Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer

Author(s): Mehdi Rajabi, Mary Adeyeye, Shaker A. Mousa*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 30 , 2019

  Journal Home
Translate in Chinese

Abstract:

Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.

Keywords: Angiogenesis, anti-angiogenesis, anticancer, chemotherapy, passive targeting, active targeting, peptide, nanoparticles, cancer therapy, diagnosis.

[1]
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[2]
Rajabi, M.; Sudha, T.; Darwish, N.H.; Davis, P.J.; Mousa, S.A. Synthesis of MR-49, a deiodinated analog of tetraiodothyroacetic acid (tetrac), as a novel pro-angiogenesis modulator. Bioorg. Med. Chem. Lett., 2016, 26(16), 4112-4116.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.064] [PMID: 27381084]
[3]
Bharali, D.; Rajabi, M.; Mousa, S. Application of nanotechnology to target tumor angiogenesis in cancer therapeutics, Anti-angiogenesis strategies in cancer therapeutics; Elsevier/Academic Press: Amsterdam, 2017, pp. 165-178.
[http://dx.doi.org/10.1016/B978-0-12-802576-5.00011-5]
[4]
Djonov, V.; Schmid, M.; Tschanz, S.A.; Burri, P.H. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ. Res., 2000, 86(3), 286-292.
[http://dx.doi.org/10.1161/01.RES.86.3.286] [PMID: 10679480]
[5]
Chen, D.; Tang, J.; Wan, Q.; Zhang, J.; Wang, K.; Shen, Y.; Yu, Y. E-prostanoid 3 receptor mediates sprouting angiogenesis through suppression of the protein kinase a/b-catenin/notch pathway. Arterioscler. Thromb. Vasc. Biol., 2017, 37(5), 856-866.
[http://dx.doi.org/10.1161/ATVBAHA.116.308587] [PMID: 28254818]
[6]
Díaz-Flores, L.; Gutiérrez, R.; García, M.D.P.; Sáez, F.J.; Díaz-Flores, L., Jr; Madrid, J.F. Piecemeal mechanism combining sprouting and intussusceptive angiogenesis in intravenous papillary formation induced by PGE2 and glycerol. Anat. Rec. (Hoboken), 2017, 300(10), 1781-1792.
[http://dx.doi.org/10.1002/ar.23599] [PMID: 28340517]
[7]
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1995, 1(1), 27-31.
[http://dx.doi.org/10.1038/nm0195-27] [PMID: 7584949]
[8]
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature, 2005, 438(7070), 932-936.
[http://dx.doi.org/10.1038/nature04478] [PMID: 16355210]
[9]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 5.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[10]
De Rosa, L.; Finetti, F.; Diana, D.; Di Stasi, R.; Auriemma, S.; Romanelli, A.; Fattorusso, R.; Ziche, M.; Morbidelli, L.; D’Andrea, L.D. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response. Sci. Rep., 2016, 6, 31295.
[http://dx.doi.org/10.1038/srep31295] [PMID: 27498819]
[11]
Grasso, G.; Santoro, A.M.; Magrì, A.; La Mendola, D.; Tomasello, M.F.; Zimbone, S.; Rizzarelli, E. The inorganic perspective of VEGF: Interactions of Cu(2+) with peptides encompassing a recognition domain of the VEGF receptor. J. Inorg. Biochem., 2016, 159, 149-158.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.03.004] [PMID: 27015654]
[12]
Giordano, R.J.; Cardó-Vila, M.; Salameh, A.; Anobom, C.D.; Zeitlin, B.D.; Hawke, D.H.; Valente, A.P.; Almeida, F.C.; Nör, J.E.; Sidman, R.L.; Pasqualini, R.; Arap, W. From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 5112-5117.
[http://dx.doi.org/10.1073/pnas.0915141107] [PMID: 20190181]
[13]
Lee, T.Y.; Folkman, J.; Javaherian, K. HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model. PLoS One, 2010, 5(4)e9945
[http://dx.doi.org/10.1371/journal.pone.0009945] [PMID: 20376344]
[14]
Alessi, P.; Leali, D.; Camozzi, M.; Cantelmo, A.; Albini, A.; Presta, M. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist. Eur. Cytokine Netw., 2009, 20(4), 225-234.
[http://dx.doi.org/10.1684/ecn.2009.0175] [PMID: 20167562]
[15]
Leali, D.; Bianchi, R.; Bugatti, A.; Nicoli, S.; Mitola, S.; Ragona, L.; Tomaselli, S.; Gallo, G.; Catello, S.; Rivieccio, V.; Zetta, L.; Presta, M. Fibroblast growth factor 2-antagonist activity of a long-pentraxin 3-derived anti-angiogenic pentapeptide. J. Cell. Mol. Med., 2010, 14(8), 2109-2121.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00855.x] [PMID: 19627396]
[16]
Santiago, B.; Gutierrez-Cañas, I.; Dotor, J.; Palao, G.; Lasarte, J.J.; Ruiz, J.; Prieto, J.; Borrás-Cuesta, F.; Pablos, J.L. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J. Invest. Dermatol., 2005, 125(3), 450-455.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23859.x] [PMID: 16117784]
[17]
Serratì, S.; Margheri, F.; Pucci, M.; Cantelmo, A.R.; Cammarota, R.; Dotor, J.; Borràs-Cuesta, F.; Fibbi, G.; Albini, A.; Del Rosso, M. TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem. Pharmacol., 2009, 77(5), 813-825.
[http://dx.doi.org/10.1016/j.bcp.2008.10.036] [PMID: 19041849]
[18]
Rosca, E.V.; Koskimaki, J.E.; Rivera, C.G.; Pandey, N.B.; Tamiz, A.P.; Popel, A.S. Anti-angiogenic peptides for cancer therapeutics. Curr. Pharm. Biotechnol., 2011, 12(8), 1101-1116.
[http://dx.doi.org/10.2174/138920111796117300] [PMID: 21470139]
[19]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[20]
Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov., 2017, 16(5), 315-337.
[http://dx.doi.org/10.1038/nrd.2016.268] [PMID: 28303026]
[21]
Srinivasan, M.; Rajabi, M.; Mousa, S.A. Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials (Basel), 2015, 5(4), 1690-1703.
[http://dx.doi.org/10.3390/nano5041690] [PMID: 28347089]
[22]
Srinivasan, M.; Rajabi, M.; Mousa, S.A. Nanobiomaterials in cancer therapy, Nanobiomaterials in cancer therapy, 2016, p. 57-89.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00003-7]
[23]
Rajabi, M.; Srinivasan, M.; Mousa, S.A. Nanobiomaterials in drug delivery, Nanobiomaterials in drug delivery, 2016, p. 1-37.
[http://dx.doi.org/10.1016/B978-0-323-42866-8.00001-0]
[24]
Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem., 2016, 27(10), 2225-2238.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[25]
Singh, A.V.; Sitti, M. Targeted drug delivery and imaging using mobile milli/microrobots: A promising future towards theranostic pharmaceutical design. Curr. Pharm. Des., 2016, 22(11), 1418-1428.
[http://dx.doi.org/10.2174/1381612822666151210124326] [PMID: 26654436]
[26]
Singh, A.V.; Hosseinidoust, Z.; Park, B.W.; Yasa, O.; Sitti, M. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano, 2017, 11(10), 9759-9769.
[http://dx.doi.org/10.1021/acsnano.7b02082] [PMID: 28858477]
[27]
Singh, A.V.; Patil, R.; Thombre, D.K.; Gade, W.N. Micro-nanopatterning as tool to study the role of physicochemical properties on cell-surface interactions. J. Biomed. Mater. Res. A, 2013, 101(10), 3019-3032.
[http://dx.doi.org/10.1002/jbm.a.34586] [PMID: 23559501]
[28]
Vikram Singh, A.; Gharat, T.; Batuwangala, M.; Park, B.W.; Endlein, T.; Sitti, M. Three-dimensional patterning in biomedicine: Importance and applications in neuropharmacology. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(3), 1369-1382.
[http://dx.doi.org/10.1002/jbm.b.33922] [PMID: 28580629]
[29]
Lehto, T.; Kurrikoff, K.; Langel, Ü. Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin. Drug Deliv., 2012, 9(7), 823-836.
[http://dx.doi.org/10.1517/17425247.2012.689285] [PMID: 22594635]
[30]
Oller-Salvia, B.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev., 2016, 45(17), 4690-4707.
[http://dx.doi.org/10.1039/C6CS00076B] [PMID: 27188322]
[31]
Gidwani, M.; Singh, A.V. Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges. Curr. Pharm. Biotechnol., 2014, 14(14), 1201-1212.
[http://dx.doi.org/10.2174/1389201015666140508122558] [PMID: 24809717]
[32]
Singh, A.V. Recent trends in nano-biotechnology reinforcing contemporary pharmaceutical design. Curr. Pharm. Des., 2016, 22(11), 1415-1417.
[http://dx.doi.org/10.2174/1381612822999160122121713] [PMID: 26795907]
[33]
Dwivedi, C.; Pandey, I.; Pandey, H.; Patil, S.; Mishra, S.B.; Pandey, A.C.; Zamboni, P.; Ramteke, P.W.; Singh, A.V. In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor. J. Biomed. Mater. Res. A, 2018, 106(3), 641-651.
[http://dx.doi.org/10.1002/jbm.a.36268] [PMID: 28986947]
[34]
Chereddy, K.K.; Her, C.H.; Comune, M.; Moia, C.; Lopes, A.; Porporato, P.E.; Vanacker, J.; Lam, M.C.; Steinstraesser, L.; Sonveaux, P.; Zhu, H.; Ferreira, L.S.; Vandermeulen, G.; Préat, V. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J. Control. Release, 2014, 194, 138-147.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.016] [PMID: 25173841]
[35]
Ramos, R.; Silva, J.P.; Rodrigues, A.C.; Costa, R.; Guardão, L.; Schmitt, F.; Soares, R.; Vilanova, M.; Domingues, L.; Gama, M. Wound healing activity of the human antimicrobial peptide LL37. Peptides, 2011, 32(7), 1469-1476.
[http://dx.doi.org/10.1016/j.peptides.2011.06.005] [PMID: 21693141]
[36]
Chen, X.; Zhang, M.; Chen, S.; Wang, X.; Tian, Z.; Chen, Y.; Xu, P.; Zhang, L.; Zhang, L.; Zhang, L. Peptide-modified chitosan hydrogels accelerate skin wound healing by promoting fibroblast proliferation, migration, and secretion. Cell Transplant., 2017, 26(8), 1331-1340.
[http://dx.doi.org/10.1177/0963689717721216] [PMID: 28901187]
[37]
Shih, T.; Lindley, C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin. Ther., 2006, 28(11), 1779-1802.
[http://dx.doi.org/10.1016/j.clinthera.2006.11.015] [PMID: 17212999]
[38]
Burger, R.A.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Monk, B.J.; Huang, H.; Mannel, R.S.; Homesley, H.D.; Fowler, J.; Greer, B.E.; Boente, M.; Birrer, M.J.; Liang, S.X. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med., 2011, 365(26), 2473-2483.
[http://dx.doi.org/10.1056/NEJMoa1104390] [PMID: 22204724]
[39]
Jain, R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005, 307(5706), 58-62.
[http://dx.doi.org/10.1126/science.1104819] [PMID: 15637262]
[40]
Shu, Y.; Pi, F.; Sharma, A.; Rajabi, M.; Haque, F.; Shu, D.; Leggas, M.; Evers, B.M.; Guo, P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Deliv. Rev., 2014, 66, 74-89.
[http://dx.doi.org/10.1016/j.addr.2013.11.006] [PMID: 24270010]
[41]
Sharma, M.; Sharma, R.; Jain, D.K. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica (Cairo), 2016, 20168525679
[http://dx.doi.org/10.1155/2016/8525679] [PMID: 27239378]
[42]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[43]
Rajabi, M.; Mousa, S.A. Lipid nanoparticles and their application in nanomedicine. Curr. Pharm. Biotechnol., 2016, 17(8), 662-672.
[http://dx.doi.org/10.2174/1389201017666160415155457] [PMID: 27087491]
[44]
Mousa, S.; Rajabi, M. Non-cleavable polymer conjugated with avb3 integrin thyroid antagonists US20170348425 A1, 2017.
[45]
Shu, Y.; Yin, H.; Rajabi, M.; Li, H.; Vieweger, M.; Guo, S.; Shu, D.; Guo, P. RNA-based micelles: A novel platform for chemotherapeutic drug loading and delivery. J. Control. Release, 2018.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.014]
[46]
Xie, H.; Diagaradjane, P.; Deorukhkar, A.A.; Goins, B.; Bao, A.; Phillips, W.T.; Wang, Z.; Schwartz, J.; Krishnan, S. Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int. J. Nanomedicine, 2011, 6, 259-269.
[http://dx.doi.org/10.2147/IJN.S15479] [PMID: 21423588]
[47]
Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9343-9348.
[http://dx.doi.org/10.1073/pnas.0803728105] [PMID: 18607000]
[48]
Winter, P.M.; Neubauer, A.M.; Caruthers, S.D.; Harris, T.D.; Robertson, J.D.; Williams, T.A.; Schmieder, A.H.; Hu, G.; Allen, J.S.; Lacy, E.K.; Zhang, H.; Wickline, S.A.; Lanza, G.M. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(9), 2103-2109.
[http://dx.doi.org/10.1161/01.ATV.0000235724.11299.76] [PMID: 16825592]
[49]
Song, H.; Wang, W.; Zhao, P.; Qi, Z.; Zhao, S. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale, 2014, 6(6), 3206-3216.
[http://dx.doi.org/10.1039/c3nr04363k] [PMID: 24499922]
[50]
Kemp, M.M.; Kumar, A.; Mousa, S.; Dyskin, E.; Yalcin, M.; Ajayan, P.; Linhardt, R.J.; Mousa, S.A. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology, 2009, 20(45)455104
[http://dx.doi.org/10.1088/0957-4484/20/45/455104] [PMID: 19822927]
[51]
Grodzik, M.; Sawosz, E.; Wierzbicki, M.; Orlowski, P.; Hotowy, A.; Niemiec, T.; Szmidt, M.; Mitura, K.; Chwalibog, A. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int. J. Nanomedicine, 2011, 6, 3041-3048.
[http://dx.doi.org/ 10.2147/IJN.S25528] [PMID: 22162660]
[52]
de Lussanet, Q.G.; Beets-Tan, R.G.; Backes, W.H.; van der Schaft, D.W.; van Engelshoven, J.M.; Mayo, K.H.; Griffioen, A.W. Dynamic contrast-enhanced magnetic resonance imaging at 1.5 Tesla with gadopentetate dimeglumine to assess the angiostatic effects of anginex in mice. Eur. J. Cancer, 2004, 40(8), 1262-1268.
[http://dx.doi.org/10.1016/j.ejca.2004.01.020] [PMID: 15110892]
[53]
Calcagno, C.; Ramachandran, S.; Millon, A.; Robson, P.M.; Mani, V.; Fayad, Z. Gadolinium-based contrast agents for vessel wall magnetic resonance imaging (MRI) of atherosclerosis. Curr. Cardiovasc. Imaging Rep., 2013, 6(1), 11-24.
[http://dx.doi.org/10.1007/s12410-012-9177-x] [PMID: 23539505]
[54]
Medarova, Z.; Rashkovetsky, L.; Pantazopoulos, P.; Moore, A. Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res., 2009, 69(3), 1182-1189.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2001] [PMID: 19141648]
[55]
van Tilborg, G.A.; Mulder, W.J.; van der Schaft, D.W.; Reutelingsperger, C.P.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia, 2008, 10(12), 1459-1469.
[http://dx.doi.org/10.1593/neo.08858] [PMID: 19048124]
[56]
Chen, W.; Jarzyna, P.A.; van Tilborg, G.A.; Nguyen, V.A.; Cormode, D.P.; Klink, A.; Griffioen, A.W.; Randolph, G.J.; Fisher, E.A.; Mulder, W.J.; Fayad, Z.A. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J., 2010, 24(6), 1689-1699.
[http://dx.doi.org/10.1096/fj.09-139865] [PMID: 20075195]
[57]
Lanza, G.M.; Caruthers, S.D.; Winter, P.M.; Hughes, M.S.; Schmieder, A.H.; Hu, G.; Wickline, S.A. Angiogenesis imaging with vascular-constrained particles: the why and how. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(Suppl. 1), S114-S126.
[http://dx.doi.org/10.1007/s00259-010-1502-5] [PMID: 20617434]
[58]
Jarzyna, P.A.; Deddens, L.H.; Kann, B.H.; Ramachandran, S.; Calcagno, C.; Chen, W.; Gianella, A.; Dijkhuizen, R.M.; Griffioen, A.W.; Fayad, Z.A.; Mulder, W.J. Tumor angiogenesis phenotyping by nanoparticle-facilitated magnetic resonance and near-infrared fluorescence molecular imaging. Neoplasia, 2012, 14(10), 964-973.
[http://dx.doi.org/10.1593/neo.121148] [PMID: 23097630]
[59]
Winter, P.M.; Caruthers, S.D.; Allen, J.S.; Cai, K.; Williams, T.A.; Lanza, G.M.; Wickline, S.A. Molecular imaging of angiogenic therapy in peripheral vascular disease with alphanubeta3-integrin-targeted nanoparticles. Magn. Reson. Med., 2010, 64(2), 369-376.
[PMID: 20665780]
[60]
Wu, T.; Ding, X.; Su, B.; Soodeen-Lalloo, A.K.; Zhang, L.; Shi, J.Y. Magnetic resonance imaging of tumor angiogenesis using dual-targeting RGD10-NGR9 ultrasmall superparamagnetic iron oxide nanoparticles. Clin. Transl. Oncol., 2018, 20(5), 599-606.
[http://dx.doi.org/10.1007/s12094-017-1753-8] [PMID: 28956266]
[61]
Varner, J.A.; Cheresh, D.A. Tumor angiogenesis and the role of vascular cell integrin alphavbeta3. Important Adv. Oncol., 1996, 69-87.
[PMID: 8791129]
[62]
Lozza, C.; Navarro-Teulon, I.; Pèlegrin, A.; Pouget, J.P.; Vivès, E. Peptides in receptor-mediated radiotherapy: from design to the clinical application in cancers. Front. Oncol., 2013, 3, 247.
[http://dx.doi.org/10.3389/fonc.2013.00247] [PMID: 24093086]
[63]
Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell, 2002, 110(6), 673-687.
[http://dx.doi.org/10.1016/S0092-8674(02)00971-6] [PMID: 12297042]
[64]
Weis, S.M.; Cheresh, D.A. αV integrins in angiogenesis and cancer. Cold Spring Harb. Perspect. Med., 2011, 1(1)a006478
[http://dx.doi.org/10.1101/cshperspect.a006478] [PMID: 22229119]
[65]
Murphy, P.A.; Begum, S.; Hynes, R.O. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors. PLoS One, 2015, 10(3)e0120872
[http://dx.doi.org/10.1371/journal.pone.0120872] [PMID: 25807551]
[66]
Nikolopoulos, S.N.; Blaikie, P.; Yoshioka, T.; Guo, W.; Giancotti, F.G. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell, 2004, 6(5), 471-483.
[http://dx.doi.org/10.1016/j.ccr.2004.09.029] [PMID: 15542431]
[67]
Bello, L.; Francolini, M.; Marthyn, P.; Zhang, J.; Carroll, R.S.; Nikas, D.C.; Strasser, J.F.; Villani, R.; Cheresh, D.A.; Black, P.M. Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery, 2001, 49(2), 380-389.
[http://dx.doi.org/ 10.1097/00006123-200108000-00022] [PMID: 11504114]
[68]
Rajabi, M.; Yalcin, M.; Mousa, S.A. Synthesis of new analogs of tetraiodothyroacetic acid (tetrac) as novel angiogenesis inhibitors for treatment of cancer. Bioorg. Med. Chem. Lett., 2018, 28(7), 1223-1227.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.045] [PMID: 29519736]
[69]
Gruber, G.; Hess, J.; Stiefel, C.; Aebersold, D.M.; Zimmer, Y.; Greiner, R.H.; Studer, U.; Altermatt, H.J.; Hlushchuk, R.; Djonov, V. Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br. J. Cancer, 2005, 92(1), 41-46.
[http://dx.doi.org/10.1038/sj.bjc.6602278] [PMID: 15597101]
[70]
Landen, C.N.; Kim, T.J.; Lin, Y.G.; Merritt, W.M.; Kamat, A.A.; Han, L.Y.; Spannuth, W.A.; Nick, A.M.; Jennnings, N.B.; Kinch, M.S.; Tice, D.; Sood, A.K. Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia, 2008, 10(11), 1259-1267.
[http://dx.doi.org/10.1593/neo.08740] [PMID: 18953435]
[71]
Hosotani, R.; Kawaguchi, M.; Masui, T.; Koshiba, T.; Ida, J.; Fujimoto, K.; Wada, M.; Doi, R.; Imamura, M. Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas, 2002, 25(2), e30-e35.
[http://dx.doi.org/10.1097/00006676-200208000-00021] [PMID: 12142752]
[72]
McCabe, N.P.; De, S.; Vasanji, A.; Brainard, J.; Byzova, T.V. Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene, 2007, 26(42), 6238-6243.
[http://dx.doi.org/10.1038/sj.onc.1210429] [PMID: 17369840]
[73]
Abu-Tayeh, H.; Weidenfeld, K.; Zhilin-Roth, A.; Schif-Zuck, S.; Thaler, S.; Cotarelo, C.; Tan, T.Z.; Thiery, J.P.; Green, J.E.; Klorin, G.; Sabo, E.; Sleeman, J.P.; Tzukerman, M.; Barkan, D. ‘Normalizing’ the malignant phenotype of luminal breast cancer cells via alpha(v)beta(3)-integrin. Cell Death Dis., 2016, 7(12)e2491
[http://dx.doi.org/10.1038/cddis.2016.387] [PMID: 27906177]
[74]
Naber, H.P.; Wiercinska, E.; Pardali, E.; van Laar, T.; Nirmala, E.; Sundqvist, A.; van Dam, H.; van der Horst, G.; van der Pluijm, G.; Heckmann, B.; Danen, E.H.; Ten Dijke, P. BMP-7 inhibits TGF-β-induced invasion of breast cancer cells through inhibition of integrin β(3) expression. Cell Oncol. (Dordr.), 2012, 35(1), 19-28.
[http://dx.doi.org/10.1007/s13402-011-0058-0] [PMID: 21935711]
[75]
Kageshita, T.; Hamby, C.V.; Hirai, S.; Kimura, T.; Ono, T.; Ferrone, S. Alpha(v)beta3 expression on blood vessels and melanoma cells in primary lesions: differential association with tumor progression and clinical prognosis. Cancer Immunol. Immunother., 2000, 49(6), 314-318.
[http://dx.doi.org/10.1007/s002620000124] [PMID: 10946813]
[76]
Payan, I.; McDonnell, S.; Torres, H.M.; Steelant, W.F.; Van Slambrouck, S. FAK tyrosine 407 organized with integrin αVβ5 in Hs578Ts(i)8 advanced triple-negative breast cancer cells. Int. J. Oncol., 2016, 48(5), 2043-2054.
[http://dx.doi.org/10.3892/ijo.2016.3422] [PMID: 26984508]
[77]
Berghoff, A.S.; Kovanda, A.K.; Melchardt, T.; Bartsch, R.; Hainfellner, J.A.; Sipos, B.; Schittenhelm, J.; Zielinski, C.C.; Widhalm, G.; Dieckmann, K.; Weller, M.; Goodman, S.L.; Birner, P.; Preusser, M. αvβ3, αvβ5 and αvβ6 integrins in brain metastases of lung cancer. Clin. Exp. Metastasis, 2014, 31(7), 841-851.
[http://dx.doi.org/10.1007/s10585-014-9675-0] [PMID: 25150423]
[78]
Bates, R.C.; Bellovin, D.I.; Brown, C.; Maynard, E.; Wu, B.; Kawakatsu, H.; Sheppard, D.; Oettgen, P.; Mercurio, A.M. Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest., 2005, 115(2), 339-347.
[http://dx.doi.org/10.1172/JCI200523183] [PMID: 15668738]
[79]
Enyu, L.; Na, W.; Chuanzong, Z.; Ben, W.; Xiaojuan, W.; Yan, W.; Zequn, L.; Jianguo, H.; Jiayong, W.; Benjia, L.; Cheng, P.; Min, Z.; Zongli, Z. The clinical significance and underlying correlation of pStat-3 and integrin αvβ6 expression in gallbladder cancer. Oncotarget, 2017, 8(12), 19467-19477.
[http://dx.doi.org/10.18632/oncotarget.14444] [PMID: 28061445]
[80]
Lu, H.; Wang, T.; Li, J.; Fedele, C.; Liu, Q.; Zhang, J.; Jiang, Z.; Jain, D.; Iozzo, R.V.; Violette, S.M.; Weinreb, P.H.; Davis, R.J.; Gioeli, D.; FitzGerald, T.J.; Altieri, D.C.; Languino, L.R. αvβ6 integrin promotes castrate-resistant prostate cancer through JNK1-mediated activation of androgen receptor. Cancer Res., 2016, 76(17), 5163-5174.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0543] [PMID: 27450452]
[81]
Lian, P.L.; Liu, Z.; Yang, G.Y.; Zhao, R.; Zhang, Z.Y.; Chen, Y.G.; Zhuang, Z.N.; Xu, K.S. Integrin αvβ6 and matrix metalloproteinase 9 correlate with survival in gastric cancer. World J. Gastroenterol., 2016, 22(14), 3852-3859.
[http://dx.doi.org/10.3748/wjg.v22.i14.3852] [PMID: 27076771]
[82]
Uusi-Kerttula, H.; Davies, J.; Coughlan, L.; Hulin-Curtis, S.; Jones, R.; Hanna, L.; Chester, J.D.; Parker, A.L. Pseudotyped αvβ6 integrin-targeted adenovirus vectors for ovarian cancer therapies. Oncotarget, 2016, 7(19), 27926-27937.
[http://dx.doi.org/10.18632/oncotarget.8545] [PMID: 27056886]
[83]
Hazelbag, S.; Kenter, G.G.; Gorter, A.; Dreef, E.J.; Koopman, L.A.; Violette, S.M.; Weinreb, P.H.; Fleuren, G.J. Overexpression of the α v β 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J. Pathol., 2007, 212(3), 316-324.
[http://dx.doi.org/10.1002/path.2168] [PMID: 17503414]
[84]
Slack-Davis, J.K.; Atkins, K.A.; Harrer, C.; Hershey, E.D.; Conaway, M. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res., 2009, 69(4), 1469-1476.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2678] [PMID: 19208843]
[85]
Adachi, M.; Taki, T.; Higashiyama, M.; Kohno, N.; Inufusa, H.; Miyake, M. Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clin. Cancer Res., 2000, 6(1), 96-101.
[PMID: 10656437]
[86]
Knowles, L.M.; Zewe, J.; Malik, G.; Parwani, A.V.; Gingrich, J.R.; Pilch, J. CLT1 targets bladder cancer through integrin α5β1 and CLIC3. Mol. Cancer Res., 2013, 11(2), 194-203.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0300] [PMID: 23204394]
[87]
Danen, E.H.; Ten Berge, P.J.; Van Muijen, G.N.; Van ’t Hof-Grootenboer, A.E.; Bröcker, E.B.; Ruiter, D.J. Emergence of α 5 β 1 fibronectin- and α v β 3 vitronectin-receptor expression in melanocytic tumour progression. Histopathology, 1994, 24(3), 249-256.
[http://dx.doi.org/10.1111/j.1365-2559.1994.tb00517.x] [PMID: 7515372]
[88]
Davis, G.E. Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem. Biophys. Res. Commun., 1992, 182(3), 1025-1031.
[http://dx.doi.org/10.1016/0006-291X(92)91834-D] [PMID: 1540151]
[89]
Travis, M.A.; Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol., 2014, 32, 51-82.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120257] [PMID: 24313777]
[90]
Bogdanowich-Knipp, S.J.; Chakrabarti, S.; Williams, T.D.; Dillman, R.K.; Siahaan, T.J. Solution stability of linear vs. cyclic RGD peptides. J. Pept. Res., 1999, 53(5), 530-541.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00052.x] [PMID: 10424348]
[91]
Bogdanowich-Knipp, S.J.; Jois, D.S.; Siahaan, T.J. The effect of conformation on the solution stability of linear vs. cyclic RGD peptides. J. Pept. Res., 1999, 53(5), 523-529.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00055.x] [PMID: 10424347]
[92]
Aumailley, M.; Gurrath, M.; Müller, G.; Calvete, J.; Timpl, R.; Kessler, H. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett., 1991, 291(1), 50-54.
[http://dx.doi.org/10.1016/0014-5793(91)81101-D] [PMID: 1718779]
[93]
Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. N-methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res., 2008, 41(10), 1331-1342.
[http://dx.doi.org/10.1021/ar8000603] [PMID: 18636716]
[94]
Dechantsreiter, M.A.; Planker, E.; Mathä, B.; Lohof, E.; Hölzemann, G.; Jonczyk, A.; Goodman, S.L.; Kessler, H. N-Methylated cyclic RGD peptides as highly active and selective α(V)β(3) integrin antagonists. J. Med. Chem., 1999, 42(16), 3033-3040.
[http://dx.doi.org/10.1021/jm970832g] [PMID: 10447947]
[95]
Li, F.; Zhao, Y.; Mao, C.; Kong, Y.; Ming, X. RGD-modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer. Mol. Pharm., 2017, 14(8), 2793-2804.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00321] [PMID: 28700237]
[96]
Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J. Radiolabelled peptides for oncological diagnosis. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(Suppl. 1), S78-S92.
[http://dx.doi.org/10.1007/s00259-011-2014-7] [PMID: 22388627]
[97]
Wang, F.; Li, Y.; Shen, Y.; Wang, A.; Wang, S.; Xie, T. The functions and applications of RGD in tumor therapy and tissue engineering. Int. J. Mol. Sci., 2013, 14(7), 13447-13462.
[http://dx.doi.org/10.3390/ijms140713447] [PMID: 23807504]
[98]
Liu, S.; Edwards, D.S. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2235-2268.
[http://dx.doi.org/10.1021/cr980436l] [PMID: 11749481]
[99]
Liu, Z.; Huang, J.; Dong, C.; Cui, L.; Jin, X.; Jia, B.; Zhu, Z.; Li, F.; Wang, F. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol. Pharm., 2012, 9(5), 1409-1417.
[http://dx.doi.org/10.1021/mp200661t] [PMID: 22452411]
[100]
Zhu, X.; Li, J.; Hong, Y.; Kimura, R.H.; Ma, X.; Liu, H.; Qin, C.; Hu, X.; Hayes, T.R.; Benny, P.; Gambhir, S.S.; Cheng, Z. 99mTc-labeled cystine knot peptide targeting integrin αvβ6 for tumor SPECT imaging. Mol. Pharm., 2014, 11(4), 1208-1217.
[http://dx.doi.org/10.1021/mp400683q] [PMID: 24524409]
[101]
Liu, S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol. Pharm., 2006, 3(5), 472-487.
[http://dx.doi.org/10.1021/mp060049x] [PMID: 17009846]
[102]
Choi, N.; Kim, S.M.; Hong, K.S.; Cho, G.; Cho, J.H.; Lee, C.; Ryu, E.K. The use of the fusion protein RGD-HSA-TIMP2 as a tumor targeting imaging probe for SPECT and PET. Biomaterials, 2011, 32(29), 7151-7158.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.007] [PMID: 21719102]
[103]
Chen, X.; Park, R.; Shahinian, A.H.; Tohme, M.; Khankaldyyan, V.; Bozorgzadeh, M.H.; Bading, J.R.; Moats, R.; Laug, W.E.; Conti, P.S. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl. Med. Biol., 2004, 31(2), 179-189.
[http://dx.doi.org/10.1016/j.nucmedbio.2003.10.002] [PMID: 15013483]
[104]
Ke, T.; Jeong, E.K.; Wang, X.; Feng, Y.; Parker, D.L.; Lu, Z.R. RGD targeted poly(L-glutamic acid)-cystamine-(Gd-DO3A) conjugate for detecting angiogenesis biomarker α(v) β3 integrin with MRT, mapping. Int. J. Nanomedicine, 2007, 2(2), 191-199.
[PMID: 17722547]
[105]
Li, Z.J.; Cho, C.H. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J. Transl. Med., 2012, 10(Suppl. 1), S1.
[http://dx.doi.org/10.1186/1479-5876-10-S1-S1] [PMID: 23046982]
[106]
Chen, K.; Ma, W.; Li, G.; Wang, J.; Yang, W.; Yap, L.P.; Hughes, L.D.; Park, R.; Conti, P.S. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression. Mol. Pharm., 2013, 10(1), 417-427.
[http://dx.doi.org/10.1021/mp3005676] [PMID: 23190134]
[107]
Corti, A.; Curnis, F.; Arap, W.; Pasqualini, R. The neovasculature homing motif NGR: more than meets the eye. Blood, 2008, 112(7), 2628-2635.
[http://dx.doi.org/10.1182/blood-2008-04-150862] [PMID: 18574027]
[108]
Huang, C.W.; Li, Z.; Conti, P.S. In vivo near-infrared fluorescence imaging of integrin α2β1 in prostate cancer with cell-penetrating-peptide-conjugated DGEA probe. J. Nucl. Med., 2011, 52(12), 1979-1986.
[http://dx.doi.org/10.2967/jnumed.111.091256] [PMID: 22065876]
[109]
Roth, L.; Agemy, L.; Kotamraju, V.R.; Braun, G.; Teesalu, T.; Sugahara, K.N.; Hamzah, J.; Ruoslahti, E. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012, 31(33), 3754-3763.
[http://dx.doi.org/10.1038/onc.2011.537] [PMID: 22179825]
[110]
Doñate, F.; Parry, G.C.; Shaked, Y.; Hensley, H.; Guan, X.; Beck, I.; Tel-Tsur, Z.; Plunkett, M.L.; Manuia, M.; Shaw, D.E.; Kerbel, R.S.; Mazar, A.P. Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth. Clin. Cancer Res., 2008, 14(7), 2137-2144.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4530] [PMID: 18381955]
[111]
Dai, W.; Yang, T.; Wang, Y.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. Peptide PHSCNK as an integrin α5β1 antagonist targets stealth liposomes to integrin-overexpressing melanoma. Nanomedicine (Lond.), 2012, 8(7), 1152-1161.
[http://dx.doi.org/10.1016/j.nano.2012.01.003] [PMID: 22306158]
[112]
Bruns, A.F.; Herbert, S.P.; Odell, A.F.; Jopling, H.M.; Hooper, N.M.; Zachary, I.C.; Walker, J.H.; Ponnambalam, S. Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic, 2010, 11(1), 161-174.
[http://dx.doi.org/10.1111/j.1600-0854.2009.01001.x] [PMID: 19883397]
[113]
Eng, L.; Azad, A.K.; Habbous, S.; Pang, V.; Xu, W.; Maitland-van der Zee, A.H.; Savas, S.; Mackay, H.J.; Amir, E.; Liu, G. Vascular endothelial growth factor pathway polymorphisms as prognostic and pharmacogenetic factors in cancer: a systematic review and meta-analysis. Clin. Cancer Res., 2012, 18(17), 4526-4537.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1315] [PMID: 22733538]
[114]
Han, Q.; Wang, W.; Jia, X.; Qian, Y.; Li, Q.; Wang, Z.; Zhang, W.; Yang, S.; Jia, Y.; Hu, Z. Switchable liposomes: Targeting-peptide-functionalized and pH-triggered cytoplasmic delivery. ACS Appl. Mater. Interfaces, 2016, 8(29), 18658-18663.
[http://dx.doi.org/10.1021/acsami.6b05678] [PMID: 27391018]
[115]
Kim, J.; Mirando, A.C.; Popel, A.S.; Green, J.J. Gene delivery nanoparticles to modulate angiogenesis. Adv. Drug Deliv. Rev., 2017, 119, 20-43.
[http://dx.doi.org/10.1016/j.addr.2016.11.003] [PMID: 27913120]
[116]
Yao, H.; Wang, K.; Wang, Y.; Wang, S.; Li, J.; Lou, J.; Ye, L.; Yan, X.; Lu, W.; Huang, R. Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials, 2015, 37, 345-352.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.034] [PMID: 25453963]
[117]
Li, N.; Yang, H.; Yu, Z.; Li, Y.; Pan, W.; Wang, H.; Tang, B. Nuclear-targeted siRNA delivery for long-term gene silencing. Chem. Sci. (Camb.), 2017, 8(4), 2816-2822.
[http://dx.doi.org/10.1039/C6SC04293G] [PMID: 28553519]
[118]
Niu, J.; Chu, Y.; Huang, Y.F.; Chong, Y.S.; Jiang, Z.H.; Mao, Z.W.; Peng, L.H.; Gao, J.Q. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl. Mater. Interfaces, 2017, 9(11), 9388-9401.
[http://dx.doi.org/10.1021/acsami.6b16378] [PMID: 28252938]
[119]
Singh, S.R.; Grossniklaus, H.E.; Kang, S.J.; Edelhauser, H.F.; Ambati, B.K.; Kompella, U.B. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther., 2009, 16(5), 645-659.
[http://dx.doi.org/10.1038/gt.2008.185] [PMID: 19194480]
[120]
Li, X.; Wu, M.; Pan, L.; Shi, J. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor. Int. J. Nanomedicine, 2015, 11, 93-105.
[http://dx.doi.org/10.2147/IJN.S81156] [PMID: 26766908]
[121]
Chen, Y.; Wang, X.; Liu, T.; Zhang, D.S.; Wang, Y.; Gu, H.; Di, W. Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int. J. Nanomedicine, 2015, 10, 2579-2594.
[PMID: 25848273]
[122]
Cui, Y.; Zhang, C.; Luo, R.; Liu, H.; Zhang, Z.; Xu, T.; Zhang, Y.; Wang, D. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine, 2016, 11, 5671-5682.
[http://dx.doi.org/10.2147/IJN.S115357] [PMID: 27895477]
[123]
Kitagawa, T.; Kosuge, H.; Uchida, M.; Iida, Y.; Dalman, R.L.; Douglas, T.; McConnell, M.V. RGD targeting of human ferritin iron oxide nanoparticles enhances in vivo MRI of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm. J. Magn. Reson. Imaging, 2017, 45(4), 1144-1153.
[http://dx.doi.org/10.1002/jmri.25459] [PMID: 27689830]
[124]
Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17450-17455.
[http://dx.doi.org/10.1073/pnas.1114518108] [PMID: 21969599]
[125]
Hoffman, J.A.; Giraudo, E.; Singh, M.; Zhang, L.; Inoue, M.; Porkka, K.; Hanahan, D.; Ruoslahti, E. Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell, 2003, 4(5), 383-391.
[http://dx.doi.org/10.1016/S1535-6108(03)00273-3] [PMID: 14667505]
[126]
Zhang, F.; Huang, X.; Zhu, L.; Guo, N.; Niu, G.; Swierczewska, M.; Lee, S.; Xu, H.; Wang, A.Y.; Mohamedali, K.A.; Rosenblum, M.G.; Lu, G.; Chen, X. Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials, 2012, 33(21), 5414-5422.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.032] [PMID: 22560667]
[127]
Liu, X.Q.; Song, W.J.; Sun, T.M.; Zhang, P.Z.; Wang, J. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol. Pharm., 2011, 8(1), 250-259.
[http://dx.doi.org/10.1021/mp100315q] [PMID: 21138272]
[128]
Bartczak, D.; Muskens, O.L.; Sanchez-Elsner, T.; Kanaras, A.G.; Millar, T.M. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano, 2013, 7(6), 5628-5636.
[http://dx.doi.org/10.1021/nn402111z] [PMID: 23713973]
[129]
Roma-Rodrigues, C.; Heuer-Jungemann, A.; Fernandes, A.R.; Kanaras, A.G.; Baptista, P.V. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo. Int. J. Nanomedicine, 2016, 11, 2633-2639.
[PMID: 27354794]
[130]
Kang, B.; Mackey, M.A.; El-Sayed, M.A. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc., 2010, 132(5), 1517-1519.
[http://dx.doi.org/10.1021/ja9102698] [PMID: 20085324]
[131]
Morales-Avila, E.; Ferro-Flores, G.; Ocampo-García, B.E.; De León-Rodríguez, L.M.; Santos-Cuevas, C.L.; García-Becerra, R.; Medina, L.A.; Gómez-Oliván, L. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor α(v)β(3) expression. Bioconjug. Chem., 2011, 22(5), 913-922.
[http://dx.doi.org/10.1021/bc100551s] [PMID: 21513349]
[132]
Yang, Y.; Zhang, L.; Cai, J.; Li, X.; Cheng, D.; Su, H.; Zhang, J.; Liu, S.; Shi, H.; Zhang, Y.; Zhang, C. Tumor angiogenesis targeted radiosensitization therapy using gold nanoprobes guided by MRI/SPECT imaging. ACS Appl. Mater. Interfaces, 2016, 8(3), 1718-1732.
[http://dx.doi.org/10.1021/acsami.5b09274] [PMID: 26731347]
[133]
Patra, C.R.; Bhattacharya, R.; Wang, E.; Katarya, A.; Lau, J.S.; Dutta, S.; Muders, M.; Wang, S.; Buhrow, S.A.; Safgren, S.L.; Yaszemski, M.J.; Reid, J.M.; Ames, M.M.; Mukherjee, P.; Mukhopadhyay, D. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res., 2008, 68(6), 1970-1978.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6102] [PMID: 18339879]
[134]
Chanda, N.; Kattumuri, V.; Shukla, R.; Zambre, A.; Katti, K.; Upendran, A.; Kulkarni, R.R.; Kan, P.; Fent, G.M.; Casteel, S.W.; Smith, C.J.; Boote, E.; Robertson, J.D.; Cutler, C.; Lever, J.R.; Katti, K.V.; Kannan, R. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc. Natl. Acad. Sci. USA, 2010, 107(19), 8760-8765.
[http://dx.doi.org/10.1073/pnas.1002143107] [PMID: 20410458]
[135]
Vilchis-Juárez, A.; Ferro-Flores, G.; Santos-Cuevas, C.; Morales-Avila, E.; Ocampo-García, B.; Díaz-Nieto, L.; Luna-Gutiérrez, M.; Jiménez-Mancilla, N.; Pedraza-López, M.; Gómez-Oliván, L. Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J. Biomed. Nanotechnol., 2014, 10(3), 393-404.
[http://dx.doi.org/10.1166/jbn.2014.1721] [PMID: 24730235]
[136]
Fei, Tan. X-M.; Zhao, J.; Liang, H.; Chen, Z.; Wang, X. A novel delivery vector for targeted delivery of the antiangiogenic drug paclitaxel to angiogenic blood vessels: Tltytws-conjugated PEG–PLA nanoparticles. J. Nanopart. Res., 2017, 19, 51.
[http://dx.doi.org/10.1007/s11051-016-3721-6]
[137]
Feng, X.; Yao, J.; Gao, X.; Jing, Y.; Kang, T.; Jiang, D.; Jiang, T.; Feng, J.; Zhu, Q.; Jiang, X.; Chen, J. Multi-targeting peptide-functionalized nanoparticles recognized vasculogenic mimicry, tumor neovasculature, and glioma cells for enhanced anti-glioma therapy. ACS Appl. Mater. Interfaces, 2015, 7(50), 27885-27899.
[http://dx.doi.org/10.1021/acsami.5b09934] [PMID: 26619329]
[138]
Bai, F.; Wang, C.; Lu, Q.; Zhao, M.; Ban, F.Q.; Yu, D.H.; Guan, Y.Y.; Luan, X.; Liu, Y.R.; Chen, H.Z.; Fang, C. Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer. Biomaterials, 2013, 34(26), 6163-6174.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.062] [PMID: 23706689]
[139]
Yu, D.H.; Lu, Q.; Xie, J.; Fang, C.; Chen, H.Z. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials, 2010, 31(8), 2278-2292.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.047] [PMID: 20053444]
[140]
Gu, G.; Hu, Q.; Feng, X.; Gao, X.; Menglin, J.; Kang, T.; Jiang, D.; Song, Q.; Chen, H.; Chen, J. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials, 2014, 35(28), 8215-8226.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.022] [PMID: 24974009]
[141]
Hu, Q.; Gu, G.; Liu, Z.; Jiang, M.; Kang, T.; Miao, D.; Tu, Y.; Pang, Z.; Song, Q.; Yao, L.; Xia, H.; Chen, H.; Jiang, X.; Gao, X.; Chen, J. F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials, 2013, 34(4), 1135-1145.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.048] [PMID: 23146434]
[142]
Guan, Y.Y.; Luan, X.; Xu, J.R.; Liu, Y.R.; Lu, Q.; Wang, C.; Liu, H.J.; Gao, Y.G.; Chen, H.Z.; Fang, C. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials, 2014, 35(9), 3060-3070.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.027] [PMID: 24393268]
[143]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[144]
Wang, Z.; Chui, W.K.; Ho, P.C. Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharm. Res., 2011, 28(3), 585-596.
[http://dx.doi.org/10.1007/s11095-010-0308-2] [PMID: 21057857]
[145]
Luo, L.; Zhang, X.; Hirano, Y.; Tyagi, P.; Barabás, P.; Uehara, H.; Miya, T.R.; Singh, N.; Archer, B.; Qazi, Y.; Jackman, K.; Das, S.K.; Olsen, T.; Chennamaneni, S.R.; Stagg, B.C.; Ahmed, F.; Emerson, L.; Zygmunt, K.; Whitaker, R.; Mamalis, C.; Huang, W.; Gao, G.; Srinivas, S.P.; Krizaj, D.; Baffi, J.; Ambati, J.; Kompella, U.B.; Ambati, B.K. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano, 2013, 7(4), 3264-3275.
[http://dx.doi.org/10.1021/nn305958y] [PMID: 23464925]
[146]
Danhier, F.; Vroman, B.; Lecouturier, N.; Crokart, N.; Pourcelle, V.; Freichels, H.; Jérôme, C.; Marchand-Brynaert, J.; Feron, O.; Préat, V. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J. Control. Release, 2009, 140(2), 166-173.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.011] [PMID: 19699245]
[147]
Shmueli, R.B.; Ohnaka, M.; Miki, A.; Pandey, N.B.; Lima e Silva, R.; Koskimaki, J.E.; Kim, J.; Popel, A.S.; Campochiaro, P.A.; Green, J.J. Long-term suppression of ocular neovascularization by intraocular injection of biodegradable polymeric particles containing a serpin-derived peptide. Biomaterials, 2013, 34(30), 7544-7551.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.044] [PMID: 23849876]
[148]
Kolonin, M.G.; Saha, P.K.; Chan, L.; Pasqualini, R.; Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nat. Med., 2004, 10(6), 625-632.
[http://dx.doi.org/10.1038/nm1048] [PMID: 15133506]
[149]
Imanparast, F.; Faramarzi, M.A.; Vatannejad, A.; Paknejad, M.; Deiham, B.; Kobarfard, F.; Amani, A.; Doosti, M. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc. Res., 2017, 112, 14-19.
[http://dx.doi.org/10.1016/j.mvr.2017.02.002] [PMID: 28161429]
[150]
Graf, N.; Bielenberg, D.R.; Kolishetti, N.; Muus, C.; Banyard, J.; Farokhzad, O.C.; Lippard, S.J. α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano, 2012, 6(5), 4530-4539.
[http://dx.doi.org/10.1021/nn301148e] [PMID: 22584163]
[151]
Liu, C.; Yu, W.; Chen, Z.; Zhang, J.; Zhang, N. Enhanced gene transfection efficiency in CD13-positive vascular endothelial cells with targeted poly(lactic acid)-poly(ethylene glycol) nanoparticles through caveolae-mediated endocytosis. J. Control. Release, 2011, 151(2), 162-175.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.027] [PMID: 21376765]
[152]
Moffatt, S.; Wiehle, S.; Cristiano, R.J. Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine-DNA polyplex targeting aminopeptidase N/CD13. Hum. Gene Ther., 2005, 16(1), 57-67.
[http://dx.doi.org/10.1089/hum.2005.16.57] [PMID: 15703489]
[153]
Laakkonen, P.; Akerman, M.E.; Biliran, H.; Yang, M.; Ferrer, F.; Karpanen, T.; Hoffman, R.M.; Ruoslahti, E. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc. Natl. Acad. Sci. USA, 2004, 101(25), 9381-9386.
[http://dx.doi.org/10.1073/pnas.0403317101] [PMID: 15197262]
[154]
Moffatt, S.; Cristiano, R.J. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells. Int. J. Pharm., 2006, 321(1-2), 143-154.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.007] [PMID: 16860501]
[155]
Wadajkar, A.S.; Bhavsar, Z.; Ko, C.Y.; Koppolu, B.; Cui, W.; Tang, L.; Nguyen, K.T. Multifunctional particles for melanoma-targeted drug delivery. Acta Biomater., 2012, 8(8), 2996-3004.
[http://dx.doi.org/10.1016/j.actbio.2012.04.042] [PMID: 22561668]
[156]
Akerman, M.E.; Chan, W.C.; Laakkonen, P.; Bhatia, S.N.; Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 12617-12621.
[http://dx.doi.org/10.1073/pnas.152463399] [PMID: 12235356]
[157]
Cai, W.; Chen, X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc., 2008, 3(1), 89-96.
[http://dx.doi.org/10.1038/nprot.2007.478] [PMID: 18193025]
[158]
Mulder, W.J.; Castermans, K.; van Beijnum, J.R.; Oude Egbrink, M.G.; Chin, P.T.; Fayad, Z.A.; Löwik, C.W.; Kaijzel, E.L.; Que, I.; Storm, G.; Strijkers, G.J.; Griffioen, A.W.; Nicolay, K. Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis, 2009, 12(1), 17-24.
[http://dx.doi.org/10.1007/s10456-008-9124-2] [PMID: 19067197]
[159]
Tan, M.; Wu, X.; Jeong, E.K.; Chen, Q.; Lu, Z.R. Peptide-targeted Nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance cancer molecular imaging. Biomacromolecules, 2010, 11(3), 754-761.
[http://dx.doi.org/10.1021/bm901352v] [PMID: 20131758]
[160]
Katanasaka, Y.; Ishii, T.; Asai, T.; Naitou, H.; Maeda, N.; Koizumi, F.; Miyagawa, S.; Ohashi, N.; Oku, N. Cancer antineovascular therapy with liposome drug delivery systems targeted to BiP/GRP78. Int. J. Cancer, 2010, 127(11), 2685-2698.
[http://dx.doi.org/10.1002/ijc.25276] [PMID: 20178102]
[161]
Kang, W.; Svirskis, D.; Sarojini, V.; McGregor, A.L.; Bevitt, J.; Wu, Z. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget, 2017, 8(22), 36614-36627.
[http://dx.doi.org/10.18632/oncotarget.16625] [PMID: 28402271]
[162]
Fukuta, T.; Asai, T.; Kiyokawa, Y.; Nakada, T.; Bessyo-Hirashima, K.; Fukaya, N.; Hyodo, K.; Takase, K.; Kikuchi, H.; Oku, N. Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells. Int. J. Pharm., 2017, 524(1-2), 364-372.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.059] [PMID: 28359814]
[163]
Ying, M.; Zhan, C.; Wang, S.; Yao, B.; Hu, X.; Song, X.; Zhang, M.; Wei, X.; Xiong, Y.; Lu, W. Liposome-based systemic glioma-targeted drug delivery enabled by All-D peptides. ACS Appl. Mater. Interfaces, 2016, 8(44), 29977-29985.
[http://dx.doi.org/10.1021/acsami.6b10146] [PMID: 27797175]
[164]
Chen, X.; Wang, X.; Wang, Y.; Yang, L.; Hu, J.; Xiao, W.; Fu, A.; Cai, L.; Li, X.; Ye, X.; Liu, Y.; Wu, W.; Shao, X.; Mao, Y.; Wei, Y.; Chen, L. Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J. Control. Release, 2010, 145(1), 17-25.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.007] [PMID: 20307599]
[165]
Tu, Y.; Kim, J.S. Selective gene transfer to hepatocellular carcinoma using homing peptide-grafted cationic liposomes. J. Microbiol. Biotechnol., 2010, 20(4), 821-827.
[PMID: 20467260]
[166]
Garde, S.V.; Forté, A.J.; Ge, M.; Lepekhin, E.A.; Panchal, C.J.; Rabbani, S.A.; Wu, J.J. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects. Anticancer Drugs, 2007, 18(10), 1189-1200.
[http://dx.doi.org/10.1097/CAD.0b013e3282a213ce] [PMID: 17893520]
[167]
Luo, L.M.; Huang, Y.; Zhao, B.X.; Zhao, X.; Duan, Y.; Du, R.; Yu, K.F.; Song, P.; Zhao, Y.; Zhang, X.; Zhang, Q. Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. Biomaterials, 2013, 34(4), 1102-1114.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.029] [PMID: 23127332]
[168]
Pastorino, F.; Brignole, C.; Marimpietri, D.; Cilli, M.; Gambini, C.; Ribatti, D.; Longhi, R.; Allen, T.M.; Corti, A.; Ponzoni, M. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res., 2003, 63(21), 7400-7409.
[PMID: 14612539]
[169]
Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Zhang, H.; Gong, W.; Wang, Z.; Mei, X. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials, 2014, 35(14), 4368-4381.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.076] [PMID: 24565519]
[170]
Schiffelers, R.M.; Koning, G.A.; ten Hagen, T.L.; Fens, M.H.; Schraa, A.J.; Janssen, A.P.; Kok, R.J.; Molema, G.; Storm, G. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control. Release, 2003, 91(1-2), 115-122.
[http://dx.doi.org/10.1016/S0168-3659(03)00240-2] [PMID: 12932643]
[171]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47-52.
[http://dx.doi.org/10.1038/nnano.2006.170] [PMID: 18654207]
[172]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010, 328(5981), 1031-1035.
[http://dx.doi.org/10.1126/science.1183057] [PMID: 20378772]
[173]
Simberg, D.; Duza, T.; Park, J.H.; Essler, M.; Pilch, J.; Zhang, L.; Derfus, A.M.; Yang, M.; Hoffman, R.M.; Bhatia, S.; Sailor, M.J.; Ruoslahti, E. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 932-936.
[http://dx.doi.org/10.1073/pnas.0610298104] [PMID: 17215365]
[174]
Zhang, J.; Wang, L.; Fai Chan, H.; Xie, W.; Chen, S.; He, C.; Wang, Y.; Chen, M. Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells. Sci. Rep., 2017, 7, 46057.
[http://dx.doi.org/10.1038/srep46057] [PMID: 28470171]
[175]
Shan, D.; Li, J.; Cai, P.; Prasad, P.; Liu, F.; Rauth, A.M.; Wu, X.Y. RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug Deliv. Transl. Res., 2015, 5(1), 15-26.
[http://dx.doi.org/10.1007/s13346-014-0210-2] [PMID: 25787336]
[176]
Shuhendler, A.J.; Prasad, P.; Leung, M.; Rauth, A.M.; Dacosta, R.S.; Wu, X.Y. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv. Healthc. Mater., 2012, 1(5), 600-608.
[http://dx.doi.org/10.1002/adhm.201200006] [PMID: 23184795]
[177]
Dong, Z.; Guo, J.; Xing, X.; Zhang, X.; Du, Y.; Lu, Q. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model. Biomed. Pharmacother., 2017, 89, 297-304.
[http://dx.doi.org/10.1016/j.biopha.2017.02.029] [PMID: 28236703]
[178]
Fu, X.; Yang, Y.; Li, X.; Lai, H.; Huang, Y.; He, L.; Zheng, W.; Chen, T. RGD peptide-conjugated selenium nanoparticles: antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway. Nanomedicine (Lond.), 2016, 12(6), 1627-1639.
[http://dx.doi.org/10.1016/j.nano.2016.01.012] [PMID: 26961468]
[179]
Lee, J.; Lee, T.S.; Ryu, J.; Hong, S.; Kang, M. Im, K.; Kang, J.H.; Lim, S.M.; Park, S.; Song, R. RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J. Nucl. Med., 2013, 54(1), 96-103.
[http://dx.doi.org/10.2967/jnumed.112.108043] [PMID: 23232276]
[180]
Oba, M.; Fukushima, S.; Kanayama, N.; Aoyagi, K.; Nishiyama, N.; Koyama, H.; Kataoka, K. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alphavbeta3 and alphavbeta5 integrins. Bioconjug. Chem., 2007, 18(5), 1415-1423.
[http://dx.doi.org/10.1021/bc0700133] [PMID: 17595054]
[181]
Kulhari, H.; Telukutla, S.R.; Pooja, D.; Shukla, R.; Sistla, R.; Bansal, V.; Adams, D.J. Peptide grafted and self-assembled poly(γ-glutamic acid)-phenylalanine nanoparticles targeting camptothecin to glioma. Nanomedicine (Lond.), 2017, 12(14), 1661-1674.
[http://dx.doi.org/10.2217/nnm-2017-0067] [PMID: 28635550]
[182]
Chang, C.Y.; Wang, M.C.; Miyagawa, T.; Chen, Z.Y.; Lin, F.H.; Chen, K.H.; Liu, G.S.; Tseng, C.L. Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int. J. Nanomedicine, 2016, 12, 279-294.
[http://dx.doi.org/10.2147/IJN.S114754] [PMID: 28115846]
[183]
Lee, G.Y.; Kim, J.H.; Oh, G.T.; Lee, B.H.; Kwon, I.C.; Kim, I.S. Molecular targeting of atherosclerotic plaques by a stabilin-2-specific peptide ligand. J. Control. Release, 2011, 155(2), 211-217.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.010] [PMID: 21781994]
[184]
Han, H.D.; Mangala, L.S.; Lee, J.W.; Shahzad, M.M.; Kim, H.S.; Shen, D.; Nam, E.J.; Mora, E.M.; Stone, R.L.; Lu, C.; Lee, S.J.; Roh, J.W.; Nick, A.M.; Lopez-Berestein, G.; Sood, A.K. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin. Cancer Res., 2010, 16(15), 3910-3922.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0005] [PMID: 20538762]
[185]
Malmo, J.; Sandvig, A.; Vårum, K.M.; Strand, S.P. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach. PLoS One, 2013, 8(1)e54182
[http://dx.doi.org/10.1371/journal.pone.0054182] [PMID: 23372682]
[186]
Chen, X.; Fu, W.; Cao, X.; Jiang, H.; Che, X.; Xu, X.; Ma, B.; Zhang, J. Peptide SIKVAV-modified chitosan hydrogels promote skin wound healing by accelerating angiogenesis and regulating cytokine secretion. Am. J. Transl. Res., 2018, 10(12), 4258-4268.
[PMID: 30662668]
[187]
Kim, J.H.; Bae, S.M.; Na, M.H.; Shin, H.; Yang, Y.J.; Min, K.H.; Choi, K.Y.; Kim, K.; Park, R.W.; Kwon, I.C.; Lee, B.H.; Hoffman, A.S.; Kim, I.S. Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. J. Control. Release, 2012, 157(3), 493-499.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.070] [PMID: 21945679]
[188]
Lv, P.P.; Ma, Y.F.; Yu, R.; Yue, H.; Ni, D.Z.; Wei, W.; Ma, G.H. Targeted delivery of insoluble cargo (paclitaxel) by PEGylated chitosan nanoparticles grafted with Arg-Gly-Asp (RGD). Mol. Pharm., 2012, 9(6), 1736-1747.
[http://dx.doi.org/10.1021/mp300051h] [PMID: 22559746]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 30
Year: 2019
Page: [5664 - 5683]
Pages: 20
DOI: 10.2174/0929867326666190620100800
Price: $65

Article Metrics

PDF: 30
HTML: 6