The Role of Shcbp1 in Signaling and Disease

Author(s): Geng-Yuan Zhang, Zhi-Jian Ma, Long Wang, Ruo-Fei Sun, Xiang-Yan Jiang, Xu-Juan Yang, Bo Long, Hui-Li Ye, Shu-Ze Zhang, Ze-Yuan Yu, Wen-Gui Shi, Zuo-Yi Jiao*.

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 11 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Src homolog and collagen homolog (Shc) proteins have been identified as adapter proteins associated with cell surface receptors and have been shown to play important roles in signaling and disease. Shcbp1 acts as a Shc SH2-domain binding protein 1 and is involved in the regulation of signaling pathways, such as FGF, NF-κB, MAPK/ERK, PI3K/AKT, TGF-β1/Smad and β -catenin signaling. Shcbp1 participates in T cell development, the regulation of downstream signal transduction pathways, and cytokinesis during mitosis and meiosis. In addition, Shcbp1 has been demonstrated to correlate with Burkitt-like lymphoma, breast cancer, lung cancer, gliomas, synovial sarcoma, human hepatocellular carcinoma and other diseases. Shcbp1 may play an important role in tumorigenesis and progression. Accordingly, recent studies are reviewed herein to discuss and interpret the role of Shcbp1 in normal cell proliferation and differentiation, tumorigenesis and progression, as well as its interactions with proteins.

Keywords: Shcbp1, signaling, tumor, diseases, lung cancer, gliomas.

[1]
Lebiedzinska-Arciszewska, M.; Oparka, M.; Vega-Naredo, I.; Karkucinska-Wieckowska, A.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. Eur. J. Clin. Invest., 2015, 45(Suppl. 1), 25-31.
[http://dx.doi.org/10.1111/eci.12364] [PMID: 25524583]
[2]
Wills, M.K.; Jones, N. Teaching an old dogma new tricks: Twenty years of Shc adaptor signalling. Biochem. J., 2012, 447(1), 1-16.
[http://dx.doi.org/10.1042/BJ20120769] [PMID: 22970934]
[3]
Schmandt, R.; Liu, S.K.; McGlade, C.J. Cloning and characterization of mPAL, a novel Shc SH2 domain-binding protein expressed in proliferating cells. Oncogene, 1999, 18(10), 1867-1879.
[http://dx.doi.org/10.1038/sj.onc.1202507] [PMID: 10086341]
[4]
Ahmed, S.B.M.; Prigent, S.A. Insights into the Shc family of adaptor proteins. J. Mol. Signal., 2017, 12, 2.
[http://dx.doi.org/10.5334/1750-2187-12-2] [PMID: 30210578]
[5]
Ravichandran, K.S. Signaling via Shc family adapter proteins. Oncogene, 2001, 20(44), 6322-6330.
[http://dx.doi.org/10.1038/sj.onc.1204776] [PMID: 11607835]
[6]
Peng, C.; Zhao, H.; Song, Y.; Chen, W.; Wang, X.; Liu, X.; Zhang, C.; Zhao, J.; Li, J.; Cheng, G.; Wu, D.; Gao, C.; Wang, X. SHCBP1 promotes synovial sarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with poor prognosis. J. Exp. Clin. Cancer Res., 2017, 36(1), 141.
[http://dx.doi.org/10.1186/s13046-017-0616-z] [PMID: 29020987]
[7]
Zheng, Y.; Zhang, C.; Croucher, D.R.; Soliman, M.A.; St-Denis, N.; Pasculescu, A.; Taylor, L.; Tate, S.A.; Hardy, W.R.; Colwill, K.; Dai, A.Y.; Bagshaw, R.; Dennis, J.W.; Gingras, A.C.; Daly, R.J.; Pawson, T. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature, 2013, 499(7457), 166-171.
[http://dx.doi.org/10.1038/nature12308] [PMID: 23846654]
[8]
Asano, E.; Hasegawa, H.; Hyodo, T.; Ito, S.; Maeda, M.; Takahashi, M.; Hamaguchi, M.; Senga, T. The Aurora-B-mediated phosphorylation of SHCBP1 regulates cytokinetic furrow ingression. J. Cell Sci., 2013, 126(Pt 15), 3263-3270.
[http://dx.doi.org/10.1242/jcs.124875] [PMID: 23704356]
[9]
Colak, D.; Nofal, A.; Albakheet, A.; Nirmal, M.; Jeprel, H.; Eldali, A.; Al-Tweigeri, T.; Tulbah, A.; Ajarim, D.; Malik, O.A.; Inan, M.S.; Kaya, N.; Park, B.H.; Bin Amer, S.M. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS One, 2013, 8(5)e63204
[http://dx.doi.org/10.1371/journal.pone.0063204] [PMID: 23704896]
[10]
Tao, H.C.; Wang, H.X.; Dai, M.; Gu, C.Y.; Wang, Q.; Han, Z.G.; Cai, B. Targeting SHCBP1 inhibits cell proliferation in human hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev., 2013, 14(10), 5645-5650.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5645] [PMID: 24289556]
[11]
Peng, C.; Zhao, H.; Chen, W.; Song, Y.; Wang, X.; Li, J.; Qiao, Y.; Wu, D.; Ma, S.; Wang, X.; Gao, C. Identification of SHCBP1 as a novel downstream target gene of SS18-SSX1 and its functional analysis in progression of synovial sarcoma. Oncotarget, 2016, 7(41), 66822-66834.
[http://dx.doi.org/10.18632/oncotarget.11651] [PMID: 27572315]
[12]
Montembault, E.; Zhang, W.; Przewloka, M.R.; Archambault, V.; Sevin, E.W.; Laue, E.D.; Glover, D.M.; D’Avino, P.P. Nessun Dorma, a novel centralspindlin partner, is required for cytokinesis in Drosophila spermatocytes. J. Cell Biol., 2010, 191(7), 1351-1365.
[http://dx.doi.org/10.1083/jcb.201007060] [PMID: 21187330]
[13]
Feng, W.; Li, H.C.; Xu, K.; Chen, Y.F.; Pan, L.Y.; Mei, Y.; Cai, H.; Jiang, Y.M.; Chen, T.; Feng, D.X. SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line. Gene, 2016, 587(1), 91-97.
[http://dx.doi.org/10.1016/j.gene.2016.04.046] [PMID: 27129942]
[14]
Doe, C.Q. Neural stem cells: Balancing self-renewal with differentiation. Development, 2008, 135(9), 1575-1587.
[http://dx.doi.org/10.1242/dev.014977] [PMID: 18356248]
[15]
Kang, W.; Wong, L.C.; Shi, S.H.; Hébert, J.M. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J. Neurosci., 2009, 29(46), 14571-14580.
[http://dx.doi.org/10.1523/JNEUROSCI.3844-09.2009] [PMID: 19923290]
[16]
Diez del Corral, R.; Breitkreuz, D.N.; Storey, K.G. Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development, 2002, 129(7), 1681-1691.
[PMID: 11923204]
[17]
Chen, J.; Lai, F.; Niswander, L. The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev., 2012, 26(8), 803-815.
[http://dx.doi.org/10.1101/gad.187641.112] [PMID: 22508726]
[18]
Zhou, Y.; Tan, Z.; Chen, K.; Wu, W.; Zhu, J.; Wu, G.; Cao, L.; Zhang, X.; Zeng, X.; Li, J.; Zhang, W. Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NF-κB signaling pathway. Mol. Carcinog., 2018, 57(9), 1181-1190.
[http://dx.doi.org/10.1002/mc.22834] [PMID: 29745440]
[19]
Pronk, G.J.; de Vries-Smits, A.M.; Buday, L.; Downward, J.; Maassen, J.A.; Medema, R.H.; Bos, J.L. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Mol. Cell. Biol., 1994, 14(3), 1575-1581.
[http://dx.doi.org/10.1128/MCB.14.3.1575] [PMID: 8114695]
[20]
Velazquez, L.; Gish, G.D.; van Der Geer, P.; Taylor, L.; Shulman, J.; Pawson, T. The shc adaptor protein forms interdependent phosphotyrosine-mediated protein complexes in mast cells stimulated with interleukin 3. Blood, 2000, 96(1), 132-138.
