Generic placeholder image

Current Chromatography

Editor-in-Chief

ISSN (Print): 2213-2406
ISSN (Online): 2213-2414

Review Article

Quantitative Explanation of Retention Mechanisms in Reversed-phase Mode Liquid Chromatography, and Utilization of Typical Reversed-phase Liquid Chromatography for Drug Discovery

Author(s): Toshihiko Hanai*

Volume 6, Issue 1, 2019

Page: [52 - 64] Pages: 13

DOI: 10.2174/2213240606666190619120733

Abstract

The retention mechanism in reversed-phase liquid chromatography was quantitatively described using log P (octanol-water partition coefficient). The hydrophobic (lipophilic) interaction liquid chromatography was then used to measure the hydrophobicity of a variety of compounds. Furthermore, the technique has been used as an analytical method to determine molecular properties during the drug discovery process. However, log P values cannot be applied to other chromatographic techniques. Therefore, the direct calculation of molecular interactions was proposed to describe the general retention mechanisms in chromatography. The retention mechanisms in reversed-phase liquid chromatography were quantitatively described in silico by using simple model compounds and phases. The competitive interactions between a bonded-phase and a solvent phase clearly demonstrated the retention mechanisms in reversed-phase liquid chromatography. Chromatographic behavior of acidic drugs on a pentyl-, an octyl-, and a hexenyl-phase was quantitatively described in the in silico analysis. Their retention was based on their hydrophobicity, and hydrogen bonding and electrostatic interaction were selectivity of the hexenyl-phase. This review focuses on the quantitative explanation of the retention mechanisms in reversed-phase liquid chromatography and the practical applications in drug discovery.

Keywords: Acidic drugs, in silico analysis, modeling bonded-phases, drug discovery, RPLC, solvent effect.

[1]
Snyder, L.R. The practice of liquid-solid chromatography.Modern practice of liquid chromatography; Kirkland, J.J., Ed.; John Wiley & Sons: New York, 1971, pp. 205-236.
[2]
Snyder, L.R.; Kirkland, J.J., Eds.; Introduction to Modern Liquid Chromatography; John Wiley: New York, 1979, p. 863.
[3]
Arwidi, B.; Samuelson, O. Partition chromatography of sugars on ion-exchange resins. Svensk Kemish Tidskift, 1965, 77, 2.
[4]
Larsson, L-I.; Samuelson, O. An automated procedure for separation of monosaccharides on ion exchange resins. Acta Chem. Scand., 1965, 19, 1357-1364.
[5]
Funasaka, W.; Hanai, T. The relationship between molecular structure and chromatographic behavior and the application of high-speed liquid chromatography. In: High-speed liquid chromatography; Hatano, H., Ed.; Nankodo, Tokyo, 1973, pp. 153-167.
[6]
Funasaka, W.; Hanai, T.; Fujimura, K. High speed liquid chromatographic separations of phthalic esters, carbohydrates, TCA organic acids, and organic mercury compounds. J. Chromatogr. Sci., 1974, 12, 517-520.
[7]
Funusaka, W.; Hanai, T.; Matsumoto, T.; Fujimura, K.; Ando, T. Nonaqueous solvent chromatography. IV. Effects of solvents and ion-exchange resins on adsorption mechanisms and their application in high-speed liquid chromatography. J. Chromatogr. A, 1974, 88, 87-97.
[8]
Hanai, T.; Fujimura, K. Non-aqueous solvent chromatography. V: The comparison of organic and inorganic adsorbents. J. Chromatogr. Sci., 1976, 14, 140-143.
[9]
Hanai, T.; Hatano, H. Experimental High Speed Liquid Chromatography; Kagakudojin: Kyoto, Japan, 1977, pp. 1-265.
[10]
Hanai, T. Basic selection method of stationary and mobile phases in liquid chromatography. In: Separation System in Chromatography, APPROACH and Selection Methods; Hara, S., Mori, S., Hanai, T., E Eds.; Maruzen: Tokyo, Japan,; , 1981, pp. pp. 121-156.
[11]
Hanai, T.; Hatano, H. New experimental high speed liquid chromatography; Kagakudojin: Kyoto, 1988, pp. 1-338.
[12]
Horvath, C.; Melander, W.; Molnar, I. Solvophobic interactions in liquid chromatography with non-polar stationary phases. J. Chromatogr. A, 1976, 125, 129-156.
[13]
Leo, A.; Hanshe, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev., 1971, 71, 525-616.
[14]
Miyake, K.; Terada, H. Preparation of a column with octanol-like properties for high-performance liquid chromatography: Direct measurement of partition coefficients in an octanol-water system. J. Chromatogr. A, 1978, 157, 386-390.
[15]
Krstulovic, A.N.; Brown, P.R., Eds.; Reversed-phase High-performance Liquid Chromatography; John Wiley & Sons: New York, 1982, p. 296.
[16]
Kaliszan, R. Quantitative structure-chromatographic retention relationships; John Wiley & Sons: New York, 1987, p. 303.
[17]
Kubik, Ł.; Kaliszan, R.; Wiczling, P. Analysis of isocratic chromatographic retention data using Bayesian Multilevel Modeling. Anal. Chem., 2018, 90(22), 13670-13679.
[18]
Kaliszan, R. Quantitative structure property retention relationship in liquid chromatography.in Liquid Chromatography. Fundamental and Instrumentation, Second Edition; Elsevier: Amsterdam, 2017, pp. 553-572.
[19]
Heinzen, V.E.F.; Junkes, B.S.; Kuhnen, C.A.; Yunes, R.A. Molecular interactions in chromatographic retention: A tool for QSRR/QSPR/QSRR studies, In: Molecular interactions, In Tech, Rijeka: Croatia; , 2012, pp. pp. 25-48.
[20]
Hanai, T., Ed.; Quantitative in silico chromatography: Computational modeling of molecular interactions; Royal Society of Chemistry: Cambridge, UK, 2014, p. 338.
[20a]
Hanai, T. Quantitative in silico analysis of retention time on methylsilicone and polyethyleneglycol phases in capillary gas chromatography, In: Internet-Chromatography; Toshihiko Hanai; , 2010, p. pp. 15.
[20b]
Hanai, T. Quantitative in silico analysis of retention time on methylsilicone and polyethyleneglycol phases in capillary gas chromatography 2, Toshihiko Hanai; Internet-Chromatography, 2011, p. 4.
[20c]
Hanai, T. Quantitative in silico analysis of retention time on methylphenyl phases in capillary gas chromatography, In: Internet- Chromatography, Toshihiko Hanai; , 2012.
[21]
Kovats, E. Gaschromatographische Charakterisierung Organnisher Vervindungen, Tell 1; Retentionsindics Aliphatischer Halogenide, Alkohole, Aldehyde, and Ketone. Helv. Chim. Acta, 1958, 41, 1915-1932.
[22]
Castello, G. Retention index systems: Alternatives to the n-alkanes as calibration standard. J. Chromatogr. A, 1999, 842, 51-64.
[23]
Reddy, K.S.; Dutois, J.C.; Kovatz, E. Pair-wise interactions by gas chromatography I: Interaction free enthalpies of solutes with non-associated primary alcohol groups. J. Chromatogr. A, 1992, 609, 229-259.
[24]
Reddy, K.S. E. sz. Kováts. Pair-wise interactions by gas chromatography II. Sociation free enthalpies of some hydrogen bonding solutes with non-associated primary alcohol groups. Chromatographia, 1992, 34, 546-546.
[25]
Cloux, R.; Defayes, G.; Foti, K.; Dutoit, J-C.; Kovats, E. Pair-wise interactions by gas chromatography III. Synthesis of isosteric stationary phases for gas chromatography. Synthesis, 1993, 9, 909-919.
[26]
Reddy, K.S.; Cloux, R.; Kovatz, E. Pair-wise interactions by gas chromatography IV: Interaction free enthalpies of solutes with trifluoromethyl-substituted alkanes. J. Chromatogr. A, 1994, 673, 181-209.
[27]
Defayes, G.; Reddy, K.S.; Dallas, A.; Kovatz, E. Pair-wise interactions by gas chromatography V: Interaction free enthalpies of solutes with primary chloro- and bromoalkanes. J. Chromatogr. A, 1995, 699, 131-154.
[28]
Reddy, K.S.; Cloux, R.; Kovatz, E. Pair-wise interactions by gas chromatography VI: Interaction free enthalpies of solutes with primary methoxyalkanes, cyanoalkane and alkanethiol groups. J. Chromatogr. A, 1995, 704, 387-436.
[29]
Kovats, E. 15th International Symposium on Chromatography, Nuremberg1984.
[30]
Hanai, T.; Ohhira, M.; Tamura, T. Stability of alkyl-bonded silica gels. LC GC, 1988, 6(10), 922-928.
[31]
Yamaguchi, J.; Hanai, T.; Cai, H. Selectivity related to carbon loading and end-capping of octadecyl-bonded silica gels in reversed-phase liquid chromatography. J. Chromatogr. A, 1988, 441(1), 183-196.
[32]
Ohhira, M.; Ohmura, F.; Hanai, T. Inertness of bonded silica gel packings. J. Liq. Chromatogr., 1989, 12(6), 1065-1074.
[33]
Yamaguchi, J.; Hanai, T. Selectivity related to carbon loading and end-capping of octadecyl bonded silica gels in the reversed-phase liquid chromatography of phenolic compounds. J. Chromatogr. Sci., 1989, 27(12), 710-715.
[34]
Hanai, T., Ed.; HPLC. A Practical Guide; Royal Society of Chemistry: Cambridge, 1999, p. 134.
[35]
Hanai, T. Selection of chromatographic methods for biological materials Advanced chromatographic and electromigration methods in bioscience, Elsevier, Amsterdam; Deyl, Z.; Miksik, I.; Tagliaro, F; Tesarova, E., Ed.; Elsevier: Amsterdam, 1998, pp. 1-51.
[36]
Chen, F-Y.; Cao, X-W.; Han, S-Y.; Lian, H-Z.; Mao, L. Relationship between hydrophobicity and RPLC retention behavior of amphoteric compounds. J. Liq. Chromatogr. Relat. Technol., 2014, 37, 2711-2724.
[37]
Fikri, K.; Debord, J.; Bollinger, J-C.; Cledat, D.; Penicaut, J.B.; Robert, J-M. RP-HPLC lipophilicity studies for some (hetero)arylamides derived from 2-amino 4,6-dimethyl pyridine: Introduction of an hydrogen-bond descriptor. J. Liq. Chromatogr. Relat. Technol., 2011, 34, 1356-1366.
[38]
Pehourcq, F.; Jarry, C.; Bannwarth, B. Potential of immobilized artificial membrane chromatography for lipophilicity determination of arylpropionic acid non-steroidal anti-inflammatory drugs. J. Pharm. Biomed. Anal., 2003, 33(2), 137-144.
[39]
Studzińska, S.; Buszewski, B. Chromatographic determination of hydrophobicity of dialkylimidazolium ionic liquids using selected stationary phase. J. Sep. Sci., 2012, 35(9), 1123-1131.
[40]
Begnaud, F.; Larcinese, J-P.; Fankhauser, P.; Maddalena, U. LogP measurement of a highly hydrophobic properfume: Evaluation of extrapolation of RP-HPLC results and impact of chemical moieties on accuracy. Flavour Fragrance J., 2016, 31, 235-240.
[41]
Li, Y.; Sun, S-P.; Zheng, Y. Determination of partition coefficients of icariside-II and icaritin based on the HPLC retention time. Chung Kuo Yao Hsueh Tsa Chih, 2012, 47, 122-126.
[42]
Fredholt, K.; Larsen, D.H.; Larsen, C. Modification of in vitro drug release rate from oily parenteral depots using a formulation approach. Eur. J. Pharm. Sci., 2000, 11(3), 231-237.
[43]
Jensen, D.A.; Gary, R.K. Estimation of alkane-water logP for neutral, acidic, and basic compounds using an alkylated polystyrene-divinylbenzene high-performance liquid chromatography column. J. Chromatogr. A, 2015, 1417, 21-29.
[44]
Yamagami, C.; Takami, H.; Yamamoto, K.; Miyoshi, K.; Takao, N. Hydrophobic properties of anticonvulsant phenylacetanilides. Relationship between octanol-water partition coefficient and capacity factor determined by reversed-phase liquid chromatography. Chem. Pharm. Bull. (Tokyo), 1984, 32(12), 4994-5002.
[45]
Chrysanthakopoulos, M.; Nicolaou, I.; Demopoulos, V.J.; Tsantili-Kakoulidou, A. The efficiency of RP-TLC for lipophilicity assessment. A comparative study on a series of pyrrolyl-acetic acid derivatives, inhibitors of aldose reductase. J. Plan. Chromatogr. -. Modern TLC, 2012, 25, 349-354.
[46]
Dołowy, M.; Pyka, A. Lipophilicity assessment of spironolactone by means of reversed phase liquid chromatography and by newly developed calculation procedures. Acta Pol. Pharm., 2015, 72(2), 235-244.
[47]
Shoshtari, S.Z.; Wen, J.; Alany, R.G. Octanol water partition coefficient determination for model steroids using an HPLC method. Lett. Drug Des. Discov., 2008, 5, 394-400.
[48]
Strzemecka, L.; Hawrył, A.; Swieboda, R.; Hawryl, M.; Jagiello-Wojtowicz, E.; Piatkowska-Chmiel, I.; Herbet, M.; Chodkowska, A. Determination of lipophilicity of allyl thiosemicarbazide, N1-thiocarbamylamidrazone derivatives, and their cyclic products by RP-HPLC, RP-TLC, and theoretical methods: Effects of selected compounds on the CNS of mice. J. Liq. Chromatogr. Relat. Technol., 2015, 38, 1452-1465.
[49]
Yamagami, C.; Masaki, Y. Hydrophobicity parameters determined by reversed-phase liquid chromatography.X. Relationship between capacity factor and octanol-water partition coefficients of monosubstituted thiophenes. Chem. Pharm. Bull. (Tokyo), 1995, 43, 2238-2242.
[50]
Bajda, M.; Boryczka, S.; Wietrzyk, J.; Malawska, B. Investigation of lipophilicity of anticancer-active thioquinoline derivatives. Biomed. Chromatogr., 2007, 21(2), 123-131.
[51]
Pachuta-Stec, A.; Hawrył, A.M.; Wróbel, A.; Hawrył, M.A.; Pitucha, M. Chromatographic evaluation of the lipophilic properties of some 1,2,4-triazole with potential anti-tumor activity. J. Liq. Chromatogr. Relat. Technol., 2015, 38, 1199-1206.
[52]
Hanai, T. Study of qualitative analysis by liquid chromatography using porous polymer gel. Chromatographia, 1979, 12(2), 77-82.
[53]
Hanai, T.; Tran, K.C.; Hubert, J. Prediction of retention times for aromatic acids in liquid chromatography. J. Chromatogr. A, 1982, 239, 385-395.
[54]
Hanai, T. Evaluation of measuring methods of human serum albumin drug binding affinity. Curr. Pharm. Anal., 2007, 3, 205-212.
[55]
Hanai, T.; Miyazaki, R.; Kinoshita, T. Quantitative analysis of human serum albumin-drug interactions using reversed-phase and ion-exchange liquid chromatography. Anal. Chim. Acta, 1999, 378, 77-82.
[56]
Hanai, T.; Koseki, A.; Yoshikawa, R.; Ueno, M.; Kinoshita, T.; Homma, H. Prediction of human serum albumin-drug binding affinity without albumin. Anal. Chim. Acta, 2002, 454, 101-108.
[57]
Hanai, T.; Miyazaki, R.; Kamijima, E.; Homma, H.; Kinoshita, T. Computational prediction of drug-albumin binding affinity by modeling liquid chromatographic interaction. Internet Electron. J. Mol. Des., 2003, 2, 702-711.
[58]
Valkó, K.L. Lipophilicity and biomimetic properties measured by HPLC to support drug discovery. J. Pharm. Biomed. Anal., 2016, 130, 35-54.
[59]
Tetko, I.V.; Bruneau, P.; Mewes, H-W.; Rohrer, D.C.; Poda, G.I. Can we estimate the accuracy of ADME-Tox predictions? Drug Discov. Today, 2006, 11(15-16), 700-707.
[60]
Valko, K.; Teague, S.; Pidgeon, C. In vitro membrane binding and protein binding (IAM MB/PB technology) to estimate in vivo distribution: Applications in early drug discovery. ADMET DMPK, 2017, 5, 14-38.
[61]
Valko, K. Biomimetic chromatography to accelerate drug discovery: Part 1 & 2. LC GC Eur., 2018, 2-9, 250-257.
[62]
Hanai, T.; Tachikawa, T. Quantitative analysis of chemiluminescence intensity and toxicity in silico Tsuji, A. (ed). Bioluminescence & Chemiluminescence: Progress and Perspectives, [International Symposium on Bioluminescence & Chemiluminescence] 13th, Yokohama, Japan, Aug. 2-6, Meeting Date 2004, 2005, pp. 397-400.
[63]
Hanai, T. Chromatography in silico, basic concept in reversed-phase liquid chromatography. Anal. Bioanal. Chem., 2005, 382(3), 708-717.
[64]
Hanai, T. Quantitative in silico analysis of organic modifier effect on retention in reversed-phase liquid chromatography. J. Chromatogr. Sci., 2014, 52(1), 75-80.
[65]
Hanai, T. Quantitative in silico analysis of retention of phenylthiohydantoin-amino acids in reversed-phase ion-pair liquid chromatography. J. Chromatogr. Sci., 2016, 54(4), 604-608.
[66]
Hanai, T. Introduction of in silico chromatography. J. Chromatogr. Sep. Tech., 2016, 7, 1-8.
[67]
Hanai, T. Simple model bonded-phases to design a homogeneous support for in silico chromatography .Int. J. Anal. Tech. IJAT-17- RA-121, 2018, 4(1), 1-6.
[68]
Hanai, T. Definition of HILIC system and quantitative analysis of retention mechanisms. Curr. Chromatogr., 2018, 5, 43-52.
[69]
Hanai, T. Quantitative explanation of retention mechanisms of hydrophobic and hydrophilic interaction liquid chromatography-Inductive effect of alkyl-chain. Separations, 2017, 4, 33. [Available at: www.mdpi.com/journal/separations].
[70]
Berendsen, G.E.; De Galan, L. Role of the chain length of chemically bonded phases and the retention mechanism in reversed-phase liquid chromatography. J. Chromatogr. A, 1980, 196, 21-37.
[71]
Sander, L.C.; Sharpless, K.E.; Craft, N.E.; Wise, S.A. Development of engineered stationary phases for the separation of carotenoid isomers. Anal. Chem., 1994, 66(10), 1667-1674.
[72]
Hanai, T. New developments in liquid-chromatographic stationary phases. Adv. Chromatogr., 2000, 40, 315-357.
[73]
Hanai, T. Separation of polar compounds using carbon columns. J. Chromatogr. A, 2003, 989(2), 183-196.
[74]
Hanai, T. Analysis of the mechanism of retention on graphitic carbon by a computational chemical method. J. Chromatogr. A, 2004, 1030(1-2), 13-16.
[75]
Gaudin, K.; Hanai, T.; Chaminade, P.; Baillet, A. Retention behaviour of polyunsaturated fatty acid methyl esters on porous graphitic carbon. J. Chromatogr. A, 2007, 1157(1-2), 56-64.
[76]
Hanai, T. Quantitative in silico analysis of the specificity of graphitized (graphitic) carbons. Adv. Chromatogr., 2011, 49, 257-290.
[77]
Hanai, T.; Hatano, H.; Nimura, N.; Kinoshita, T. Molecular recognition in chromatography aided by computational chemistry. Supramol. Chem., 1994, 3, 243-247.
[78]
Hanai, T.; Hatano, H.; Nimura, N.; Kinoshita, T. Computer-aided analysis of molecular recognition in chromatography. Analyst (Lond.), 1993, 118, 1371-1374.
[79]
Hanai, T.; Koizumi, K.; Kinoshita, T.; Arora, R.; Ahmed, F. Prediction of pKa values of phenolic and nitrogen-containing compounds by computational chemical analysis compared to those measured by liquid chromatography. J. Chromatogr. A, 1997, 762(1-2), 55-61.
[80]
Hanai, T. Chromatography in silico, basic concept in reversed-phase liquid chromatography. Anal. Bioanal. Chem., 2005, 382(3), 708-717.
[81]
Hanai, T. Molecular modeling for quantitative analysis of molecular interaction. Lett. Drug Des. Discov., 2005, 2, 232-238.
[82]
Hanai, T. Chromatography in silico, quantitative analysis of retention mechanisms of benzoic acid derivatives. J. Chromatogr. A, 2005, 1087(1-2), 45-51.
[83]
Hanai, T.; Homma, H. Chromatography in silico: retention of acidic drugs on a guanidino ion-exchanger. J. Liq. Chromatogr. Relat. Technol., 2007, 30, 1723-1731.
[84]
Hanai, T.; Masuda, Y.; Homma, H. Chromatography in silico; Retention of basic compounds on a carboxyl ion exchanger. J. Liq. Chromatogr. Relat. Technol., 2005, 28, 3087-3097.
[85]
Hanai, T. Simulation of chromatography of phenolic compounds with a computational chemical method. J. Chromatogr. A, 2004, 1027(1-2), 279-287.
[86]
Hanai, T. Synthesis and properties of stable bonded silica gel packings and the performance. Advances in Liquid Chromatography; Hatano, H; Hanai, T., Ed.; World Scientific: Singapore, 1996, pp. 307-327.
[87]
Hanai, T.; Mizutani, C.; Homma, H. Computational chemical simulation of chromatographic retention of phenolic compounds. J. Liq. Chromatogr. Relat. Technol., 2003, 26, 2031-2039.
[88]
Hanai, T.; Miyazaki, R.; Koseki, A.; Kinoshita, T. Computational chemical analysis of the retention of acidic drugs on a pentylbonded silica gel in reversed-phase liquid chromatography. J. Chromatogr. Sci., 2004, 42(7), 354-360.
[89]
Hanai, T. Chromatography in silico for basic drugs. J. Liq. Chromatogr. Relat. Technol., 2005, 28, 2163-2177.
[90]
Hanai, T. Chromatography in silico, quantitative analysis of retention of aromatic acid derivatives. J. Chromatogr. Sci., 2006, 44(5), 247-252.
[91]
Hanai, T. Quantitative in silico analysis of retention in normal-phase liquid chromatography. J. Liq. Chromatogr. Relat. Technol., 2010, 33, 297-304.
[92]
Ye, M.; Guo, Y.; Maule, B.; Trinh, A.; Brandes, H. Protein/peptide separation: A comparison of stability and selectivity of C5 and C4 bonded phases Supelco T402057,
[93]
Hanai, T. Column switching: Fast Analysis, Encyclopedia of Chromatography, Third Edition; Marcel Dekker: New York, 2009, pp. 480-485.
[94]
Hanai, T. In silico chromatography: Modeling a new support for alkyl-bonded phases and a solvent phase. J. Anal. Bioanal. Sep. Tech., 2017, 2, 111-117.
[95]
Sander, L.C.; Lippa, K.A.; Wise, S.A. Order and disorder in alkyl stationary phases. Anal. Bioanal. Chem., 2005, 382(3), 646-668.
[96]
Meyer, C.; Skogsberg, U.; Welsch, N.; Albert, K. Nuclear magnetic resonance and high-performance liquid chromatographic evaluation of polymer-based stationary phases immobilized on silica. Anal. Bioanal. Chem., 2005, 382(3), 679-690.
[97]
Hanai, T. Quantitative in silico analysis of the specificity of graphitized (graphitic) carbons. Adv. Chromatogr., 2011, 49, 257-290.
[98]
Hanai, T. Hydrophilic interaction liquid chromatography for LC-MS, Mass Spectrom Purif. Tech., 2018, 4(1), 1-6.

© 2024 Bentham Science Publishers | Privacy Policy