Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Next Generation of Pattern Recognition Receptor Agonists: Improving Response Rates in Cancer Immunotherapy

Author(s): Daniel H. O’ Donovan*, Yumeng Mao and Deanna A. Mele

Volume 27, Issue 34, 2020

Page: [5654 - 5674] Pages: 21

DOI: 10.2174/0929867326666190620103105

Price: $65

Abstract

The recent success of checkpoint blocking antibodies has sparked a revolution in cancer immunotherapy. Checkpoint inhibition activates the adaptive immune system leading to durable responses across a range of tumor types, although this response is limited to patient populations with pre-existing tumor-infiltrating T cells. Strategies to stimulate the immune system to prime an antitumor response are of intense interest and several groups are now working to develop agents to activate the Pattern Recognition Receptors (PRRs), proteins which detect pathogenic and damageassociated molecules and respond by activating the innate immune response. Although early efforts focused on the Toll-like Receptor (TLR) family of membrane-bound PRRs, TLR activation has been associated with both pro- and antitumor effects. Nonetheless, TLR agonists have been deployed as potential anticancer agents in a range of clinical trials. More recently, the cytosolic PRR Stimulator of IFN Genes (STING) has attracted attention as another promising target for anticancer drug development, with early clinical data beginning to emerge. Besides STING, several other cytosolic PRR targets have likewise captured the interest of the drug discovery community, including the RIG-Ilike Receptors (RLRs) and NOD-like Receptors (NLRs). In this review, we describe the outlook for activators of PRRs as anticancer therapeutic agents and contrast the earlier generation of TLR agonists with the emerging focus on cytosolic PRR activators, both as single agents and in combination with other cancer immunotherapies.

Keywords: Immuno-oncology, innate immunity, pattern recognition receptors, cancer immunotherapy, TLRs, NLRs, RLRs, STING.

[1]
Chen, D.S.; Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012 ] [PMID: 23890059]
[2]
Buchmann, K. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol., 2014, 5, 459.
[http://dx.doi.org/10.3389/fimmu.2014.00459 ] [PMID: 25295041]
[3]
Ebbel, B. The papyrus ebers: The greatest Egyptian medical documents; Oxford University Press, 1937.
[4]
Coley, W.B., II Contribution to the knowledge of Sarcoma. Ann. Surg., 1891, 14(3), 199-220.
[http://dx.doi.org/10.1097/00000658-189112000-00015 ] [PMID: 17859590]
[5]
Park, J.M.; Fisher, D.E. Testimony from the bedside: from Coley’s toxins to targeted immunotherapy. Cancer Cell, 2010, 18(1), 9-10.
[http://dx.doi.org/10.1016/j.ccr.2010.06.010 ] [PMID: 20609349]
[6]
Alexandroff, A.B.; Jackson, A.M.; O’Donnell, M.A.; James, K. BCG immunotherapy of bladder cancer: 20 years on. Lancet, 1999, 353(9165), 1689-1694.
[http://dx.doi.org/10.1016/S0140-6736(98)07422-4 ] [PMID: 10335805]
[7]
Burnet, M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. BMJ, 1957, 1(5023), 841-847.
[http://dx.doi.org/10.1136/bmj.1.5023.841 ] [PMID: 13413231]
[8]
Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol., 2002, 3(11), 991-998.
[http://dx.doi.org/10.1038/ni1102-991 ] [PMID: 12407406]
[9]
Spranger, S.; Gajewski, T.F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer, 2018, 18(3), 139-147.
[http://dx.doi.org/10.1038/nrc.2017.117 ] [PMID: 29326431]
[10]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466 ] [PMID: 20525992]
[11]
Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.F.; Testori, A.; Grob, J.J.; Davidson, N.; Richards, J.; Maio, M.; Hauschild, A.; Miller, W.H., Jr; Gascon, P.; Lotem, M.; Harmankaya, K.; Ibrahim, R.; Francis, S.; Chen, T.T.; Humphrey, R.; Hoos, A.; Wolchok, J.D. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med., 2011, 364(26), 2517-2526.
[http://dx.doi.org/10.1056/NEJMoa1104621 ] [PMID: 21639810]
[12]
Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.T.; Berman, D.M.; Wolchok, J.D. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol., 2015, 33(17), 1889-1894.
[http://dx.doi.org/10.1200/JCO.2014.56.2736 ] [PMID: 25667295]
[13]
Eroglu, Z.; Kim, D.W.; Wang, X.; Camacho, L.H.; Chmie-lowski, B.; Seja, E.; Villanueva, A.; Ruchalski, K.; Glaspy, J.A.; Kim, K.B.; Hwu, W.J.; Ribas, A. Long term survival with cytotoxic T lymphocyte-associated antigen 4 blockade using Tremelimumab. Eur. J. Cancer, 2015, 51(17), 2689-2697.
[http://dx.doi.org/10.1016/j.ejca.2015.08.012 ] [PMID: 26364516]
[14]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005 ] [PMID: 16227604]
[15]
Mahoney, K.M.; Rennert, P.D.; Freeman, G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov., 2015, 14(8), 561-584.
[http://dx.doi.org/10.1038/nrd4591 ] [PMID: 26228759]
[16]
Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer, 2016, 16(5), 275-287.
[http://dx.doi.org/10.1038/nrc.2016.36 ] [PMID: 27079802]
[17]
Hobohm, U.; Stanford, J.L.; Grange, J.M. Pathogen-associated molecular pattern in cancer immunotherapy. Crit. Rev. Immunol., 2008, 28(2), 95-107.
[http://dx.doi.org/10.1615/CritRevImmunol.v28.i2.10 ] [PMID: 18540826]
[18]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976 ] [PMID: 21235323]
[19]
Broz, P.; Monack, D.M. Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol., 2013, 13(8), 551-565.
[http://dx.doi.org/10.1038/nri3479 ] [PMID: 23846113]
[20]
Zhu, G.; Xu, Y.; Cen, X.; Nandakumar, K.S.; Liu, S.; Cheng, K. Targeting pattern-recognition receptors to discover new small molecule immune modulators. Eur. J. Med. Chem., 2018, 144, 82-92.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.026 ] [PMID: 29268133]
[21]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[http://dx.doi.org/10.1016/j.cell.2010.01.022 ] [PMID: 20303872]
[22]
Geijtenbeek, T.B.; Gringhuis, S.I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol., 2009, 9(7), 465-479.
[http://dx.doi.org/10.1038/nri2569 ] [PMID: 19521399]
[23]
O’Neill, L.A.; Golenbock, D.; Bowie, A.G. The history of Toll-like receptors - redefining innate immunity. Nat. Rev. Immunol., 2013, 13(6), 453-460.
[http://dx.doi.org/10.1038/nri3446 ] [PMID: 23681101]
[24]
Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol., 2004, 4(7), 499-511.
[http://dx.doi.org/10.1038/nri1391 ] [PMID: 15229469]
[25]
van Dinther, D.; Stolk, D.A.; van de Ven, R.; van Kooyk, Y.; de Gruijl, T.D.; den Haan, J.M.M. Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. J. Leukoc. Biol., 2017, 102(4), 1017-1034.
[http://dx.doi.org/10.1189/jlb.5MR0217-059RR ] [PMID: 28729358]
[26]
Mikulandra, M.; Pavelic, J.; Glavan, T.M. Recent findings on the application of toll-like receptors agonists in cancer therapy. Curr. Med. Chem., 2017, 24(19), 2011-2032.
[http://dx.doi.org/10.2174/0929867324666170320114359 ] [PMID: 28322156]
[27]
de la Barrera, S.; Alemán, M. Sasiain, Mdel.C. Toll-like receptors in human infectious diseases. Curr. Pharm. Des., 2006, 12(32), 4173-4184.
[http://dx.doi.org/10.2174/138161206778743493 ] [PMID: 17100620]
[28]
Fasciano, S.; Li, L. Intervention of toll-like receptor-mediated human innate immunity and inflammation by synthetic compounds and naturally occurring products. Curr. Med. Chem., 2006, 13(12), 1389-1395.
[http://dx.doi.org/10.2174/092986706776872916 ] [PMID: 16719784]
[29]
Yu, L.; Wang, L.; Chen, S. Endogenous toll-like receptor ligands and their biological significance. J. Cell. Mol. Med., 2010, 14(11), 2592-2603.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01127.x ] [PMID: 20629986]
[30]
Cai, X.; Chiu, Y.H.; Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell, 2014, 54(2), 289-296.
[http://dx.doi.org/10.1016/j.molcel.2014.03.040 ] [PMID: 24766893]
[31]
Weber, M.; Weber, F. RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms. Cytokine Growth Factor Rev., 2014, 25(5), 621-628.
[http://dx.doi.org/10.1016/j.cytogfr.2014.05.004 ] [PMID: 24894317]
[32]
Kato, H.; Takahasi, K.; Fujita, T. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol. Rev., 2011, 243(1), 91-98.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01052.x ] [PMID: 21884169]
[33]
Barbé, F.; Douglas, T.; Saleh, M. Advances in Nod-like receptors (NLR) biology. Cytokine Growth Factor Rev., 2014, 25(6), 681-697.
[http://dx.doi.org/10.1016/j.cytogfr.2014.07.001 ] [PMID: 25070125]
[34]
Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213), 674-678.
[http://dx.doi.org/10.1038/nature07317 ] [PMID: 18724357]
[35]
Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265), 788-792.
[http://dx.doi.org/10.1038/nature08476 ] [PMID: 19776740]
[36]
Corrales, L.; Gajewski, T.F. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin. Cancer Res., 2015, 21(21), 4774-4779.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1362 ] [PMID: 26373573]
[37]
Mullard, A. Can innate immune system targets turn up the heat on ‘cold’ tumours? Nat. Rev. Drug Discov., 2018, 17(1), 3-5.
[http://dx.doi.org/10.1038/nrd.2017.264 ] [PMID: 29282375]
[38]
Leemans, J.C.; Cassel, S.L.; Sutterwala, F.S. Sensing damage by the NLRP3 inflammasome. Immunol. Rev., 2011, 243(1), 152-162.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01043.x ] [PMID: 21884174]
[39]
Elliott, E.I.; Sutterwala, F.S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol. Rev., 2015, 265(1), 35-52.
[http://dx.doi.org/10.1111/imr.12286 ] [PMID: 25879282]
[40]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[http://dx.doi.org/10.1016/j.cell.2010.01.040 ] [PMID: 20303873]
[41]
Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol., 2016, 13(2), 148-159.
[http://dx.doi.org/10.1038/cmi.2015.95 ] [PMID: 26549800]
[42]
Lee, B.L.; Barton, G.M. Trafficking of endosomal Toll-like receptors. Trends Cell Biol., 2014, 24(6), 360-369.
[http://dx.doi.org/10.1016/j.tcb.2013.12.002 ] [PMID: 24439965]
[43]
Lee, B.L.; Moon, J.E.; Shu, J.H.; Yuan, L.; Newman, Z.R.; Schekman, R.; Barton, G.M. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife, 2013, 2, e00291.
[http://dx.doi.org/10.7554/eLife.00291 ] [PMID: 23426999]
[44]
Saitoh, S. Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology, 2009, 214(7), 594-600.
[http://dx.doi.org/10.1016/j.imbio.2008.11.012 ] [PMID: 19250701]
[45]
Jiang, S.; Li, X.; Hess, N.J.; Guan, Y.; Tapping, R.I. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. J. Immunol., 2016, 196(9), 3834-3841.
[http://dx.doi.org/10.4049/jimmunol.1502599 ] [PMID: 27022193]
[46]
Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 2009, 458(7242), 1191-1195.
[http://dx.doi.org/10.1038/nature07830 ] [PMID: 19252480]
[47]
Jin, M.S.; Kim, S.E.; Heo, J.Y.; Lee, M.E.; Kim, H.M.; Paik, S.G.; Lee, H.; Lee, J.O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 2007, 130(6), 1071-1082.
[http://dx.doi.org/10.1016/j.cell.2007.09.008 ] [PMID: 17889651]
[48]
Zhang, Z.; Ohto, U.; Shibata, T.; Krayukhina, E.; Taoka, M.; Yamauchi, Y.; Tanji, H.; Isobe, T.; Uchiyama, S.; Miyake, K.; Shimizu, T. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity, 2016, 45(4), 737-748.
[http://dx.doi.org/10.1016/j.immuni.2016.09.011 ] [PMID: 27742543]
[49]
Tanji, H.; Ohto, U.; Shibata, T.; Miyake, K.; Shimizu, T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science, 2013, 339(6126), 1426-1429.
[http://dx.doi.org/10.1126/science.1229159 ] [PMID: 23520111]
[50]
Ohto, U.; Shibata, T.; Tanji, H.; Ishida, H.; Krayukhina, E.; Uchiyama, S.; Miyake, K.; Shimizu, T. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature, 2015, 520(7549), 702-705.
[http://dx.doi.org/10.1038/nature14138 ] [PMID: 25686612]
[51]
Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; Manogue, K.R.; Faist, E.; Abraham, E.; Andersson, J.; Andersson, U.; Molina, P.E.; Abumrad, N.N.; Sama, A.; Tracey, K.J. HMG-1 as a late mediator of endotoxin lethality in mice. Science, 1999, 285(5425), 248-251.
[http://dx.doi.org/10.1126/science.285.5425.248 ] [PMID: 10398600]
[52]
Uniprot database. Available at: https://www.uniprot.org (Accessed Date: 29 May, 2018.)
[53]
Pradere, J.P.; Dapito, D.H.; Schwabe, R.F. The yin and yang of toll-like receptors in cancer. Oncogene, 2014, 33(27), 3485-3495.
[http://dx.doi.org/10.1038/onc.2013.302 ] [PMID: 23934186]
[54]
Grivennikov, S.; Karin, E.; Terzic, J.; Mucida, D.; Yu, G.Y.; Vallabhapurapu, S.; Scheller, J.; Rose-John, S.; Cheroutre, H.; Eckmann, L.; Karin, M. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 2009, 15(2), 103-113.
[http://dx.doi.org/10.1016/j.ccr.2009.01.001 ] [PMID: 19185845]
[55]
Popivanova, B.K.; Kitamura, K.; Wu, Y.; Kondo, T.; Kagaya, T.; Kaneko, S.; Oshima, M.; Fujii, C.; Mukaida, N. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest., 2008, 118(2), 560-570.
[PMID: 18219394]
[56]
Tu, S.; Bhagat, G.; Cui, G.; Takaishi, S.; Kurt-Jones, E.A.; Rickman, B.; Betz, K.S.; Penz-Oesterreicher, M.; Bjorkdahl, O.; Fox, J.G.; Wang, T.C. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell, 2008, 14(5), 408-419.
[http://dx.doi.org/10.1016/j.ccr.2008.10.011 ] [PMID: 18977329]
[57]
Chatterjee, S.; Crozet, L.; Damotte, D.; Iribarren, K.; Schramm, C.; Alifano, M.; Lupo, A.; Cherfils-Vicini, J.; Goc, J.; Katsahian, S.; Younes, M.; Dieu-Nosjean, M.C.; Fridman, W.H.; Sautès-Fridman, C.; Cremer, I. TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non-small cell lung cancer. Cancer Res., 2014, 74(18), 5008-5018.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2698 ] [PMID: 25074614]
[58]
Gerster, J.F.; Lindstrom, K.J.; Miller, R.L.; Tomai, M.A.; Birmachu, W.; Bomersine, S.N.; Gibson, S.J.; Imbertson, L.M.; Jacobson, J.R.; Knafla, R.T.; Maye, P.V.; Nikolaides, N.; Oneyemi, F.Y.; Parkhurst, G.J.; Pecore, S.E.; Reiter, M.J.; Scribner, L.S.; Testerman, T.L.; Thompson, N.J.; Wagner, T.L.; Weeks, C.E.; Andre, J.D.; Lagain, D.; Bastard, Y.; Lupu, M. Synthesis and structure-activity-relationships of 1H-imidazo[4,5-c]quinolines that induce interferon production. J. Med. Chem., 2005, 48(10), 3481-3491.
[http://dx.doi.org/10.1021/jm049211v ] [PMID: 15887957]
[59]
Garland, S.M. Imiquimod. Curr. Opin. Infect. Dis., 2003, 16(2), 85-89.
[http://dx.doi.org/10.1097/00001432-200304000-00004 ] [PMID: 12734440]
[60]
Sidky, Y.A.; Borden, E.C.; Weeks, C.E.; Reiter, M.J.; Hatcher, J.F.; Bryan, G.T. Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine. Cancer Res., 1992, 52(13), 3528-3533.
[PMID: 1377595]
[61]
Bubna, A.K. Imiquimod - its role in the treatment of cutaneous malignancies. Indian J. Pharmacol., 2015, 47(4), 354-359.
[http://dx.doi.org/10.4103/0253-7613.161249 ] [PMID: 26288465]
[62]
Savage, P.; Horton, V.; Moore, J.; Owens, M.; Witt, P.; Gore, M.E. A phase I clinical trial of imiquimod, an oral interferon inducer, administered daily. Br. J. Cancer, 1996, 74(9), 1482-1486.
[http://dx.doi.org/10.1038/bjc.1996.569 ] [PMID: 8912549]
[63]
Pockros, P.J.; Guyader, D.; Patton, H.; Tong, M.J.; Wright, T.; McHutchison, J.G.; Meng, T.C. Oral resiquimod in chronic HCV infection: safety and efficacy in 2 placebo-controlled, double-blind phase IIa studies. J. Hepatol., 2007, 47(2), 174-182.
[http://dx.doi.org/10.1016/j.jhep.2007.02.025 ] [PMID: 17532523]
[64]
Iribarren, K.; Bloy, N.; Buqué, A.; Cremer, I.; Eggermont, A.; Fridman, W.H.; Fucikova, J.; Galon, J.; Špíšek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: immunostimulation with toll-like receptor agonists in cancer therapy. OncoImmunology, 2015, 5(3), e1088631.
[http://dx.doi.org/10.1080/2162402X.2015.1088631 ] [PMID: 27141345]
[65]
Pashenkov, M.; Goëss, G.; Wagner, C.; Hörmann, M.; Jandl, T.; Moser, A.; Britten, C.M.; Smolle, J.; Koller, S.; Mauch, C.; Tantcheva-Poor, I.; Grabbe, S.; Loquai, C.; Esser, S.; Franckson, T.; Schneeberger, A.; Haarmann, C.; Krieg, A.M.; Stingl, G.; Wagner, S.N. Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J. Clin. Oncol., 2006, 24(36), 5716-5724.
[http://dx.doi.org/10.1200/JCO.2006.07.9129 ] [PMID: 17179105]
[66]
Hirsh, V.; Paz-Ares, L.; Boyer, M.; Rosell, R.; Middleton, G.; Eberhardt, W.E.; Szczesna, A.; Reiterer, P.; Saleh, M.; Arrieta, O.; Bajetta, E.; Webb, R.T.; Raats, J.; Benner, R.J.; Fowst, C.; Meech, S.J.; Readett, D.; Schiller, J.H. Randomized phase III trial of paclitaxel/carboplatin with or without PF-3512676 (Toll-like receptor 9 agonist) as first-line treatment for advanced non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(19), 2667-2674.
[http://dx.doi.org/10.1200/JCO.2010.32.8971 ] [PMID: 21632509]
[67]
Guha, M. Anticancer TLR agonists on the ropes. Nat. Rev. Drug Discov., 2012, 11(7), 503-505.
[http://dx.doi.org/10.1038/nrd3775 ] [PMID: 22743965]
[68]
Wittig, B.; Schmidt, M.; Scheithauer, W.; Schmoll, H.J. MGN1703, an immunomodulator and toll-like receptor 9 (TLR-9) agonist: from bench to bedside. Crit. Rev. Oncol. Hematol., 2015, 94(1), 31-44.
[http://dx.doi.org/10.1016/j.critrevonc.2014.12.002 ] [PMID: 25577571]
[69]
Chow, L.Q.M.; Morishima, C.; Eaton, K.D.; Baik, C.S.; Goulart, B.H.; Anderson, L.N.; Manjarrez, K.L.; Dietsch, G.N.; Bryan, J.K.; Hershberg, R.M.; Disis, M.L.; Martins, R.G. Trial of the toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHN. Clin. Cancer Res., 2017, 23(10), 2442-2450.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1934 ] [PMID: 27810904]
[70]
Dietsch, G.N.; Lu, H.; Yang, Y.; Morishima, C.; Chow, L.Q.; Disis, M.L.; Hershberg, R.M. Coordinated activation of toll-like receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity. PLoS One, 2016, 11(2), e0148764.
[http://dx.doi.org/10.1371/journal.pone.0148764 ] [PMID: 26928328]
[71]
Shirota, Y.; Shirota, H.; Klinman, D.M. Intratumoral injec-tion of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J. Immunol., 2012, 188(4), 1592-1599.
[http://dx.doi.org/10.4049/jimmunol.1101304 ] [PMID: 22231700]
[72]
Swart, M.; Verbrugge, I.; Beltman, J.B. Combination approaches with immune-checkpoint blockade in cancer therapy. Front. Oncol., 2016, 6, 233.
[http://dx.doi.org/10.3389/fonc.2016.00233 ] [PMID: 27847783]
[73]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT02668770 (Acessed Date: 29 May, 2018.)
[74]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT02431559 (Accessed Date: 29 May, 2018.)
[75]
Sato-Kaneko, F.; Yao, S.; Ahmadi, A.; Zhang, S.S.; Hosoya, T.; Kaneda, M.M.; Varner, J.A.; Pu, M.; Messer, K.S.; Guiducci, C.; Coffman, R.L.; Kitaura, K.; Matsutani, T.; Suzuki, R.; Carson, D.A.; Hayashi, T.; Cohen, E.E. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight, 2017, 2(18), 93397.
[http://dx.doi.org/10.1172/jci.insight.93397 ] [PMID: 28931759]
[76]
O’Neill, L.A. DNA makes RNA makes innate immunity. Cell, 2009, 138(3), 428-430.
[http://dx.doi.org/10.1016/j.cell.2009.07.021 ] [PMID: 19665965]
[77]
Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013, 339(6121), 826-830.
[http://dx.doi.org/10.1126/science.1229963 ] [PMID: 23258412]
[78]
Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, 339(6121), 786-791.
[http://dx.doi.org/10.1126/science.1232458 ] [PMID: 23258413]
[79]
Crow, Y.J.; Hayward, B.E.; Parmar, R.; Robins, P.; Leitch, A.; Ali, M.; Black, D.N.; van Bokhoven, H.; Brunner, H.G.; Hamel, B.C.; Corry, P.C.; Cowan, F.M.; Frints, S.G.; Klepper, J.; Livingston, J.H.; Lynch, S.A.; Massey, R.F.; Meritet, J.F.; Michaud, J.L.; Ponsot, G.; Voit, T.; Lebon, P.; Bonthron, D.T.; Jackson, A.P.; Barnes, D.E.; Lindahl, T. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet., 2006, 38(8), 917-920.
[http://dx.doi.org/10.1038/ng1845 ] [PMID: 16845398]
[80]
Lee-Kirsch, M.A.; Gong, M.; Chowdhury, D.; Senenko, L.; Engel, K.; Lee, Y.A.; de Silva, U.; Bailey, S.L.; Witte, T.; Vyse, T.J.; Kere, J.; Pfeiffer, C.; Harvey, S.; Wong, A.; Koskenmies, S.; Hummel, O.; Rohde, K.; Schmidt, R.E.; Dominiczak, A.F.; Gahr, M.; Hollis, T.; Perrino, F.W.; Lieberman, J.; Hübner, N. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet., 2007, 39(9), 1065-1067.
[http://dx.doi.org/10.1038/ng2091 ] [PMID: 17660818]
[81]
Seo, G.J.; Yang, A.; Tan, B.; Kim, S.; Liang, Q.; Choi, Y.; Yuan, W.; Feng, P.; Park, H.S.; Jung, J.U. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep., 2015, 13(2), 440-449.
[http://dx.doi.org/10.1016/j.celrep.2015.09.007 ] [PMID: 26440888]
[82]
Xia, P.; Ye, B.; Wang, S.; Zhu, X.; Du, Y.; Xiong, Z.; Tian, Y.; Fan, Z. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol., 2016, 17(4), 369-378.
[http://dx.doi.org/10.1038/ni.3356 ] [PMID: 26829768]
[83]
Li, X.; Shu, C.; Yi, G.; Chaton, C.T.; Shelton, C.L.; Diao, J.; Zuo, X.; Kao, C.C.; Herr, A.B.; Li, P. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity, 2013, 39(6), 1019-1031.
[http://dx.doi.org/10.1016/j.immuni.2013.10.019 ] [PMID: 24332030]
[84]
Zhang, X.; Wu, J.; Du, F.; Xu, H.; Sun, L.; Chen, Z.; Brautigam, C.A.; Zhang, X.; Chen, Z.J. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep., 2014, 6(3), 421-430.
[http://dx.doi.org/10.1016/j.celrep.2014.01.003 ] [PMID: 24462292]
[85]
Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol., 2016, 17(10), 1142-1149.
[http://dx.doi.org/10.1038/ni.3558 ] [PMID: 27648547]
[86]
Shu, C.; Yi, G.; Watts, T.; Kao, C.C.; Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol., 2012, 19(7), 722-724.
[http://dx.doi.org/10.1038/nsmb.2331 ] [PMID: 22728658]
[87]
Ablasser, A.; Schmid-Burgk, J.L.; Hemmerling, I.; Horvath, G.L.; Schmidt, T.; Latz, E.; Hornung, V. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature, 2013, 503(7477), 530-534.
[http://dx.doi.org/10.1038/nature12640 ] [PMID: 24077100]
[88]
Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah, H.; Xu, K.; Cross, J.R.; Massagué, J. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016, 533(7604), 493-498.
[http://dx.doi.org/10.1038/nature18268 ] [PMID: 27225120]
[89]
Tanaka, Y.; Chen, Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal., 2012, 5(214), ra20.
[http://dx.doi.org/10.1126/scisignal.2002521 ] [PMID: 22394562]
[90]
Abe, T.; Barber, G.N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol., 2014, 88(10), 5328-5341.
[http://dx.doi.org/10.1128/JVI.00037-14 ] [PMID: 24600004]
[91]
Fang, R.; Wang, C.; Jiang, Q.; Lv, M.; Gao, P.; Yu, X.; Mu, P.; Zhang, R.; Bi, S.; Feng, J.M.; Jiang, Z. NEMO-IKKbeta are essential for IRF3 and NF-kappaB activation in the cGAS-STING Pathway. J. Immunol., 2017, 199(9), 3222-3233.
[http://dx.doi.org/10.4049/jimmunol.1700699 ]
[92]
Nagorsen, D.; Scheibenbogen, C.; Marincola, F.M.; Letsch, A.; Keilholz, U. Natural T cell immunity against cancer. Clin. Cancer Res., 2003, 9(12), 4296-4303.
[PMID: 14555498]
[93]
Klarquist, J.; Hennies, C.M.; Lehn, M.A.; Reboulet, R.A.; Feau, S.; Janssen, E.M. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol., 2014, 193(12), 6124-6134.
[http://dx.doi.org/10.4049/jimmunol.1401869 ] [PMID: 25385820]
[94]
Woo, S.R.; Fuertes, M.B.; Corrales, L.; Spranger, S.; Furdyna, M.J.; Leung, M.Y.; Duggan, R.; Wang, Y.; Barber, G.N.; Fitzgerald, K.A.; Alegre, M.L.; Gajewski, T.F. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity, 2014, 41(5), 830-842.
[http://dx.doi.org/10.1016/j.immuni.2014.10.017 ] [PMID: 25517615]
[95]
Prantner, D.; Perkins, D.J.; Lai, W.; Williams, M.S.; Sharma, S.; Fitzgerald, K.A.; Vogel, S.N. 5, 6-Dimethylxanthenone-4-acetic acid (DMXAA) activates stimulator of interferon gene (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. J. Biol. Chem., 2012, 287(47), 39776-39788.
[http://dx.doi.org/10.1074/jbc.M112.382986 ] [PMID: 23027866]
[96]
Conlon, J.; Burdette, D.L.; Sharma, S.; Bhat, N.; Thompson, M.; Jiang, Z.; Rathinam, V.A.; Monks, B.; Jin, T.; Xiao, T.S.; Vogel, S.N.; Vance, R.E.; Fitzgerald, K.A. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immun., 2013, 190(10), 5216-5225.
[http://dx.doi.org/10.4049/jimmunol.1300097 ] [PMID: 23585680]
[97]
Kim, S.; Li, L.; Maliga, Z.; Yin, Q.; Wu, H.; Mitchison, T.J. Anticancer flavonoids are mouse-selective STING agonists. ACS Chem. Biol., 2013, 8(7), 1396-1401.
[http://dx.doi.org/10.1021/cb400264n ] [PMID: 23683494]
[98]
Karaolis, D.K.; Means, T.K.; Yang, D.; Takahashi, M.; Yo-shimura, T.; Muraille, E.; Philpott, D.; Schroeder, J.T.; Hyodo, M.; Hayakawa, Y.; Talbot, B.G.; Brouillette, E.; Malouin, F. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol., 2007, 178(4), 2171-2181.
[http://dx.doi.org/10.4049/jimmunol.178.4.2171 ] [PMID: 17277122]
[99]
Chandra, D.; Quispe-Tintaya, W.; Jahangir, A.; Asafu-Adjei, D.; Ramos, I.; Sintim, H.O.; Zhou, J.; Hayakawa, Y.; Karaolis, D.K.; Gravekamp, C. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol. Res., 2014, 2(9), 901-910.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0123 ] [PMID: 24913717]
[100]
Yan, H.; Wang, X. KuoLee, R.; Chen, W. Synthesis and immunostimulatory properties of the phosphorothioate analogues of cdiGMP. Bioorg. Med. Chem. Lett., 2008, 18(20), 5631-5634.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.088 ] [PMID: 18799311]
[101]
Yi, G.; Brendel, V.P.; Shu, C.; Li, P.; Palanathan, S.; Cheng, Kao. C. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLoS One, 2013, 8(10), e77846.
[http://dx.doi.org/10.1371/journal.pone.0077846 ] [PMID: 24204993]
[102]
Li, L.; Yin, Q.; Kuss, P.; Maliga, Z.; Millán, J.L.; Wu, H.; Mitchison, T.J. Hydrolysis of 2‘3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol., 2014, 10(12), 1043-1048.
[http://dx.doi.org/10.1038/nchembio.1661 ] [PMID: 25344812]
[103]
Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.R.; Lemmens, E.; Banda, T.; Leong, J.J.; Metchette, K.; Dubensky, T.W. Jr.; Gajewski, T.F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep., 2015, 11(7), 1018-1030.
[http://dx.doi.org/10.1016/j.celrep.2015.04.031 ] [PMID: 25959818]
[104]
Lioux, T.; Mauny, M.A.; Lamoureux, A.; Bascoul, N.; Hays, M.; Vernejoul, F.; Baudru, A.S.; Boularan, C.; Lopes-Vicente, J.; Qushair, G.; Tiraby, G. Design, synthesis, and biological evaluation of novel cyclic adenosine-inosine monophosphate (cAIMP) analogs that activate stimulator of interferon genes (STING). J. Med. Chem., 2016, 59(22), 10253-10267.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01300 ] [PMID: 27783523]
[105]
Vernejoul, F.; Tiraby, G.; Lioux, T. Cyclic dinucleotides for cytokine induction. U.S. Patent Application. US20160362441A1, 2017.
[106]
Adams, J.L.; Duffy, K.J.; Lian, Y. Cyclic purine dinucleotides as modulators of sting. WO Patent Application. WO2017093933A1, 2017.
[107]
Altman, M.D.; Andresen, B.; Chang, W.; Childers, M.L.; Cumming, J.N.; Haidle, A.M.; Henderson, T.J.; Jewell, J.P.; Liang, R.; Lim, J.; Liu, H.; Lu, M.; Northrup, A.B.; Otte, R.D.; Siu, T.; Trotter, B.W.; Truong, Q.T.; Walsh, S.P.; Zhao, K. Cyclic di-nucleotide compounds as sting agonists. WO Patent Application. WO2017027646A1, 2015.
[108]
Yoshikawa, M.; Saitoh, M.; Kato, T.; Yoshitomi, Y.; Seki, T.; Nakagawa, Y.; Tominari, Y.; Seto, M.; Sasaki, Y.; Oka-niwa, M.; Oda, T.; Shibuya, A.; Hidaka, K.; Shiokawa, Z.; Murata, S.; Okabe, A.; Nakada, Y.; Mochizuki, M.; Freeze, B.S.; Tawaraishi, T.; Wada, Y.; Greenspan, P.D. Cyclic purine dinucleotides as sting (stimulator of inteferon genes) agonists. WO Patent Application. WO2018100558, 2017.
[109]
Bignan, G.C.; Connolly, P.; Edwards, J.P.; Emanuel, S.; Laquerre, S.; Tianbao, L.; Richter, M.; Beigelman, L.; Thatikonda, S.K.; Wang, G.; Zhong, M. Cyclic dinucleotides as sting agonists. WO Patent Application. WO2018098203, 2017.
[110]
Glick, G.; Ghosh, S.; Olhava, E. Cyclic dinucleotides for treating conditions associated with sting activity such as cancer. WO Patent Application, WO2017123669, 2017.
[111]
[112]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT03010176 (Accessed Date: 29 May, 2018.) .
[114]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT02675439 (Accessed Date: 12th January, 2019.).
[115]
Aduro press release. Available at: http://investors.aduro. com/phoenix.zhtml?c=242043&p=irol-newsArticle&ID=2376492 (Accessed Date: 14th January, 2019.) .
[116]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT03172936
[117]
Challa, S.; Zhou, S.; Sheri, A.; Delaney, S. Gimi; R; Novel Class of STING Agonists for Immuno-oncology. Virtual Keystone Symposia, 2018.
[118]
Ramanjulu, J.M.; Pesiridis, G.S.; Yang, J.; Concha, N.; Singhaus, R.; Zhang, S.Y.; Tran, J.L.; Moore, P.; Lehmann, S.; Eberl, H.C.; Muelbaier, M.; Schneck, J.L.; Clemens, J.; Adam, M.; Mehlmann, J.; Romano, J.; Morales, A.; Kang, J.; Leister, L.; Graybill, T.L.; Charnley, A.K.; Ye, G.; Nevins, N.; Behnia, K.; Wolf, A.I.; Kasparcova, V.; Nurse, K.; Wang, L.; Puhl, A.C.; Li, Y.; Klein, M.; Hopson, C.B.; Guss, J.; Bantscheff, M.; Bergamini, G.; Reilly, M.A.; Lian, Y.; Duffy, K.J.; Adams, J.; Foley, K.P.; Gough, P.J.; Marquis, R.W.; Smothers, J.; Hoos, A.; Bertin, J. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature, 2018, 564(7736), 439-443.
[http://dx.doi.org/10.1038/s41586-018-0705-y ] [PMID: 30405246]
[119]
Altman, M.D.; Cash, B. Benzo[b]thiophene compounds as sting agonists. WO Patent Application, WO2018067423, 2017.
[120]
Liu, B.; Tang, L.; Zhang, X.; Ma, J.; Sehgal, M.; Cheng, J.; Zhang, X.; Zhou, Y.; Du, Y.; Kulp, J.; Guo, J.T.; Chang, J. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Antiviral Res., 2017, 147, 37-46.
[http://dx.doi.org/10.1016/j.antiviral.2017.10.001 ] [PMID: 28982551]
[121]
Kato, H.; Takeuchi, O.; Sato, S.; Yoneyama, M.; Yamamoto, M.; Matsui, K.; Uematsu, S.; Jung, A.; Kawai, T.; Ishii, K.J.; Yamaguchi, O.; Otsu, K.; Tsujimura, T.; Koh, C.S.; Reis e Sousa, C.; Matsuura, Y.; Fujita, T.; Akira, S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441(7089), 101-105.
[http://dx.doi.org/10.1038/nature04734 ] [PMID: 16625202]
[122]
Goubau, D.; Schlee, M.; Deddouche, S.; Pruijssers, A.J.; Zillinger, T.; Goldeck, M.; Schuberth, C.; Van der Veen, A.G.; Fujimura, T.; Rehwinkel, J.; Iskarpatyoti, J.A.; Barchet, W.; Ludwig, J.; Dermody, T.S.; Hartmann, G.; Reis e Sousa, C. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature, 2014, 514(7522), 372-375.
[http://dx.doi.org/10.1038/nature13590 ] [PMID: 25119032]
[123]
Linehan, M.M.; Dickey, T.H.; Molinari, E.S.; Fitzgerald, M.E.; Potapova, O.; Iwasaki, A.; Pyle, A.M. A minimal RNA ligand for potent RIG-I activation in living mice. Sci. Adv., 2018, 4(2), e1701854.
[http://dx.doi.org/10.1126/sciadv.1701854 ] [PMID: 29492454]
[124]
Mukherjee, A.; Morosky, S.A.; Shen, L.; Weber, C.R.; Turner, J.R.; Kim, K.S.; Wang, T.; Coyne, C.B. Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions. J. Biol. Chem., 2009, 284(10), 6486-6494.
[http://dx.doi.org/10.1074/jbc.M807547200 ] [PMID: 19122199]
[125]
Devarkar, S.C.; Wang, C.; Miller, M.T.; Ramanathan, A.; Jiang, F.; Khan, A.G.; Patel, S.S.; Marcotrigiano, J. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA, 2016, 113(3), 596-601.
[http://dx.doi.org/10.1073/pnas.1515152113 ] [PMID: 26733676]
[126]
Kowalinski, E.; Lunardi, T.; McCarthy, A.A.; Louber, J.; Brunel, J.; Grigorov, B.; Gerlier, D.; Cusack, S. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell, 2011, 147(2), 423-435.
[http://dx.doi.org/10.1016/j.cell.2011.09.039 ] [PMID: 22000019]
[127]
Jiang, F.; Ramanathan, A.; Miller, M.T.; Tang, G.Q.; Gale, M., Jr; Patel, S.S.; Marcotrigiano, J. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 2011, 479(7373), 423-427.
[http://dx.doi.org/10.1038/nature10537 ] [PMID: 21947008]
[128]
Wu, B.; Peisley, A.; Richards, C.; Yao, H.; Zeng, X.; Lin, C.; Chu, F.; Walz, T.; Hur, S. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell, 2013, 152(1-2), 276-289.
[http://dx.doi.org/10.1016/j.cell.2012.11.048 ] [PMID: 23273991]
[129]
Li, X.; Ranjith-Kumar, C.T.; Brooks, M.T.; Dharmaiah, S.; Herr, A.B.; Kao, C.; Li, P. The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. J. Biol. Chem., 2009, 284(20), 13881-13891.
[http://dx.doi.org/10.1074/jbc.M900818200 ] [PMID: 19278996]
[130]
Bruns, A.M.; Horvath, C.M. LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine, 2015, 74(2), 198-206.
[http://dx.doi.org/10.1016/j.cyto.2015.02.010 ] [PMID: 25794939]
[131]
van der Veen, A.G.; Maillard, P.V.; Schmidt, J.M.; Lee, S.A.; Deddouche-Grass, S.; Borg, A.; Kjær, S.; Snijders, A.P.; Reis e Sousa, C. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J., 2018, 37(4), e97479.
[PMID: 29351913]
[132]
Elion, D.L.; Cook, R.S. Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget, 2018, 9(48), 29007-29017.
[http://dx.doi.org/10.18632/oncotarget.25626 ] [PMID: 29989043]
[133]
Poeck, H.; Besch, R.; Maihoefer, C.; Renn, M.; Tormo, D.; Morskaya, S.S.; Kirschnek, S.; Gaffal, E.; Landsberg, J.; Hellmuth, J.; Schmidt, A.; Anz, D.; Bscheider, M.; Schwerd, T.; Berking, C.; Bourquin, C.; Kalinke, U.; Kremmer, E.; Kato, H.; Akira, S.; Meyers, R.; Häcker, G.; Neuenhahn, M.; Busch, D.; Ruland, J.; Rothenfusser, S.; Prinz, M.; Hornung, V.; Endres, S.; Tüting, T.; Hartmann, G. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat. Med., 2008, 14(11), 1256-1263.
[http://dx.doi.org/10.1038/nm.1887 ] [PMID: 18978796]
[134]
Duewell, P.; Steger, A.; Lohr, H.; Bourhis, H.; Hoelz, H.; Kirchleitner, S.V.; Stieg, M.R.; Grassmann, S.; Kobold, S.; Siveke, J.T.; Endres, S.; Schnurr, M. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8(+) T cells. Cell Death Differ., 2014, 21(12), 1825-1837.
[http://dx.doi.org/10.1038/cdd.2014.96 ] [PMID: 25012502]
[135]
Besch, R.; Poeck, H.; Hohenauer, T.; Senft, D.; Häcker, G.; Berking, C.; Hornung, V.; Endres, S.; Ruzicka, T.; Rothenfusser, S.; Hartmann, G. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest., 2009, 119(8), 2399-2411.
[http://dx.doi.org/10.1172/JCI37155 ] [PMID: 19620789]
[136]
Glas, M.; Coch, C.; Trageser, D.; Dassler, J.; Simon, M.; Koch, P.; Mertens, J.; Quandel, T.; Gorris, R.; Reinartz, R.; Wieland, A.; Von Lehe, M.; Pusch, A.; Roy, K.; Schlee, M.; Neumann, H.; Fimmers, R.; Herrlinger, U.; Brüstle, O.; Hartmann, G.; Besch, R.; Scheffler, B. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells, 2013, 31(6), 1064-1074.
[http://dx.doi.org/10.1002/stem.1350 ] [PMID: 23390110]
[137]
Kübler, K. tho Pesch, C.; Gehrke, N.; Riemann, S.; Dassler, J.; Coch, C.; Landsberg, J.; Wimmenauer, V.; Pölcher, M.; Rudlowski, C.; Tüting, T.; Kuhn, W.; Hartmann, G.; Barchet, W. Immunogenic cell death of human ovarian cancer cells in-duced by cytosolic poly(I:C) leads to myeloid cell maturation and activates NK cells. Eur. J. Immunol., 2011, 41(10), 3028-3039.
[PMID: 21728171]
[138]
Elion, D.L.; Jacobson, M.E.; Hicks, D.J.; Rahman, B.; Sanchez, V.; Gonzales-Ericsson, P.I.; Fedorova, O.; Pyle, A.M.; Wilson, J.T.; Cook, R.S. Therapeutically active RIG-I agonist induces immunogenic tumor cell killing in breast cancers. Cancer Res., 2018, 78(21), 6183-6195.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0730 ] [PMID: 30224377]
[140]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT03065023 (Accessed Date: 2nd January, 2019.) .
[141]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT02751996(Accessed Date: 29 May, 2018.).
[142]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT01803308(Accessed Date: 31st December, 2019.).
[143]
Shaw, M.H.; Reimer, T.; Kim, Y.G.; Nuñez, G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr. Opin. Immunol., 2008, 20(4), 377-382.
[http://dx.doi.org/10.1016/j.coi.2008.06.001 ] [PMID: 18585455]
[144]
Yang, J.; Zhao, Y.; Shi, J.; Shao, F. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc. Natl. Acad. Sci. USA, 2013, 110(35), 14408-14413.
[http://dx.doi.org/10.1073/pnas.1306376110 ] [PMID: 23940371]
[145]
Hong, M.; Yoon, S.I.; Wilson, I.A. Structure and functional characterization of the RNA-binding element of the NLRX1 innate immune modulator. Immunity, 2012, 36(3), 337-347.
[http://dx.doi.org/10.1016/j.immuni.2011.12.018 ] [PMID: 22386589]
[146]
Ting, J.P.; Lovering, R.C.; Alnemri, E.S.; Bertin, J.; Boss, J.M.; Davis, B.K.; Flavell, R.A.; Girardin, S.E.; Godzik, A.; Harton, J.A.; Hoffman, H.M.; Hugot, J.P.; Inohara, N.; Mackenzie, A.; Maltais, L.J.; Nunez, G.; Ogura, Y.; Otten, L.A.; Philpott, D.; Reed, J.C.; Reith, W.; Schreiber, S.; Steimle, V.; Ward, P.A. The NLR gene family: a standard nomenclature. Immunity, 2008, 28(3), 285-287.
[http://dx.doi.org/10.1016/j.immuni.2008.02.005 ] [PMID: 18341998]
[147]
Tenthorey, J.L.; Kofoed, E.M.; Daugherty, M.D.; Malik, H.S.; Vance, R.E. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol. Cell, 2014, 54(1), 17-29.
[http://dx.doi.org/10.1016/j.molcel.2014.02.018 ] [PMID: 24657167]
[148]
Velloso, F.J.; Sogayar, M.C.; Correa, R.G. Expression and in vitro assessment of tumorigenicity for NOD1 and NOD2 receptors in breast cancer cell lines. BMC Res. Notes, 2018, 11(1), 222.
[http://dx.doi.org/10.1186/s13104-018-3335-4 ] [PMID: 29615116]
[149]
Park, J.H.; Kim, Y.G.; McDonald, C.; Kanneganti, T.D.; Hasegawa, M.; Body-Malapel, M.; Inohara, N.; Nunez, G. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol., 2007, 178(4), 2380-2386.
[http://dx.doi.org/10.4049/jimmunol.178.4.2380 ] [PMID: 17277144]
[150]
Manon, F.; Favier, A.; Núñez, G.; Simorre, J.P.; Cusack, S. Solution structure of NOD1 CARD and mutational analysis of its interaction with the CARD of downstream kinase RICK. J. Mol. Biol., 2007, 365(1), 160-174.
[http://dx.doi.org/10.1016/j.jmb.2006.09.067 ] [PMID: 17054981]
[151]
Coussens, N.P.; Mowers, J.C.; McDonald, C.; Nuñez, G.; Ramaswamy, S. Crystal structure of the Nod1 caspase activation and recruitment domain. Biochem. Biophys. Res. Commun., 2007, 353(1), 1-5.
[http://dx.doi.org/10.1016/j.bbrc.2006.11.122 ] [PMID: 17173864]
[152]
Bae, J.Y.; Park, H.H. Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J. Biol. Chem., 2011, 286(45), 39528-39536.
[http://dx.doi.org/10.1074/jbc.M111.278812 ] [PMID: 21880711]
[153]
Juliana, C.; Fernandes-Alnemri, T.; Kang, S.; Farias, A.; Qin, F.; Alnemri, E.S. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem., 2012, 287(43), 36617-36622.
[http://dx.doi.org/10.1074/jbc.M112.407130 ] [PMID: 22948162]
[154]
He, Y.; Hara, H.; Núñez, G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem. Sci., 2016, 41(12), 1012-1021.
[http://dx.doi.org/10.1016/j.tibs.2016.09.002 ] [PMID: 27669650]
[155]
Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: a review. Front. Pharmacol., 2015, 6, 262.
[http://dx.doi.org/10.3389/fphar.2015.00262 ] [PMID: 26594174]
[156]
Zitvogel, L.; Kepp, O.; Galluzzi, L.; Kroemer, G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol., 2012, 13(4), 343-351.
[http://dx.doi.org/10.1038/ni.2224 ] [PMID: 22430787]
[157]
Kent, A.; Blander, J.M. Nod-like receptors: key molecular switches in the conundrum of cancer. Front. Immunol., 2014, 5, 185.
[http://dx.doi.org/10.3389/fimmu.2014.00185 ] [PMID: 24795727]
[158]
Karki, R.; Man, S.M.; Kanneganti, T.D. Inflammasomes and Cancer. Cancer Immunol. Res., 2017, 5(2), 94-99.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0269 ] [PMID: 28093447]
[159]
Dupaul-Chicoine, J.; Arabzadeh, A.; Dagenais, M.; Douglas, T.; Champagne, C.; Morizot, A.; Rodrigue-Gervais, I.G.; Breton, V.; Colpitts, S.L.; Beauchemin, N.; Saleh, M. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity, 2015, 43(4), 751-763.
[http://dx.doi.org/10.1016/j.immuni.2015.08.013 ] [PMID: 26384545]
[160]
Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Pandian, G.S.D.B.; Savadkar, S.; Lee, K.B.; Torres-Hernandez, A.; Aykut, B.; Diskin, B.; Wang, W.; Farooq, M.S.; Mahmud, A.I.; Werba, G.; Morales, E.J.; Lall, S.; Wadowski, B.J.; Rubin, A.G.; Berman, M.E.; Narayanan, R.; Hundeyin, M.; Miller, G. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J. Exp. Med., 2017, 214(6), 1711-1724.
[http://dx.doi.org/10.1084/jem.20161707 ] [PMID: 28442553]
[161]
Mariathasan, S.; Weiss, D.S.; Newton, K.; McBride, J.; O’Rourke, K.; Roose-Girma, M.; Lee, W.P.; Weinrauch, Y.; Monack, D.M.; Dixit, V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440(7081), 228-232.
[http://dx.doi.org/10.1038/nature04515 ] [PMID: 16407890]
[162]
Glick, G.; Ghosh, S.; Roush, W.R.; Olhava, E.J. Nlrp3 modulators. WO Patent Application. WO2017184746A1, 2017.
[163]
Glick, G.; Ghosh, S.; Roush, W.R. WO Patent Application. WO2017184735A1, 2017.
[164]
Glick, G.; Ghosh, S.; Roush, W.R.; Olhava, E.J.; O'Malley, D. Substituted imidazo-quinolines as NLRP3 modulators. WO Patent Application. WO2018152396A1, 2018.
[165]
Kargbo, R.B. NLRP3 modulators for the treatment of autoinflammatory disorders. ACS Med. Chem. Lett., 2018, 9(10), 965-966.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00416 ] [PMID: 30344900]
[166]
U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT03444753 (Accessed Date: 21st December, 2019).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy