Engineered Gold Nanoshells Killing Tumor Cells: New Perspectives

Author(s): Valeria De Matteis*, Mariafrancesca Cascione, Chiara C. Toma, Rosaria Rinaldi.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 13 , 2019


Abstract:

The current strategies to treat different kinds of cancer are mainly based on chemotherapy, surgery and radiation therapy. Unfortunately, these approaches are not specific and rather invasive as well. In this scenario, metal nano-shells, in particular gold-based nanoshells, offer interesting perspectives in the effort to counteract tumor cells, due to their unique ability to tune Surface Plasmon Resonance in different light-absorbing ranges. In particular, the Visible and Near Infrared Regions of the electromagnetic spectrum are able to penetrate through tissues. In this way, the light absorbed by the gold nanoshell at a specific wavelength is converted into heat, inducing photothermal ablation in treated cancer cells. Furthermore, inert gold shells can be easily functionalized with different types of molecules in order to bind cellular targets in a selective manner. This review summarizes the current state-of-art of nanosystems embodying gold shells, regarding methods of synthesis, bio-conjugations, bio-distribution, imaging and photothermal effects (in vitro and in vivo), providing new insights for the development of multifunctional antitumor drugs.

Keywords: Gold shell, NIR, bio-distribution, bio-conjugations, drug delivery, photothermal ablation.

[1]
Ma X, Yu H. Global burden of cancer. Yale J Biol Med 2006; 79(3-4): 85-94.
[PMID: 17940618]
[2]
Siegel R, Ma J, Zou Z, Jemal A. Cancer Statistics 2014; 64: 9-29.
[3]
Ansari D, Tingstedt B, Andersson B, et al. Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol 2016; 12(16): 1929-46.
[http://dx.doi.org/10.2217/fon-2016-0010] [PMID: 27246628]
[4]
Park C, Jang JY, Kim YH, et al. A case of esophageal squamous cell carcinoma with pancreatic metastasis. Clin Endosc 2013; 46(2): 197-200.
[http://dx.doi.org/10.5946/ce.2013.46.2.197] [PMID: 23614134]
[5]
Zang YS, Xiu QY, Fang Z, Li B, Xia TB. Case report: Dramatic recovery of lung adenocarcinoma-associated dermatomyositis with targeted lung cancer therapy alone. Oncologist 2008; 13(1): 79-81.
[http://dx.doi.org/10.1634/theoncologist.2007-0172] [PMID: 18245014]
[6]
Nguyen KT. Targeted nanoparticles for cancer therapy : Promises and challenges. J Nanomed Nanotechnol 2011; 2: 5.
[http://dx.doi.org/10.4172/2157-7439.1000103e]
[7]
Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 2018; 7(1): 11. PMID: 29541939.
[http://dx.doi.org/10.1186/s40169-018-0185-6] [PMID: 29541939]
[8]
López-Miranda V, Herradón E, González C, Martín MI. Vascular toxicity of chemotherapeutic agents. Curr Vasc Pharmacol 2010; 8(5): 692-700.
[http://dx.doi.org/10.2174/157016110792007012] [PMID: 19758112]
[9]
Payne AS, James WD, Weiss RB. Dermatologic toxicity of chemotherapeutic agents. Semin Oncol 2006; 33(1): 86-97.
[http://dx.doi.org/10.1053/j.seminoncol.2005.11.004] [PMID: 16473647]
[10]
Mitchell EP. Gastrointestinal toxicity of chemotherapeutic agents. Semin Oncol 2006; 33(1): 106-20.
[http://dx.doi.org/10.1053/j.seminoncol.2005.12.001] [PMID: 16473649]
[11]
Grobmyer SR, Iwakuma N, Sharma P, Moudgil BMMB. What is cancer nanotechnology? Methods Mol Biol 2010; 624: 1-9.
[http://dx.doi.org/10.1007/978-1-60761-609-2_1] [PMID: 20217585]
[12]
Ehlerding EB, Sun L, Lan X, Zeng D, Cai W. Dual-Targeted Molecular Imaging of Cancer. J Nucl Med 2018; 59(3): 390-5.
[http://dx.doi.org/10.2967/jnumed.117.199877] [PMID: 29301927]
[13]
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics : An emerging treatment modality for cancer. 2008; p. ; 7:771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[14]
Nomura T, Koreeda N, Yamashita F, Takakura Y, Hashida M. Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm Res 1998; 15(1): 128-32.
[http://dx.doi.org/10.1023/A:1011921324952] [PMID: 9487559]
[15]
Abbasi S, Servatkhah M, Keshtkar MM. Advantages of using gold hollow nanoshells in cancer photothermal therapy. Chin Phys B 2016; 25.
[http://dx.doi.org/10.1088/1674-1056/25/8/087301]
[16]
Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Naturae 2011; 3(2): 34-55.
[PMID: 22649683]
[17]
Morton JG, Day ES, Halas NJ, West JL. Nanoshells for photothermal cancer therapy Cancer Nanotechnology Methods in Molecular Biology (Methods and Protocols)
[18]
Jadhav VV, Shinde PV, Mane RS. O’Dwyer Shape-controlled hybrid nanostructures for cancer theranostics. Hybrid Nanostructures Cancer Theranostics-Micro Nano Technol 2019; pp. 209-27.
[19]
Sathiyamoorthy K, Kolios MC. Proceedings volume 9332, optical diagnostics and sensing XV: Toward point-of-care diagnostics; 93320G (2015)
[http://dx.doi.org/10.1117/12.2080303]
[20]
Tim A. Erickson James W. Tunnell. Gold Nanoshells in Biomedical Applications
[http://dx.doi.org/10.1002/9783527610419.ntls0150]
[21]
Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH. Scattering spectra of single gold nanoshells. Nano Lett 2004; 4: 2355-9.
[http://dx.doi.org/10.1021/nl048610a]
[22]
Shanbhag PP, Iyer V, Shetty T. Gold nanoshells : A ray of hope in cancer diagnosis and treatment. Nucl Med Biomed Imaging 2017; 2: 1-5.
[http://dx.doi.org/10.15761/NMBI.1000122]
[23]
Tuersun P, Fang K. Backscattering properties of gold nanoshells : Quantitative analysis and optimization for biological imaging. Procedia Eng 2015; 102: 1511-9.
[http://dx.doi.org/10.1016/j.proeng.2015.01.285]
[24]
Dimitrios T, Sihvola A. Light scattering by a dielectric sphere: Perspectives on the mie resonances. Appl Sci 2018; 8(2): 184.
[http://dx.doi.org/10.3390/app8020184]
[25]
Kewes G, Benson O. 7-A numerical study of plasmonic nanostructures for linear and nonlinear quantum elements. Met. Nanostructures for Photonics Nanophotonics 2019; pp. 133-55.
[http://dx.doi.org/10.1016/B978-0-08-102378-5.00007-6]
[26]
Schebarchov D, Auguié B, Le Ru EC. Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells. Phys Chem Chem Phys 2013; 15(12): 4233-42.
[http://dx.doi.org/10.1039/c3cp44124e] [PMID: 23358525]
[27]
Santiago EY, Khorashad KL, Govorov OA. Theory of photo-thermal effects for plasmonic nanocrystals and assemblies in photo-thermal spectroscopy with plasmonic and rare earth doped (nanomaterials) nanosc and nanotech. Springer Nat Singapore 2019 ISBN 978-981-13-3591-4.
[28]
Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem Rev 2007; 107(11): 4797-862.
[http://dx.doi.org/10.1021/cr0680282] [PMID: 17999554]
[29]
Averitt RD, Westcott SL, Halas NJ. Linear optical properties of gold nanoshells. J Opt Soc Am B 1998; 16(10): 1824-32.
[http://dx.doi.org/10.1364/JOSAB.16.001824]
[30]
Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001; 19(4): 316-7.
[http://dx.doi.org/10.1038/86684] [PMID: 11283581]
[31]
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Lasers Med Sci 2008; 23(3): 217-28.
[http://dx.doi.org/10.1007/s10103-007-0470-x] [PMID: 17674122]
[32]
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RRSM, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005; 21(23): 10644-54.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[33]
Rossi M, Pina CD, Falletta E. Gold nanomaterials: From preparation to pharmaceutical design and application. Curr Pharm Des 2016; 22(11): 1485-93.
[http://dx.doi.org/10.2174/1381612822666151210123225] [PMID: 26654440]
[34]
Ke H, Wang J, Dai Z, et al. Gold-nanoshelled microcapsules: A theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew Chem Int Ed Engl 2011; 50(13): 3017-21.
[http://dx.doi.org/10.1002/anie.201008286.] [PMID: 21404389]
[35]
Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004; 3(1): 33-40.
[http://dx.doi.org/10.1177/153303460400300104] [PMID: 14750891]
[36]
Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288: 243-7.
[http://dx.doi.org/10.1016/S0009-2614(98)00277-2]
[37]
Chen Q, Rao Y, Ma X, Dong J, Qian W. Raman spectroscopy for hydrogen peroxide scavenging activity assay using gold nanoshell precursor nanocomposites as SERS probes. Anal Methods 2011; 274-9.
[http://dx.doi.org/10.1039/C0AY00629G]
[38]
Watanabe S, Hiratsuka T, Asahi Y, Tanaka A, Mae K, Miyahara TM. Flow synthesis of plasmonic gold nanoshells via a microreactor. Part Part Syst Charact 2014; 32: 234-42.
[http://dx.doi.org/10.1002/ppsc.201400126]
[39]
English MD, Waclawik ER. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles. J Nanopart Res 2012; 14: 650.
[http://dx.doi.org/10.1007/s11051-011-0650-2]
[40]
Zhang H, Zhang Y, Wu C, Tan H, Wang S, Zhang B. Preparation and photothermal study of polystyrene coated with gold nanoshell composite particles. J Mater Sci 2017; 52: 6578-87.
[http://dx.doi.org/10.1007/s10853-017-0893-0]
[41]
Kah JCY, Phonthammachai N, Wan RCY, et al. Synthesis of gold nanoshell based on the deposition -precipitation process. Gold Bull 2008; 41(2): 23-36.
[http://dx.doi.org/10.1007/BF03215620]
[42]
Lee JO, Kim DO, Song GS, Lee Y, Jung SB, Nam JD. Direct metallization of gold nanoparticles on a polystyrene bead surface using cationic gold ligands. Macromol Rapid Commun 2007; 28(5): 634-40.
[http://dx.doi.org/10.1002/marc.200600757]
[43]
Xu T, Li YZ, Zhang JX, Qi YL, Zhao XZQ. Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microsphere. Appl Surf Sci 2015; 345: 264-71.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.090]
[44]
Gao Y, Gu J, Li L, Zhao W, Li Y. Synthesis of gold nanoshells through improved seed-mediated growth approach: Brust-like, in situ seed formation. Langmuir 2016; 32(9): 2251-8.
[http://dx.doi.org/10.1021/acs.langmuir.5b04344] [PMID: 26862881]
[45]
Park HH, Srisombat LO, Jamison AC, et al. Temperature-responsive hydrogel-coated gold nanoshells. Gels 2018; 4(2): 28.
[http://dx.doi.org/10.3390/gels4020028] [PMID: 30674804]
[46]
Bédard M, Avti PK, Lam T, et al. Conjugation of multivalent ligands to gold nanoshells and designing a dual modality imaging. J Mater Chem B Mater Biol Med 2015; 3: 1788-800.
[http://dx.doi.org/10.1039/C4TB01811G]
[47]
Xuan M, Shao J, Dai L, Li J, He Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl Mater Interfaces 2016; 8(15): 9610-8.
[http://dx.doi.org/10.1021/acsami.6b00853] [PMID: 27039688]
[48]
Liang Z, Liu Y, Li X, et al. Surfacemodified gold nanoshells for enhanced cellular uptake. J Biomed Mater Res A 2011; 15; 98(4): 479-87.
[http://dx.doi.org/10.1002/jbm.a.33068] [PMID: 21681940]
[49]
Liu SY, Liang ZS, Gao F, Luo SF, Lu GQ. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J Mater Sci Mater Med 2010; 21(2): 665-74.
[http://dx.doi.org/10.1007/s10856-009-3895-x] [PMID: 19834788]
[50]
Huschka R, Zuloaga J, Knight MW, Brown L V, Nordlander P, Halas NJ. Light-induced release of dna from gold nanoparticles : Nanoshells and nanorods. J Am Chem Soc 2011; 10;133(31): 12247-55.
[http://dx.doi.org/10.1021/ja204578e]
[51]
Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem Soc Rev 2011; 40(3): 1647-71.
[http://dx.doi.org/10.1039/C0CS00018C] [PMID: 21082078]
[52]
Zaman RT, Diagaradjane P, Wang JC, et al. In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE J Sel Top Quantum Electron 2007; 14(6): 1715-20.
[http://dx.doi.org/10.1109/JSTQE.2007.910804]
[53]
Xie H, Gill-Sharp KL, O’Neal DP. Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering. Nanomedicine 2007; 3(1): 89-94.
[http://dx.doi.org/10.1016/j.nano.2007.01.003] [PMID: 17379173]
[54]
James WD, Hirsch LR, West JL, Neal PDO, Payne JD. Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J Radioanal Nucl Chem 2007; 271: 455-9.
[http://dx.doi.org/10.1007/s10967-007-0230-1]
[55]
Terentyuk GS, Maslyakova GN, Suleymanova LV, et al. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J Biophotonics 2009; 2(5): 292-302.
[http://dx.doi.org/10.1002/jbio.200910005] [PMID: 19434616]
[56]
Melancon MP, Lu W, Yang Z, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 2008; 7(6): 1730-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0016] [PMID: 18566244]
[57]
De Matteis V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 2017; 5(4): 1-29.
[http://dx.doi.org/10.3390/toxics5040029] [PMID: 29051461]
[58]
De Matteis V, Rinaldi R. Toxicity Assessment in the Nanoparticle Era Cell Mol Toxicol Nanoparticles Advances. Exp Med Biol Cham 2018; pp. 1-19.
[http://dx.doi.org/10.1007/978-3-319-72041-8_1.]
[59]
Zhao J, Wallace M, Melancon MP. Cancer theranostics with gold nanoshells. Nanomedicine 2014; 9(13): 2041-57.
[http://dx.doi.org/10.2217/nnm.14.136] [PMID: 25343352]
[60]
Bardhan R1, Grady NK, Cole JR, Joshi A, Halas NJ. Fluorescence Enhancement by Au nanostructures: Nanoshells and nanorods. ACS Nano 2009; 24; 3(3): 744-52
[http://dx.doi.org/10.1021/nn900001q] [PMID: 19231823]
[61]
Bardhan R, Chen W, Perez‐Torres C, et al. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv Funct Mater 2009; 19(24): 3901-9.
[http://dx.doi.org/10.1002/adfm.200901235]
[62]
Bardhan R, Chen W, Bartels M, et al. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer. Nano Lett 2010; 10(12): 4920-8.
[http://dx.doi.org/10.1021/nl102889y.] [PMID: 21090693]
[63]
England CG, Priest T, Zhang G, et al. Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int J Nanomedicine 2013; 8: 3603-17.
[PMID: 24124360]
[64]
Gobin M, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007; 7(7): 1929-34.
[65]
Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005; 5(4): 709-11.
[http://dx.doi.org/10.1021/nl050127s] [PMID: 15826113]
[66]
Wu C, Liang X, Jiang H. Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography. J Biomed Opt 2009; 14(2)024044
[PMID: 19405772]
[67]
Kirillin M, Shirmanova M, Sirotkina M, Bugrova M, Khlebtsov B, