The Effect of Prescription on the Framework of Lipid Matrix and In Vitro Properties

Author(s): Xiao-qin Chu, Yong Zhang, Jie Huang, Qian Li, Zheng-guang Li, Jian-qin Jiang*, Shuang-ying Gui*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Purpose: To clarify the inner framework and relative properties in vitro of Lyotropic liquid crystal (LLC) based on various prescriptions by using hydrophilic sinomenine hydrochloride (SH) and lipophilic cinnamaldehyde (CA) as model drugs.

Methods: Phase structures were checked by polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological studies and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) analysis were carried out to reveal their molecular interactions. In vitro release and skin permeation were conducted by Franz diffusion cell.

Results: PLM and SAXS showed double diamond cubic crystal. All the samples displayed characteristics of non-Newtonian fluid, and the molecular interactions increased with the reducing water. ATRFTIR showed that the strongest strength of hydrogen bond emerged in the formulation with 32% water. Released SH of S2 and S3 arrived over 80%, while S1 only reached 45%, and that of CA was about 23%. Water-rich prescription gave higher percutaneous penetration for hydrophilic drugs, whereas no significant difference existed in CA permeation.

Conclusion: Proportion of Phytantriol to water determined the LLC assembling and affected the dissolving status of hydrophilic substance, thereby impacting on the location sites of guest molecular interactions among the substances, rheology properties, and finally the release and penetration behavior in vitro. Adjusting the basic prescription was the key to obtain satisfactory percutaneous delivery and stability for LLC carrying multi-therapeutic agents.

Keywords: Lyotropic liquid crystals (LLC), SAXS, rheological analysis, ATR-FTIR, release, franz diffusion cell.