[http://dx.doi.org/10.1182/blood.V96.1.132] [PMID: 10891441]
[21]
Chen, Y.; Grall, D.; Salcini, A.E.; Pelicci, P.G.; Pouysségur, J.; Van Obberghen-Schilling, E. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor. EMBO J., 1996, 15(5), 1037-1044.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00441.x] [PMID: 8605873]
[22]
Friedrichs, N.; Trautmann, M.; Endl, E.; Sievers, E.; Kindler, D.; Wurst, P.; Czerwitzki, J.; Steiner, S.; Renner, M.; Penzel, R.; Koch, A.; Larsson, O.; Tanaka, S.; Kawai, A.; Schirmacher, P.; Mechtersheimer, G.; Wardelmann, E.; Buettner, R.; Hartmann, W. Phosphatidylinositol-3′-kinase/AKT signaling is essential in synovial sarcoma. Int. J. Cancer, 2011, 129(7), 1564-1575.
[http://dx.doi.org/10.1002/ijc.25829] [PMID: 21128248]
[23]
Qi, Y.; Wang, C.C.; He, Y.L.; Zou, H.; Liu, C.X.; Pang, L.J.; Hu, J.M.; Jiang, J.F.; Zhang, W.J.; Li, F. The correlation between morphology and the expression of TGF-β signaling pathway proteins and epithelial-mesenchymal transition-related proteins in synovial sarcomas. Int. J. Clin. Exp. Pathol., 2013, 6(12), 2787-2799.
[PMID: 24294365]
[24]
Fabregat, I.; Fernando, J.; Mainez, J.; Sancho, P. TGF-beta signaling in cancer treatment. Curr. Pharm. Des., 2014, 20(17), 2934-2947.
[http://dx.doi.org/10.2174/13816128113199990591] [PMID: 23944366]
[25]
Wu, Y.Y.; Peck, K.; Chang, Y.L.; Pan, S.H.; Cheng, Y.F.; Lin, J.C.; Yang, R.B.; Hong, T.M.; Yang, P.C. SCUBE3 is an endogenous TGF-β receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene, 2011, 30(34), 3682-3693.
[http://dx.doi.org/10.1038/onc.2011.85] [PMID: 21441952]
[26]
Taylor, M.A.; Parvani, J.G.; Schiemann, W.P. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J. Mammary Gland Biol. Neoplasia, 2010, 15(2), 169-190.
[http://dx.doi.org/10.1007/s10911-010-9181-1] [PMID: 20467795]
[27]
Yu, R.; Han, L.; Ni, X.; Wang, M.; Xue, P.; Zhang, L.; Yuan, M. Kruppel-like factor 4 inhibits non-small cell lung cancer cell growth and aggressiveness by stimulating transforming growth factor-β1-meidated ERK/JNK/NF-κB signaling pathways. Tumour Biol., 2017, 39(6)1010428317705574
[http://dx.doi.org/10.1177/1010428317705574] [PMID: 28631556]
[28]
Sokol, S.Y. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development, 2011, 138(20), 4341-4350.
[http://dx.doi.org/10.1242/dev.066209] [PMID: 21903672]
[29]
Bahrami, A.; Amerizadeh, F. ShahidSales, S.; Khazaei, M.; Ghayour-Mobarhan, M.; Sadeghnia, H.R.; Maftouh, M.; Hassanian, S.M.; Avan, A. Therapeutic potential of targeting Wnt/β-Catenin pathway in treatment of colorectal cancer: rational and progress. J. Cell. Biochem., 2017, 118(8), 1979-1983.
[http://dx.doi.org/10.1002/jcb.25903] [PMID: 28109136]
[30]
Duffy, D.J.; Krstic, A.; Schwarzl, T.; Halasz, M.; Iljin, K.; Fey, D.; Haley, B.; Whilde, J.; Haapa-Paananen, S.; Fey, V.; Fischer, M.; Westermann, F.; Henrich, K.O.; Bannert, S.; Higgins, D.G.; Kolch, W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget, 2016, 7(37), 60310-60331.
[http://dx.doi.org/10.18632/oncotarget.11203] [PMID: 27531891]
[31]
Liu, L.; Yang, Y.; Liu, S.; Tao, T.; Cai, J.; Wu, J.; Guan, H.; Zhu, X.; He, Z.; Li, J.; Song, E.; Zeng, M. EGF-induced nuclear localization of SHCBP1 activates beta-catenin signaling and promotes cancer progression. oncogene, 2018, 38(5), 747-764.
[32]
Fang, D.; Hawke, D.; Zheng, Y.; Xia, Y.; Meisenhelder, J.; Nika, H.; Mills, G.B.; Kobayashi, R.; Hunter, T.; Lu, Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J. Biol. Chem., 2007, 282(15), 11221-11229.
[http://dx.doi.org/10.1074/jbc.M611871200] [PMID: 17287208]
[33]
Asano, E.; Hasegawa, H.; Hyodo, T.; Ito, S.; Maeda, M.; Chen, D.; Takahashi, M.; Hamaguchi, M.; Senga, T. SHCBP1 is required for midbody organization and cytokinesis completion. Cell Cycle, 2014, 13(17), 2744-2751.
[http://dx.doi.org/10.4161/15384101.2015.945840] [PMID: 25486361]
[34]
Liu, Z.; Weiner, O.D. Positioning the cleavage furrow: All you need is Rho. J. Cell Biol., 2016, 213(6), 605-607.
[http://dx.doi.org/10.1083/jcb.201606010] [PMID: 27325786]
[35]
Miller, A.L.; Bement, W.M. Regulation of cytokinesis by Rho GTPase flux. Nat. Cell Biol., 2009, 11(1), 71-77.
[http://dx.doi.org/10.1038/ncb1814] [PMID: 19060892]
[36]
Breznau, E.B.; Semack, A.C.; Higashi, T.; Miller, A.L. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells. Mol. Biol. Cell, 2015, 26(13), 2439-2455.
[http://dx.doi.org/10.1091/mbc.E14-11-1553] [PMID: 25947135]
[37]
Lekomtsev, S.; Su, K.C.; Pye, V.E.; Blight, K.; Sundaramoorthy, S.; Takaki, T.; Collinson, L.M.; Cherepanov, P.; Divecha, N.; Petronczki, M. Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature, 2012, 492(7428), 276-279.
[http://dx.doi.org/10.1038/nature11773] [PMID: 23235882]
[38]
Macůrek, L.; Lindqvist, A.; Lim, D.; Lampson, M.A.; Klompmaker, R.; Freire, R.; Clouin, C.; Taylor, S.S.; Yaffe, M.B.; Medema, R.H. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature, 2008, 455(7209), 119-123.
[http://dx.doi.org/10.1038/nature07185] [PMID: 18615013]
[39]
Hu, C.K.; Coughlin, M.; Mitchison, T.J. Midbody assembly and its regulation during cytokinesis. Mol. Biol. Cell, 2012, 23(6), 1024-1034.
[http://dx.doi.org/10.1091/mbc.e11-08-0721] [PMID: 22278743]
[40]
Zhang, D.; Glotzer, M. The RhoGAP activity of CYK-4/MgcRacGAP functions non-canonically by promoting RhoA activation during cytokinesis. eLife, 2015, 4, 4.
[http://dx.doi.org/10.7554/eLife.08898] [PMID: 26252513]
[41]
Liu, M.; Shi, X.; Bi, Y.; Qi, L.; Guo, X.; Wang, L.; Zhou, Z.; Sha, J. SHCBP1L, a conserved protein in mammals, is predominantly expressed in male germ cells and maintains spindle stability during meiosis in testis. Mol. Hum. Reprod., 2014, 20(6), 463-475.
[http://dx.doi.org/10.1093/molehr/gau014] [PMID: 24557841]
[42]
Liang, P.; MacRae, T.H. Molecular chaperones and the cytoskeleton. J. Cell Sci., 1997, 110(Pt 13), 1431-1440.
[PMID: 9224761]
[43]
Widłak, W.; Markkula, M.; Krawczyk, Z.; Kananen, K.; Huhtaniemi, I.A. 252 bp upstream region of the rat spermatocyte-specific hst70 gene is sufficient to promote expression of the hst70-CAT hybrid gene in testis and brain of transgenic mice. Biochim. Biophys. Acta, 1995, 1264(2), 191-200.
[http://dx.doi.org/10.1016/0167-4781(95)00135-4] [PMID: 7495863]
[44]
Scieglińska, D.; Widłak, W.; Rusin, M.; Markkula, M.; Krawczyk, Z. Expression of the testis-specific HSP70-related gene (hst70 gene) in somatic non-testicular rat tissues revealed by RT-PCR and transgenic mice analysis. Cell Biol. Int., 1997, 21(12), 813-821.
[http://dx.doi.org/10.1006/cbir.1997.0195] [PMID: 9812345]
[45]
Scieglinska, D.; Gogler-Piglowska, A.; Butkiewicz, D.; Chekan, M.; Malusecka, E.; Harasim, J.; Habryka, A.; Krawczyk, Z. HSPA2 is expressed in human tumors and correlates with clinical features in non-small cell lung carcinoma patients. Anticancer Res., 2014, 34(6), 2833-2840.
[PMID: 24922646]
[46]
Jagadish, N.; Parashar, D.; Gupta, N.; Agarwal, S.; Suri, V.; Kumar, R.; Suri, V.; Sadasukhi, T.C.; Gupta, A.; Ansari, A.S.; Lohiya, N.K.; Suri, A. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer, 2016, 16, 561.
[http://dx.doi.org/10.1186/s12885-016-2592-7] [PMID: 27473057]
[47]
Garg, M.; Kanojia, D.; Seth, A.; Kumar, R.; Gupta, A.; Surolia, A.; Suri, A. Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion. Eur. J. Cancer, 2010, 46(1), 207-215.
[http://dx.doi.org/10.1016/j.ejca.2009.10.020] [PMID: 19914824]
[48]
Garg, M.; Kanojia, D.; Saini, S.; Suri, S.; Gupta, A.; Surolia, A.; Suri, A. Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells. Cancer, 2010, 116(16), 3785-3796.
[http://dx.doi.org/10.1002/cncr.25218] [PMID: 20564126]
[49]
Huang, Z.; Duan, H.; Li, H. Identification of gene expression pattern related to breast cancer survival using integrated TCGA datasets and genomic tools. BioMed Res. Int., 2015.2015878546
[http://dx.doi.org/10.1155/2015/878546] [PMID: 26576432]
[50]
Scieglinska, D.; Krawczyk, Z. Expression, function, and regulation of the testis-enriched heat shock HSPA2 gene in rodents and humans. Cell Stress Chaperones, 2015, 20(2), 221-235.
[http://dx.doi.org/10.1007/s12192-014-0548-x] [PMID: 25344376]
[51]
Zhang, H.; Chen, W.; Duan, C.J.; Zhang, C.F. Overexpression of HSPA2 is correlated with poor prognosis in esophageal squamous cell carcinoma. World J. Surg. Oncol., 2013, 11, 141.
[http://dx.doi.org/10.1186/1477-7819-11-141] [PMID: 23777267]
[52]
Fu, Y.; Zhao, H.; Li, X.S.; Kang, H.R.; Ma, J.X.; Yao, F.F.; Du, N. Expression of HSPA2 in human hepatocellular carcinoma and its clinical significance. Tumour Biol., 2014, 35(11), 11283-11287.
[http://dx.doi.org/10.1007/s13277-014-2430-y] [PMID: 25117073]
[53]
Zhang, H.; Gao, H.; Liu, C.; Kong, Y.; Wang, C.; Zhang, H. Expression and clinical significance of HSPA2 in pancreatic ductal adenocarcinoma. Diagn. Pathol., 2015, 10, 13.
[http://dx.doi.org/10.1186/s13000-015-0253-9] [PMID: 25890028]
[54]
Bester, J.C. Measles and measles vaccination: A review. JAMA Pediatr., 2016, 170(12), 1209-1215.
[http://dx.doi.org/10.1001/jamapediatrics.2016.1787] [PMID: 27695849]
[55]
Nakatsu, Y.; Takeda, M.; Ohno, S.; Shirogane, Y.; Iwasaki, M.; Yanagi, Y. Measles virus circumvents the host interferon response by different actions of the C and V proteins. J. Virol., 2008, 82(17), 8296-8306.
[http://dx.doi.org/10.1128/JVI.00108-08] [PMID: 18562542]
[56]
Nakatsu, Y.; Ma, X.; Seki, F.; Suzuki, T.; Iwasaki, M.; Yanagi, Y.; Komase, K.; Takeda, M. Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. J. Virol., 2013, 87(8), 4683-4693.
[http://dx.doi.org/10.1128/JVI.02189-12] [PMID: 23408617]
[57]
Ito, M.; Iwasaki, M.; Takeda, M.; Nakamura, T.; Yanagi, Y.; Ohno, S. Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1. J. Virol., 2013, 87(17), 9633-9642.
[http://dx.doi.org/10.1128/JVI.00714-13] [PMID: 23804634]
[58]
Heng, T.S.; Painter, M.W. The immunological genome project: Networks of gene expression in immune cells. Nat. Immunol., 2008, 9(10), 1091-1094.
[http://dx.doi.org/10.1038/ni1008-1091] [PMID: 18800157]
[59]
Buckley, M.W.; Arandjelovic, S.; Trampont, P.C.; Kim, T.S.; Braciale, T.J.; Ravichandran, K.S. Unexpected phenotype of mice lacking Shcbp1, a protein induced during T cell proliferation. PLoS One, 2014, 9(8)e105576
[http://dx.doi.org/10.1371/journal.pone.0105576] [PMID: 25153088]
[60]
Janas, M.L.; Varano, G.; Gudmundsson, K.; Noda, M.; Nagasawa, T.; Turner, M. Thymic development beyond beta-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J. Exp. Med., 2010, 207(1), 247-261.
[http://dx.doi.org/10.1084/jem.20091430] [PMID: 20038597]
[61]
Aifantis, I.; Raetz, E.; Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat. Rev. Immunol., 2008, 8(5), 380-390.
[http://dx.doi.org/10.1038/nri2304] [PMID: 18421304]
[62]
Vacca, A.; Felli, M.P.; Palermo, R.; Di Mario, G.; Calce, A.; Di Giovine, M.; Frati, L.; Gulino, A.; Screpanti, I. Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBO J., 2006, 25(5), 1000-1008.
[http://dx.doi.org/10.1038/sj.emboj.7600996] [PMID: 16498412]
[63]
Bellavia, D.; Campese, A.F.; Checquolo, S.; Balestri, A.; Biondi, A.; Cazzaniga, G.; Lendahl, U.; Fehling, H.J.; Hayday, A.C.; Frati, L.; von Boehmer, H.; Gulino, A.; Screpanti, I. Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc. Natl. Acad. Sci. USA, 2002, 99(6), 3788-3793.
[http://dx.doi.org/10.1073/pnas.062050599] [PMID: 11891328]
[64]
Truffinet, V.; Pinaud, E.; Cogné, N.; Petit, B.; Guglielmi, L.; Cogné, M.; Denizot, Y. The 3′ IgH locus control region is sufficient to deregulate a c-myc transgene and promote mature B cell malignancies with a predominant Burkitt-like phenotype. J. Immunol., 2007, 179(9), 6033-6042.
[http://dx.doi.org/10.4049/jimmunol.179.9.6033] [PMID: 17947677]
[65]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[66]
Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004, 431(7007), 461-466.
[http://dx.doi.org/10.1038/nature02924] [PMID: 15329734]
[67]
Burkitt, M.D.; Hanedi, A.F.; Duckworth, C.A.; Williams, J.M.; Tang, J.M.; O’Reilly, L.A.; Putoczki, T.L.; Gerondakis, S.; Dimaline, R.; Caamano, J.H.; Pritchard, D.M. NF-κB1, NF-κB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice. J. Pathol., 2015, 236(3), 326-336.
[http://dx.doi.org/10.1002/path.4527] [PMID: 25727407]
[68]
Karin, M.; Greten, F.R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol., 2005, 5(10), 749-759.
[http://dx.doi.org/10.1038/nri1703] [PMID: 16175180]
[69]
Jiang, C.; Zhu, Y.; Zhou, Z.; Gumin, J.; Bengtsson, L.; Wu, W.; Songyang, Z.; Lang, F.F.; Lin, X. TMEM43/LUMA is a key signaling component mediating EGFR-induced NF-κB activation and tumor progression. Oncogene, 2017, 36(20), 2813-2823.
[http://dx.doi.org/10.1038/onc.2016.430] [PMID: 27991920]
[70]
Zanotto-Filho, A.; Gonçalves, R.M.; Klafke, K.; de Souza, P.O.; Dillenburg, F.C.; Carro, L.; Gelain, D.P.; Moreira, J.C. Inflammatory landscape of human brain tumors reveals an NFκB dependent cytokine pathway associated with mesenchymal glioblastoma. Cancer Lett., 2017, 390, 176-187.
[http://dx.doi.org/10.1016/j.canlet.2016.12.015] [PMID: 28007636]
[71]
Kadoch, C.; Crabtree, G.R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell, 2013, 153(1), 71-85.
[http://dx.doi.org/10.1016/j.cell.2013.02.036] [PMID: 23540691]
[72]
Michels, S.; Trautmann, M.; Sievers, E.; Kindler, D.; Huss, S.; Renner, M.; Friedrichs, N.; Kirfel, J.; Steiner, S.; Endl, E.; Wurst, P.; Heukamp, L.; Penzel, R.; Larsson, O.; Kawai, A.; Tanaka, S.; Sonobe, H.; Schirmacher, P.; Mechtersheimer, G.; Wardelmann, E.; Büttner, R.; Hartmann, W. SRC signaling is crucial in the growth of synovial sarcoma cells. Cancer Res., 2013, 73(8), 2518-2528.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3023] [PMID: 23580575]
[73]
Guillou, L.; Coindre, J.; Gallagher, G.; Terrier, P.; Gebhard, S.; de Saint Aubain Somerhausen, N.; Michels, J.; Jundt, G.; Vince, D.R.; Collin, F.; Trassard, M.; Le Doussal, V.; Benhattar, J. Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum. Pathol., 2001, 32(1), 105-112.
[http://dx.doi.org/10.1053/hupa.2001.21130] [PMID: 11172303]
[74]
Yasui, H.; Naka, N.; Imura, Y.; Outani, H.; Kaneko, K.; Hamada, K.; Sasagawa, S.; Araki, N.; Ueda, T.; Itoh, K.; Myoui, A.; Yoshikawa, H. Tailored therapeutic strategies for synovial sarcoma: receptor tyrosine kinase pathway analyses predict sensitivity to the mTOR inhibitor RAD001. Cancer Lett., 2014, 347(1), 114-122.
[http://dx.doi.org/10.1016/j.canlet.2014.01.027] [PMID: 24491407]
[75]
Fricke, A.; Ullrich, P.V.; Heinz, J.; Pfeifer, D.; Scholber, J.; Herget, G.W.; Hauschild, O.; Bronsert, P.; Stark, G.B.; Bannasch, H.; Eisenhardt, S.U.; Braig, D. Identification of a blood-borne miRNA signature of synovial sarcoma. Mol. Cancer, 2015, 14, 151.
[http://dx.doi.org/10.1186/s12943-015-0424-z] [PMID: 26250552]
[76]
Lu, Z.; Ghosh, S.; Wang, Z.; Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 2003, 4(6), 499-515.
[http://dx.doi.org/10.1016/S1535-6108(03)00304-0] [PMID: 14706341]
[77]
Xu, M.; He, J.; Li, J.; Feng, W.; Zhou, H.; Wei, H.; Zhou, M.; Lu, Y.; Zeng, J.; Peng, W.; Du, F.; Gong, A. Methyl-CpG-binding domain 3 inhibits epithelial-mesenchymal transition in pancreatic cancer cells via TGF-β/Smad signalling. Br. J. Cancer, 2017, 116(1), 91-99.
[http://dx.doi.org/10.1038/bjc.2016.397] [PMID: 27898661]
[78]
Che, Y.L.; Luo, S.J.; Li, G.; Cheng, M.; Gao, Y.M.; Li, X.M.; Dai, J.M.; He, H.; Wang, J.; Peng, H.J.; Zhang, Y.; Li, W.Y.; Wang, H.; Liu, B.; Linghu, H. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett., 2015, 359(2), 241-249.
[http://dx.doi.org/10.1016/j.canlet.2015.01.019] [PMID: 25617801]
[79]
Arai, R.; Tsuda, M.; Watanabe, T.; Ose, T.; Obuse, C.; Maenaka, K.; Minami, A.; Ohba, Y. Simultaneous inhibition of Src and Aurora kinases by SU6656 induces therapeutic synergy in human synovial sarcoma growth, invasion and angiogenesis in vivo. Eur. J. Cancer, 2012, 48(15), 2417-2430.
[http://dx.doi.org/10.1016/j.ejca.2011.12.028] [PMID: 22244830]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 11
Year: 2019
Page: [854 - 862]
Pages: 9
DOI: 10.2174/1568009619666190620114928
Price: $65

Article Metrics

PDF: 35
HTML: 4