, K. ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J. Phys. Chem., 1996, 100, 19357-19363.
[http://dx.doi.org/10.1021/jp962071j]
[46]
Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985, 107, 3902-3909.
[http://dx.doi.org/10.1021/ja00299a024]
[47]
Stewart, J.J.P. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model., 2004, 10(2), 155-164.
[http://dx.doi.org/10.1007/s00894-004-0183-z] [PMID: 14997367]
[48]
Shukla, R.; Shukla, H.; Sonkar, A.; Pandey, T.; Tripathi, T. Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J. Biomol. Struct. Dyn., 2018, 36(8), 2045-2057.
[http://dx.doi.org/10.1080/07391102.2017.1341337] [PMID: 28605994]
[49]
Singh, N.; Tiwari, S.; Srivastava, K.K.; Siddiqi, M.I. Identification of novel inhibitors of Mycobacterium tuberculosis PknG using pharmacophore based virtual screening, docking, molecular dynamics simulation, and their biological evaluation. J. Chem. Inf. Model., 2015, 55(6), 1120-1129.
[http://dx.doi.org/10.1021/acs.jcim.5b00150] [PMID: 25965448]
[50]
Saxena, S.; Abdullah, M.; Sriram, D.; Guruprasad, L. Discovery of novel inhibitors of Mycobacterium tuberculosis MurG: homology modelling, structure based pharmacophore, molecular docking, and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2018, 36(12), 3184-3198.
[http://dx.doi.org/10.1080/07391102.2017.1384398] [PMID: 28948866]
[51]
Shukla, H.; Shukla, R.; Sonkar, A.; Tripathi, T. Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of Mycobacterium tuberculosis isocitrate lyase. Biochem. Biophys. Res. Commun., 2017, 490(2), 276-282.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.036] [PMID: 28610921]
[52]
Supriya, H.; Inderpal, S.; Preeti, S.; Anshul, U.; Yugal, K.; Vijeshwar, V.; Vladimir, N.U.; Ratna, C. Molecular dynamics analysis of the effects of GTP, GDP and benzimidazole derivative on structural dynamics of a cell division protein FtsZ from Mycobacterium tuberculosis. J. Biomol. Struct. Dyn., 2019.
[http://dx.doi.org/10.1080/07391102.2018.1548979]
[53]
Aditi, S.; Pallavi, S.; Abhinav, G. Pyrazinamide drug resistance in RpsA mutant (∆438A) of Mycobacterium tuberculosis: Dynamics of essential motions and free‐energy landscape analysis. J. Cell. Biochem., 2019, 120, 7386-7402.
[http://dx.doi.org/10.1002/jcb.28013]
[54]
Sharma, P.; Nandi, R.; Gangopadhyay, D.; Singh, A.; Singh, R.K. Temperature dependent polymorphism of pyrazinamide: An in situ Raman and DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 190, 177-180.
[http://dx.doi.org/10.1016/j.saa.2017.09.016] [PMID: 28922644]
[55]
Kuheli, D.; Sanchita, G.; Belete, B.B.; Amogne, W.Y.; Chiara, M.; Eugenio, G.; Antonio, F.; Zerrin, C.; Tulin, A.; Amitabha, D. Spectral, electrochemical and DFT studies of a trimetallic Cu (II) derivative: Antimycobacterial and cytotoxic activity. Inorg. Chim. Acta, 2019, 490, 155-162.
[http://dx.doi.org/10.1016/j.ica.2019.03.014]
[56]
Jamelah, S.A.Y.; Sheena, M.Y.; Shyma, M.; Yohannan, P.; Renjith, T. Cocrystals of pyrazinamide with p-toluenesulfonic and ferulic acids: DFT investigations and molecular docking studies. J. Mol. Struct., 2019, 1175, 916-926.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.055]
[57]
Ribeiro-Claro, P.J.A.; Vaz, P.D.; Nolasco, M.M.; Amado, A.M. Understanding the vibrational spectra of crystalline isoniazid: Raman, IR and INS spectroscopy and solid-state DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 204, 452-459.
[http://dx.doi.org/10.1016/j.saa.2018.06.073] [PMID: 29966900]
[58]
Reyes, Y.I.A.; Janairo, G.C.; Franco, F.C. Jr Theoretical insights on the binding of isoniazid to the active site residues of Mycobacterium tuberculosis catalase-peroxidase. Tuberculosis (Edinb.), 2019, 114, 61-68.
[http://dx.doi.org/10.1016/j.tube.2018.11.005] [PMID: 30711159]
[59]
Lawan, N.; Chasing, P.; Santatiwongchai, J.; Muangpil, S. QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis. J. Mol. Graph. Model., 2019, 87, 250-256.
[http://dx.doi.org/10.1016/j.jmgm.2018.12.011] [PMID: 30594033]
[60]
Tolufashe, G.F.; Sabe, V.T.; Ibeji, C.U.; Lawal, M.M.; Govender, T.; Maguire, G.E.M.; Lamichhane, G.; Kruger, H.G.; Honarparvar, B. Inhibition mechanism of L,D-transpeptidase 5 in presence of the β-lactams using ONIOM method. J. Mol. Graph. Model., 2019, 87, 204-210.
[http://dx.doi.org/10.1016/j.jmgm.2018.11.009] [PMID: 30554066]
[61]
Senn, H.M.; Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. Engl., 2009, 48(7), 1198-1229.
[http://dx.doi.org/10.1002/anie.200802019] [PMID: 19173328]
[62]
Dover, L.G.; Coxon, G.D. Current status and research strategies in tuberculosis drug development. J. Med. Chem., 2011, 54(18), 6157-6165.
[http://dx.doi.org/10.1021/jm200305q] [PMID: 21823589]
[63]
Barry, C.E.; Crick, D.C.; McNeil, M.R. Targeting the formation of the cell wall core of M. tuberculosis. Infect. Disord. Drug Targets, 2007, 7(2), 182-202.
[http://dx.doi.org/10.2174/187152607781001808] [PMID: 17970228]
[64]
Kremer, L.; Dover, L.G.; Morehouse, C.; Hitchin, P.; Everett, M.; Morris, H.R.; Dell, A.; Brennan, P.J.; McNeil, M.R.; Flaherty, C.; Duncan, K.; Besra, G.S. Galactan biosynthesis in Mycobacterium tuberculosis. Identification of a bifunctional UDP-galactofurano-syltransferase. J. Biol. Chem., 2001, 276(28), 26430-26440.
[http://dx.doi.org/10.1074/jbc.M102022200] [PMID: 11304545]
[65]
Rose, N.L.; Completo, G.C.; Lin, S.J.; McNeil, M.; Palcic, M.M.; Lowary, T.L. Expression, purification, and characterization of a galactofuranosyltransferase involved in Mycobacterium tuberculosis arabinogalactan biosynthesis. J. Am. Chem. Soc., 2006, 128(20), 6721-6729.
[http://dx.doi.org/10.1021/ja058254d] [PMID: 16704275]
[66]
Belánová, M.; Dianisková, P.; Brennan, P.J.; Completo, G.C.; Rose, N.L.; Lowary, T.L.; Mikusová, K. Galactosyl transferases in mycobacterial cell wall synthesis. J. Bacteriol., 2008, 190(3), 1141-1145.
[http://dx.doi.org/10.1128/JB.01326-07] [PMID: 18055597]
[67]
Brown, C.D.; Rusek, M.S.; Kiessling, L.L. Fluorosugar chain termination agents as probes of the sequence specificity of a carbohydrate polymerase. J. Am. Chem. Soc., 2012, 134(15), 6552-6555.
[http://dx.doi.org/10.1021/ja301723p] [PMID: 22458542]
[68]
Poulin, M.B.; Lowary, T.L. Chemical insight into the mechanism and specificity of glfT2, a bifunctional galactofuranosyltransferase from Mycobacteria. J. Org. Chem., 2016, 81(18), 8123-8130.
[http://dx.doi.org/10.1021/acs.joc.6b01501] [PMID: 27557056]
[69]
Janoš, P.; Kozmon, S.; Tvaroška, I.; Koča, J. How Mycobacterium tuberculosis galactofuranosyl transferase 2 (GlfT2) generates alternating β-(1–6) and β-(1–5) linkages: a QM/MM molecular dynamics study of the chemical steps. Chemistry, 2018, 24(27), 7051-7059.
[http://dx.doi.org/10.1002/chem.201800558] [PMID: 29575294]
[70]
Yamatsugu, K.; Splain, R.A.; Kiessling, L.L. Fidelity and promiscuity of a mycobacterial glycosyltransferase. J. Am. Chem. Soc., 2016, 138(29), 9205-9211.
[http://dx.doi.org/10.1021/jacs.6b04481] [PMID: 27302377]
[71]
Schramm, V.L. Targeting the briefest moment in chemistry may lead to an exceptionally strong new class of drugs., 2012.Available from: https://www.the-scientist.com/features/freezing-time-41066.
[72]
Pan, Q.; Yao, Y.; Li, Z.S. Theoretical study of the reaction mechanism of Mycobacterium tuberculosis type II dehydroquinate dehydratase. Comput. Theor. Chem., 2012, 1001, 60-66.
[http://dx.doi.org/10.1016/j.comptc.2012.10.009]
[73]
Bentley, R.; Haslam, E. The shikimate pathway--a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol., 1990, 25(5), 307-384.
[http://dx.doi.org/10.3109/10409239009090615] [PMID: 2279393]
[74]
Marques, M.R.; Pereira, J.H.; Oliveira, J.S.; Basso, L.A.; de Azevedo, W.F., Jr; Santos, D.S.; Palma, M.S. The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr. Drug Targets, 2007, 8(3), 445-457.
[http://dx.doi.org/10.2174/138945007780058951] [PMID: 17348837]
[75]
Noble, M.; Sinha, Y.; Kolupaev, A.; Demin, O.; Earnshaw, D.; Tobin, F.; West, J.; Martin, J.D.; Qiu, C.; Liu, W.S.; DeWolf, W.E., Jr; Tew, D.; Goryanin, I.I. The kinetic model of the shikimate pathway as a tool to optimize enzyme assays for high-throughput screening. Biotechnol. Bioeng., 2006, 95(4), 560-573.
[http://dx.doi.org/10.1002/bit.20772] [PMID: 16921527]
[76]
Butler, J.R.; Alworth, W.L.; Nugent, M.J. Mechanism of dehydroquinase catalyzed dehydration. I. Formation of a schiff-base intermediate. J. Am. Chem. Soc., 1974, 96, 1617-1618.
[http://dx.doi.org/10.1021/ja00812a069]
[77]
Gourley, D.G.; Shrive, A.K.; Polikarpov, I.; Krell, T.; Coggins, J.R.; Hawkins, A.R.; Isaacs, N.W.; Sawyer, L. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nat. Struct. Biol., 1999, 6(6), 521-525.
[http://dx.doi.org/10.1038/88584] [PMID: 10360352]
[78]
Kleanthous, C.; Deka, R.; Davis, K.; Kelly, S.M.; Cooper, A.; Harding, S.E.; Price, N.C.; Hawkins, A.R.; Coggins, J.R. A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochem. J., 1992, 282(Pt 3), 687-695.
[http://dx.doi.org/10.1042/bj2820687] [PMID: 1554351]
[79]
White, P.J.; Young, J.; Hunter, I.S.; Nimmo, H.G.; Coggins, J.R. The purification and characterization of 3-dehydroquinase from Streptomyces coelicolor. Biochem. J., 1990, 265(3), 735-738.
[http://dx.doi.org/10.1042/bj2650735] [PMID: 2306211]
[80]
Abdelrahman, M.A.; Salama, I.; Gomaa, M.S.; Elaasser, M.M.; Abdel-Aziz, M.M.; Soliman, D.H. Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2017, 138, 698-714.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.004] [PMID: 28715707]
[81]
Abdel-Aziz, H.A.; Eldehna, W.M.; Fares, M.; Al-Rashood, S.T.; Al-Rashood, K.A.; Abdel-Aziz, M.M.; Soliman, D.H. Synthesis, biological evaluation and 2D-QSAR study of halophenyl bis-hydrazones as antimicrobial and antitubercular agents. Int. J. Mol. Sci., 2015, 16(4), 8719-8743.
[http://dx.doi.org/10.3390/ijms16048719] [PMID: 25903147]
[82]
Gao, H.; Katzenellenbogen, J.A.; Garg, R.; Hansch, C. Comparative QSAR analysis of estrogen receptor ligands. Chem. Rev., 1999, 99(3), 723-744.
[http://dx.doi.org/10.1021/cr980018g] [PMID: 11749430]
[83]
Crippen, G.M.; Havel, T.F. Distance geometry and molecular conformation. Trends Pharmacol. Sci., 1989, 10, 164.
[http://dx.doi.org/10.1016/0165-6147(89)90173-9]
[84]
Hopfinger, A.J. A QSAR investigation of dihydrofolate reductase inhibition by baker triazines based upon molecular shape analysis. J. Am. Chem. Soc., 1980, 102, 7196-7206.
[http://dx.doi.org/10.1021/ja00544a005]
[85]
Cramer, R.D., III; Patterson, D.E.; Bunce, J.D. Recent advances in comparative molecular field analysis (CoMFA). Prog. Clin. Biol. Res., 1989, 291, 161-165.
[PMID: 2726839]
[86]
Kim, K.H. Comparative molecular field analysis (CoMFA); Springer: Dordrecht, 1995.
[http://dx.doi.org/10.1007/978-94-011-1350-2_12]
[87]
Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design--a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[88]
Supuran, C.T. Carbonic anhydrase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(12), 3467-3474.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.009] [PMID: 20529676]
[89]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[90]
Singh, S.; Supuran, C.T. 3D-QSAR CoMFA studies on sulfonamide inhibitors of the Rv3588c β-carbonic anhydrase from Mycobacterium tuberculosis and design of not yet synthesized new molecules. J. Enzyme Inhib. Med. Chem., 2014, 29(3), 449-455.
[http://dx.doi.org/10.3109/14756366.2013.800059] [PMID: 23808803]
[91]
Lee, S.H.; Choi, M.; Kim, P.; Myung, P.K. 3D-QSAR and cell wall permeability of antitubercular nitroimidazoles against Mycobacterium tuberculosis. Molecules, 2013, 18(11), 13870-13885.
[http://dx.doi.org/10.3390/molecules181113870] [PMID: 24217328]
[92]
Magantia, L.; Consortiumb, O.S.D.D.; Ghoshala, N. 3D-QSAR studies and shape based virtual screening for identification of novel h Drug resistance mechanism of PncA its to inhibit MbtA in Mycobacterium tuberculosis. J. Biomol. Struct. Dyn., 2015, 33, 344-364.
[http://dx.doi.org/10.1080/07391102.2013.872052] [PMID: 24417439]
[93]
Masand, V.H.; Jawarkar, R.D.; Mahajan, D.T.; Hadda, T.B.; Sheikh, J.; Patil, K.N. QSAR and CoMFA studies of biphenyl analogs of the anti-tuberculosis drug (6S)-2-nitro-6-[4-(trifluoromethoxy)benzyl]oxy-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). Med. Chem. Res., 2012, 21, 2624-2629.
[http://dx.doi.org/10.1007/s00044-011-9787-x]
[94]
Kumar, D.; Raj, K.K.; Bailey, M.; Alling, T.; Parish, T.; Rawat, D.S. Antimycobacterial activity evaluation, time-kill kinetic and 3D-QSAR study of C-(3-aminomethyl-cyclohexyl)-methylamine derivatives. Bioorg. Med. Chem. Lett., 2013, 23(5), 1365-1369.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.083] [PMID: 23357633]
[95]
Nayyar, A.; Monga, V.; Malde, A.; Coutinhob, E.; Jaina, R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolones. Bioorg. Med. Chem. Lett., 2007, 15(2), 626-640.
[http://dx.doi.org/10.1016/j.bmc.2006.10.064]
[96]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[97]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12, 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[98]
Materi, W.; Wishart, D.S. Computational systems biology in drug discovery and development: Methods and applications. Drug Discov. Today, 2007, 12(7-8), 295-303.
[http://dx.doi.org/10.1016/j.drudis.2007.02.013] [PMID: 17395089]
[99]
Doman, T.N.; McGovern, S.L.; Witherbee, B.J.; Kasten, T.P.; Kurumbail, R.; Stallings, W.C.; Connolly, D.T.; Shoichet, B.K. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem., 2002, 45(11), 2213-2221.
[http://dx.doi.org/10.1021/jm010548w] [PMID: 12014959]
[100]
Kubinyi, H. Success stories of computer-aided design in: Computer applications in pharmaceutical research and development; Wiley and Sons: New York, 2006.
[http://dx.doi.org/10.1002/0470037237.ch16]
[101]
Kurogi, Y.; Güner, O.F. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr. Med. Chem., 2001, 8(9), 1035-1055.
[http://dx.doi.org/10.2174/0929867013372481] [PMID: 11472240]
[102]
Gilbert, I.H. Drug discovery for neglected diseases: Molecular target-based and phenotypic approaches. J. Med. Chem., 2013, 56(20), 7719-7726.
[http://dx.doi.org/10.1021/jm400362b] [PMID: 24015767]
[103]
Bellera, C.L.; Sbaraglini, M.L.; Talevi, A. Modern approaches for the discovery of anti-infectious drugs for the treatment of neglected diseases. Curr. Top. Med. Chem., 2018, 18(5), 369-381.
[http://dx.doi.org/10.2174/1568026618666180509151146] [PMID: 29741140]
[104]
Macalino, S.J.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[105]
Kumar, A.; Siddiqi, M.I. Receptor based 3D-QSAR to identify putative binders of Mycobacterium tuberculosis Enoyl acyl carrier protein reductase. J. Mol. Model., 2010, 16(5), 877-893.
[http://dx.doi.org/10.1007/s00894-009-0584-0] [PMID: 19779936]
[106]
Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992, 358(6387), 591-593.
[http://dx.doi.org/10.1038/358591a0] [PMID: 1501713]
[107]
Escalante, P.; Ramaswamy, S.; Sanabria, H.; Soini, H.; Pan, X.; Valiente-Castillo, O.; Musser, J.M. Genotypic characterization of drug-resistant Mycobacterium tuberculosis isolates from Peru. Tuber. Lung Dis., 1998, 79(2), 111-118.
[http://dx.doi.org/10.1054/tuld.1998.0013] [PMID: 10645449]
[108]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[109]
Luty, B.A.; Wasserman, Z.R.; Stouten, P.F.W.; Hodge, C.N.; Zacharias, M.; Mccammon, J.A. A molecular mechanics grid method for evaluation of ligand-receptor interactions. J. Comput. Chem., 1995, 16, 454-464.
[http://dx.doi.org/10.1002/jcc.540160409]
[110]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[111]
Goodsell, D.S.; Olson, A.J. Automated docking of substrates to proteins by simulated annealing. Proteins, 1990, 8(3), 195-202.
[http://dx.doi.org/10.1002/prot.340080302] [PMID: 2281083]
[112]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olsona, J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[113]
Paiva, A.M.; Vanderwall, D.E.; Blanchard, J.S.; Kozarich, J.W.; Williamson, J.M.; Kelly, T.M. Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis. Biochim. Biophys. Acta, 2001, 1545(1-2), 67-77.
[http://dx.doi.org/10.1016/S0167-4838(00)00262-4] [PMID: 11342032]
[114]
Segura-Cabrera, A.; Rodríguez-Pérez, M.A. Structure-based prediction of Mycobacterium tuberculosis shikimate kinase inhibitors by high-throughput virtual screening. Bioorg. Med. Chem. Lett., 2008, 18(11), 3152-3157.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.003] [PMID: 18486472]
[115]
Pauli, I.; dos Santos, R.N.; Rostirolla, D.C.; Martinelli, L.K.; Ducati, R.G.; Timmers, L.F.S.M.; Basso, L.A.; Santos, D.S.; Guido, R.V.C.; Andricopulo, A.D.; Norberto de Souza, O. Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J. Chem. Inf. Model., 2013, 53(9), 2390-2401.
[http://dx.doi.org/10.1021/ci400202t] [PMID: 23889525]
[116]
Garg, A.; Tewari, R.; Raghava, G.P. Virtual Screening of potential drug-like inhibitors against Lysine/DAP pathway of Mycobacterium tuberculosis. BMC Bioinformatics, 2010, 11(Suppl. 1), S53.
[http://dx.doi.org/10.1186/1471-2105-11-S1-S53] [PMID: 20122228]
[117]
Ren, J.X.; Qian, H.L.; Huang, Y.X.; Zhu, N.Y.; Si, S.Y.; Xie, Y. Virtual screening for the identification of novel inhibitors of Mycobacterium tuberculosis cell wall synthesis: inhibitors targeting RmlB and RmlC. Comput. Biol. Med., 2015, 58, 110-117.
[http://dx.doi.org/10.1016/j.compbiomed.2014.12.020] [PMID: 25637777]
[118]
Guidotti, G. Discussion paper: Membrane proteins. Ann. N. Y. Acad. Sci., 1972, 195, 139-141.
[http://dx.doi.org/10.1111/j.1749-6632.1972.tb54793.x]
[119]
Shuai, Z.; Jinke, G.; Tianya, L.; Runyu, G.; Meng, W.; Maojun, Y. UQCRFS1N assembles mitochondrial respiratory complex-III into an asymmetric 21-subunit dimer. Protein Cell, 2018, 9(6), 586-591.
[http://dx.doi.org/[https://doi.org/10.1007/s13238-018-0515-x] [PMID: 29511933]
[120]
Jie, Y.; Bing, Z.; Yixiao, Z.; Cong-qiao, X.; Wei, Z.; Jingpeng, G.; Jun, L.; Ning, G.; Yang, L.; Maojun, Y. A binding-block ion selective mechanism revealed by a Na/K selective channel. Protein Cell, 2018, 9(7), 629-639.
[http://dx.doi.org/[https://doi.org/10.1007/s13238-017-0465-8] [PMID: 28921397]
[121]
Klabunde, T.; Hessler, G. Drug design strategies for targeting G-protein-coupled receptors. ChemBioChem, 2002, 3(10), 928-944.
[http://dx.doi.org/10.1002/1439-7633(20021004)3:10<928:AID-CBIC928>3.0.CO;2-5] [PMID: 12362358]
[122]
Lee, A.G. Structural biology: Highly charged meetings. Nature, 2009, 462(7272), 420-421.
[http://dx.doi.org/10.1038/462420a] [PMID: 19940907]
[123]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph, 1996, 14(1)33-38. , 27- 28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[124]
Hamill, O.P.; Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev., 2001, 81(2), 685-740.
[http://dx.doi.org/10.1152/physrev.2001.81.2.685] [PMID: 11274342]
[125]
Batiza, A.F.; Rayment, I.; Kung, C. Channel gate! Tension, leak and disclosure. Structure, 1999, 7(5), R99-R103.
[http://dx.doi.org/10.1016/S0969-2126(99)80061-6] [PMID: 10378264]
[126]
Spencer, R.H.; Chang, G.; Rees, D.C. ‘Feeling the pressure’: Structural insights into a gated mechanosensitive channel. Curr. Opin. Struct. Biol., 1999, 9(4), 448-454.
[http://dx.doi.org/10.1016/S0959-440X(99)80063-3] [PMID: 10449367]
[127]
Sukharev, S.I.; Sigurdson, W.J.; Kung, C.; Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol., 1999, 113(4), 525-540.
[http://dx.doi.org/10.1085/jgp.113.4.525] [PMID: 10102934]
[128]
Levina, N.; Tötemeyer, S.; Stokes, N.R.; Louis, P.; Jones, M.A.; Booth, I.R. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J., 1999, 18(7), 1730-1737.
[http://dx.doi.org/10.1093/emboj/18.7.1730] [PMID: 10202137]
[129]
Nakamaru, Y.; Takahashi, Y.; Unemoto, T.; Nakamura, T. Mechanosensitive channel functions to alleviate the cell lysis of marine bacterium, Vibrio alginolyticus, by osmotic downshock. FEBS Lett., 1999, 444(2-3), 170-172.
[http://dx.doi.org/10.1016/S0014-5793(99)00054-X] [PMID: 10050752]
[130]
Wood, J.M. Osmosensing by bacteria: Signals and membrane-based sensors. Microbiol. Mol. Biol. Rev., 1999, 63(1), 230-262.
[PMID: 10066837]
[131]
Kloda, A.; Martinac, B. Mechanosensitive channel of Thermoplasma, the cell wall-less archaea: cloning and molecular characterization. Cell Biochem. Biophys., 2001, 34(3), 321-347.
[http://dx.doi.org/10.1385/CBB:34:3:321] [PMID: 11898860]
[132]
Elmore, D.E.; Dougherty, D.A. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys. J., 2003, 85(3), 1512-1524.
[http://dx.doi.org/10.1016/S0006-3495(03)74584-6] [PMID: 12944269]
[133]
Hong, X.; Hopfinger, A.J. Construction, molecular modeling, and simulation of Mycobacterium tuberculosis cell walls. Biomacromolecules, 2004, 5(3), 1052-1065.
[http://dx.doi.org/10.1021/bm034514c] [PMID: 15132700]
[134]
Shamaei, M.; Marjani, M.; Chitsaz, E.; Kazempour, M.; Esmaeili, M.; Farnia, P.; Tabarsi, P.; Amiri, M.V.; Mirsaeidi, M.; Mansouri, D.; Masjedi, M.R.; Velayati, A.A. First-line anti-tuberculosis drug resistance patterns and trends at the national TB referral center in Iran--eight years of surveillance. Int. J. Infect. Dis., 2009, 13(5), e236-e240.
[http://dx.doi.org/10.1016/j.ijid.2008.11.027] [PMID: 19285897]
[135]
Caminero, J.A. Treatment of multidrug-resistant tuberculosis: evidence and controversies. Int. J. Tuberc. Lung Dis., 2006, 10(8), 829-837.
[PMID: 16898365]
[136]
Franke, M.F.; Appleton, S.C.; Mitnick, C.D.; Furin, J.J.; Bayona, J.; Chalco, K.; Shin, S.; Murray, M.; Becerra, M.C. Aggressive regimens for multidrug-resistant tuberculosis reduce recurrence. Clin. Infect. Dis., 2013, 56, 770-776.
[137]
Mitnick, C.D.; Franke, M.F.; Rich, M.L.; Alcantara Viru, F.A.; Appleton, S.C.; Atwood, S.S.; Bayona, J.N.; Bonilla, C.A.; Chalco, K.; Fraser, H.S.; Furin, J.J.; Guerra, D.; Hurtado, R.M.; Joseph, K.; Llaro, K.; Mestanza, L.; Mukherjee, J.S.; Muñoz, M.; Palacios, E.; Sanchez, E.; Seung, K.J.; Shin, S.S.; Sloutsky, A.; Tolman, A.W.; Becerra, M.C. Aggressive regimens for multidrug-resistant tuberculosis decrease all-cause mortality. PLoS One, 2013, 8(3)e58664
[http://dx.doi.org/10.1371/journal.pone.0058664] [PMID: 23516529]
[138]
Hara, G.L. Commentary on: Does empirical treatment of community-acquired pneumonia with fluoroquinolones delay tuberculosis treatment and result in fluoroquinolone resistance in Mycobacterium tuberculosis? Controversies and solutions. Int. J. Antimicrob. Agents, 2012, 39(3), 206-207.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.11.015] [PMID: 22305096]
[139]
Smith, K.C.; Seaworth, B.J. Drug-resistant tuberculosis: controversies and challenges in pediatrics. Expert Rev. Anti Infect. Ther., 2005, 3(6), 995-1010.
[http://dx.doi.org/10.1586/14787210.3.6.995] [PMID: 16307511]
[140]
Dheda, K.; Cox, H.; Esmail, A.; Wasserman, S.; Chang, K.C.; Lange, C. Recent controversies about MDR and XDR-TB: Global implementation of the WHO shorter MDR-TB regimen and bedaquiline for all with MDR-TB? Respirology, 2018, 23(1), 36-45.
[http://dx.doi.org/10.1111/resp.13143] [PMID: 28850767]
[141]
De Lorenzo, S.; Alffenaar, J.W.; Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Tiberi, S.; Bolhuis, M.S.; van Altena, R.; Viggiani, P.; Piana, A.; Spanevello, A.; Migliori, G.B. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur. Respir. J., 2013, 41(6), 1386-1392.
[http://dx.doi.org/10.1183/09031936.00124312] [PMID: 22997218]
[142]
Konno, K.; Feldmann, F.M.; McDermott, W. Pyrazinamide susceptibility and amidase activity of Tubercle bacilli. Am. Rev. Respir. Dis., 1967, 95(3), 461-469.
[PMID: 4225184]
[143]
Zhang, H.; Deng, J.Y.; Bi, L.J.; Zhou, Y.F.; Zhang, Z.P.; Zhang, C.G.; Zhang, Y.; Zhang, X.E. Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase. FEBS J., 2008, 275(4), 753-762.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06241.x] [PMID: 18201201]
[144]
Zhang, J.L.; Zheng, Q.C.; Li, Z.Q.; Zhang, H.X. Molecular dynamics simulations suggest ligand’s binding to nicotinamidase/pyrazinamidase. PLoS One, 2012, 7(6)e39546
[http://dx.doi.org/10.1371/journal.pone.0039546] [PMID: 22761821]
[145]
Rajendran, V.; Sethumadhavan, R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J. Biomol. Struct. Dyn., 2014, 32(2), 209-221.
[http://dx.doi.org/10.1080/07391102.2012.759885] [PMID: 23383724]
[146]
Kumar, V.; Sobhia, M.E. Molecular dynamics assisted mechanistic study of isoniazid-resistance against Mycobacterium tuberculosis InhA. PLoS One, 2015, 10(12)e0144635
[http://dx.doi.org/10.1371/journal.pone.0144635] [PMID: 26658674]
[147]
Nusrath Unissa, A.; Hassan, S.; Indira Kumari, V.; Revathy, R.; Hanna, L.E. Insights into RpoB clinical mutants in mediating rifampicin resistance in Mycobacterium tuberculosis. J. Mol. Graph. Model., 2016, 67, 20-32.
[http://dx.doi.org/10.1016/j.jmgm.2016.04.005] [PMID: 27155814]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 9
Year: 2019
Page: [648 - 663]
Pages: 16
DOI: 10.2174/0929866526666190620145919
Price: $65

Article Metrics

PDF: 34
HTML: 11
EPUB: 1
PRC: 1