[1]
Rana, A.; Arnab, M.; Sayantika, M.; Biswadev, B. Protective effects of methanolic extract of Adhatoda vasica Nees leaf in collagen-induced arthritis by modulation of synovial toll-likereceptor-2 expression and release of pro-inflammatory mediators. J. Nutr. Intermed. Metab., 2016, 3, 1-11.
[http://dx.doi.org/10.1016/j.jnim.2015.11.001]
[2]
Cross, M.; Smith, E.; Hoy, D.; Carmona, L.; Wolfe, F.; Vos, T.; Williams, B.; Gabriel, S.; Lassere, M.; Johns, N.; Buchbinder, R.; Woolf, A.; March, L. The global burden of rheumatoid arthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis., 2014, 73(7), 1316-1322.
[http://dx.doi.org/10.1136/annrheumdis-2013-204627] [PMID: 24550173]
[3]
Chen, D.P.; Wong, C.K.; Leung, P.C.; Fung, K.P.; Lau, C.B.S.; Lau, C.P.; Li, E.K.M.; Tam, L.S.; Lam, C.W.K. Anti-inflammatory activities of Chinese herbal medicine sinomenine and Liang Miao San on tumor necrosis factor-α-activated human fibroblast-like synoviocytes in rheumatoid arthritis. J. Ethnopharmacol., 2011, 137(1), 457-468.
[http://dx.doi.org/10.1016/j.jep.2011.05.048] [PMID: 21679760]
[4]
Zhao, X.X.; Peng, C.; Zhang, H.; Qin, L.P. Sinomenium acutum: A review of chemistry, pharmacology, pharmacokinetics, and clinical use. Pharm. Biol., 2012, 50(8), 1053-1061.
[http://dx.doi.org/10.3109/13880209.2012.656847] [PMID: 22775422]
[5]
Welin-Berger, K.; Neelissen, J.A.; Engblom, J. Physicochemical interaction of local anesthetics with lipid model systems--correlation with in vitro permeation and in vivo efficacy. J. Control. Release, 2002, 81(1-2), 33-43.
[http://dx.doi.org/10.1016/S0168-3659(02)00035-4] [PMID: 11992676]
[6]
Lapteva, M.; Kalia, Y.N. Microstructured bicontinuous phase formulations: Their characterization and application in dermal and transdermal drug delivery. Expert Opin. Drug Deliv., 2013, 10(8), 1043-1059.
[http://dx.doi.org/10.1517/17425247.2013.783008] [PMID: 23600804]
[7]
Wan, J.; Wang, S.M.; Gui, Z.P.; Yang, Z.Z.; Shan, Q.Q.; Chu, X.Q.; Gui, S.Y.; Yang, Y. Phytantriol-based lyotropic liquid crystal as a transdermal delivery system. Eur. J. Pharm. Sci., 2018, 125, 93-101.
[http://dx.doi.org/10.1016/j.ejps.2018.09.018] [PMID: 30268893]
[8]
Zhang, Y.; Zhang, K.; Guo, T.; Li, Y.; Zhu, C.; Feng, N. Transdermal baicalin delivery using diethylene glycol monoethyl ether-mediated cubic phase gel. Int. J. Pharm., 2015, 479(1), 219-226.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.055] [PMID: 25543112]
[9]
Clogston, J.; Caffrey, M. Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J. Control. Release, 2005, 107(1), 97-111.
[http://dx.doi.org/10.1016/j.jconrel.2005.05.015] [PMID: 15990192]
[10]
Chen, Y.; Ma, P.; Gui, S. Cubic and hexagonal liquid crystals as drug delivery systems. Bio.Med. Res. Int., 2014, 2014815981
[http://dx.doi.org/10.1155/2014/815981] [PMID: 24995330]
[11]
Wang, X.; Zhang, Y.; Gui, S.; Huang, J.; Cao, J.; Li, Z.; Li, Q.; Chu, X. characterization of lipid-based lyotropic liquid crystal and effects of guest molecules on its microstructure: A systematic review. AAPS Pharm.Sci.Tech, 2018, 19(5), 2023-2040.
[http://dx.doi.org/10.1208/s12249-018-1069-1] [PMID: 29869308]
[12]
Cao, J.J.; Li, Z.G.; Li, Q.; Chu, X.Q.; Gui, S.Y.; He, N. Preparation and in vitro evaluation of sinomenine liquid crystal gel. Chung Kuo Yao Hsueh Tsa Chih, 2017, 52(19), 1691-1697.
[13]
Chu, X.; Li, Q.; Gui, S.; Li, Z.; Cao, J.; Jiang, J. Characterization and in vitro permeation study of cubic liquid crystal containing Sinomenine Hydrochloride. AAPS PharmSciTech, 2018, 19(5), 2237-2246.
[http://dx.doi.org/10.1208/s12249-018-1018-z] [PMID: 29740759]
[14]
Chu, X.Q.; Gui, S.Y.; Lin, X.Y.; Wang, S.M.; Jiang, X.J.; Zhang, Y.Z.; Li, X. Evaluation of effects of a Chinese herb formula on adjuvant induced arthritis in rats. Int. J. Pharm., 2018, 14(5), 707-716.
[http://dx.doi.org/10.3923/ijp.2018.707.716]
[15]
Cao, J.J.; Huang, J.; Gui, S.Y.; Li, Z.G.; Li, Q.; Zhang, Y.; Chu, X.Q. Study on rheological properties of sinomenine in situ liquid crystal, a liquid embolic agent. China J. Chin. Mater. Med., 2018, 19(12), 2522-2530.
[16]
Li, Q.; Cao, J.; Li, Z.; Chu, X. Cubic liquid crystalline gels based on glycerol monooleate for intra-articular injection. AAPS PharmSciTech, 2018, 19(2), 858-865.
[http://dx.doi.org/10.1208/s12249-017-0894-y] [PMID: 29027137]
[17]
Tehila, M.; Abraham, A.; Nissim, G. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase. J. Coll. Interface Sci., 2017, 486, 184-193.
[http://dx.doi.org/10.1016/j.jcis.2016.09.074]
[18]
Chu, X.Q.; Huang, J.; Li, Z.G.; Li, Q.; Cao, J.J.; Jiang, J.Q.; Gui, S.Y. On the structure an transdermal profile of liquid crystals based on Phytantriol. Curr. Drug Deliv., 2018, 15(10), 1439-1448.
[http://dx.doi.org/10.2174/1567201815666180910142516] [PMID: 30198435]
[19]
Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Shafiq, S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J. Nanobiotechno., 2008, 6, 8.
[http://dx.doi.org/10.1186/1477-3155-6-8] [PMID: 18613981]
[20]
Justas, B.; Tomas, L. Phase behavior of the phytantriol/water system. Langmuir, 2003, 19, 9562-9565.
[http://dx.doi.org/10.1021/la0350812]
[21]
Latypova, L. Go′z′dz′, W.; Pieranski,P. Symmetry, topology and faceting in bicontinuouslyotropic crystals. Eur. Phys. J. E, 2013, 36, 88-112.
[http://dx.doi.org/10.1140/epje/i2013-13088-9] [PMID: 23933989]
[22]
Akbar, S.; Anwar, A.; Ayish, A.; Elliott, J.M.; Squires, A.M. Phytantriol based smart nano-carriers for drug delivery applications. Eur. J. Pharm. Sci., 2017, 101, 31-42.
[http://dx.doi.org/10.1016/j.ejps.2017.01.035] [PMID: 28137471]
[23]
Dong, Y.D.; Dong, A.W.; Larson, I.; Rappolt, M.; Amenitsch, H.; Hanley, T.; Boyd, B.J. Impurities in commercial phytantriol significantly alter its lyotropic liquid-crystalline phase behavior. Langmuir, 2008, 24(13), 6998-7003.
[http://dx.doi.org/10.1021/la8005579] [PMID: 18522450]
[24]
Schubert, M.A.; Müller, C.C. Novel colloidal delivery systems for dermal application. J. Drug Deliv. Sci. Technol., 2004, 14(6), 423-434.
[http://dx.doi.org/10.1016/S1773-2247(04)50080-1]
[25]
Cohen-Avrahami, M.; Shames, A.I.; Ottaviani, M.F.; Aserin, A.; Garti, N. HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases. J. Phys. Chem. B, 2014, 118(23), 6277-6287.
[http://dx.doi.org/10.1021/jp412739p] [PMID: 24798650]
[26]
Wan, J.; Wang, S.M.; Gui, Z.P.; Yang, Z.Z.; Shan, Q.Q.; Chu, X.Q.; Gui, S.Y.; Yang, Y. Phytantriol-based lyotropic liquid crystal as a transdermal delivery system. Eur. J. Pharm. Sci., 2018, 125, 93-101.
[http://dx.doi.org/10.1016/j.ejps.2018.09.018] [PMID: 30268893]
[27]
Nguyen, T.H.; Hanley, T.; Porter, C.J.; Larson, I.; Boyd, B.J. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs I. Phase behaviour in physiologically-relevant media. J. Pharm. Pharmacol., 2010, 62(7), 844-855.
[http://dx.doi.org/10.1021/la0350812]
[28]
Michael, G.; Heinz, H.; Jan-Christoph, P.; Alexander, W. Investigations on L2 phase and cubic phase in the system aot/1-octanol/water. J. Colloid Interface Sci., 1995, 169, 103-118.
[http://dx.doi.org/10.1006/jcis.1995.1011]
[29]
Fan, J.; Liu, F.; Wang, Z. Shear rheology and in-vitro release kinetic study of apigenin from lyotropic liquid crystal. Int. J. Pharm., 2016, 497(1-2), 248-254.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.008] [PMID: 26657272]
[30]
Mezzenga, R.; Meyer, C.; Servais, C.; Romoscanu, A.I.; Sagalowicz, L.; Hayward, R.C. Shear rheology of lyotropic liquid crystals: A case study. Langmuir, 2005, 21(8), 3322-3333.
[http://dx.doi.org/10.1021/la046964b] [PMID: 15807570]
[31]
Mulet, X.; Boyd, B.J.; Drummond, C.J. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J. Colloid Interface Sci., 2013, 393, 1-20.
[http://dx.doi.org/10.1016/j.jcis.2012.10.014] [PMID: 23237762]
[32]
Dong, Y.D.; Larson, I.; Barnes, T.J.; Prestidge, C.A.; Boyd, B.J. Adsorption of nonlamellar nanostructured liquid-crystalline particles to biorelevant surfaces for improved delivery of bioactive compounds. ACS Appl. Mater. Interfaces, 2011, 3(5), 1771-1780.
[http://dx.doi.org/10.1021/am2003069] [PMID: 21506614]
[33]
Misiūnas, A.; Niaura, G.; Talaikyte, Z.; Eicher-Lorka, O.; Razumas, V. Infrared and Raman bands of phytantriol as markers of hydrogen bonding and interchain interaction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62(4-5), 945-957.
[http://dx.doi.org/10.1016/j.saa.2005.03.024] [PMID: 15961342]
[34]
Misiūnas, A.; Talaikyte, Z.; Niaura, G.; Razumas, V.; Nylander, T. Thermomyces lanuginosus lipase in the liquid-crystalline phases of aqueous phytantriol: X-ray diffraction and vibrational spectroscopic studies. Biophys. Chem., 2008, 134(3), 144-156.
[http://dx.doi.org/10.1016/j.bpc.2008.02.002] [PMID: 18329781]
[35]
Misiūnas, A.; Niaura, G.; Barauskas, J.; Meškys, R.; Rutkienė, R.; Razumas, V.; Nylander, T. Horse heart cytochrome c entrapped into the hydrated liquid-crystalline phases of phytantriol: X-ray diffraction and Raman spectroscopic characterization. J. Colloid Interface Sci., 2012, 378(1), 232-240.
[http://dx.doi.org/10.1016/j.jcis.2012.04.002] [PMID: 22546244]
[36]
Bitan-Cherbakovsky, L.; Aserin, A.; Garti, N. The effect of dendrimer generations on the structure of Q(G) LLC mesophase and drug release. Colloids Surf. B Biointerfaces, 2014, 122, 30-37.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.013] [PMID: 25016542]
[37]
Sckolnick, M.; Hui, S.W.; Sen, A. Influence of DMPS on the water retention capacity of electroporated stratum corneum: ATR-FTIR study. Int. J. Pharm., 2008, 350(1-2), 138-144.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.031] [PMID: 17931807]
[38]
Cohen-Avrahami, M.; Shames, A.I.; Ottaviani, M.F.; Aserin, A.; Garti, N. On the correlation between the structure of lyotropic carriers and the delivery profiles of two common NSAIDs. Colloids Surf. B Biointerfaces, 2014, 122, 231-240.
[http://dx.doi.org/10.1016/j.colsurfb.2014.04.026] [PMID: 25048360]
[39]
Han, T.F.; Cheng, L.; Wei, H.H. Investigation on preparation of sinomenine hydrochlorideethosomes and its properties. Chin. Tradit. Herbal Drugs, 2012, 43(7), 1300-1305.
[40]
Chountoulesi, M.; Pippa, N.; Pispas, S.; Chrysina, E.D.; Forys, A.; Trzebicka, B.; Demetzos, C. Cubic lyotropic liquid crystals as drug delivery carriers: Physicochemical and morphological studies. Int. J. Pharm., 2018, 550(1-2), 57-70.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.003] [PMID: 30121331]
[41]
Junqueira, G.M.T.; Pedralino, G.T.; São, F.M.É.; Silva, M.T.
Carvalho de. A.F.M.; Regazi, M.P.R.; Costa, F.S.; Cassone, S.G.; Biagini, L.L. Improvement of cutaneous delivery of methylene blue by liquid crystals. Int. J. Pharm., 2018, 548(1), 454-465.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.003] [PMID: 30018009]
[42]
Barradas, T.N.; Lopes, L.M.; Ricci-Júnior, E.; de Holanda, E.; Silva, K.G.; Mansur, C.R.; Mansur, C.R. Development and characterization of micellar systems for application as insect repellents. Int. J. Pharm., 2013, 454(2), 633-640.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.050] [PMID: 23732393]
[43]
Farkas, E.; Zelkó, R.; Németh, Z.; Pálinkás, J.; Marton, S.; Rácz, I. The effect of liquid crystalline structure on chlorhexidine diacetate release. Int. J. Pharm., 2000, 193(2), 239-245.
[http://dx.doi.org/10.1016/S0378-5173(99)00346-4] [PMID: 10606788]
[44]
Chaiyana, W.; Rades, T.; Okonogi, S. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int. J. Pharm., 2013, 452(1-2), 201-210.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.005] [PMID: 23680734]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 8
Year: 2019
Page: [737 - 750]
Pages: 14
DOI: 10.2174/1567201816666190620115403
Price: $65

Article Metrics

PDF: 22
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount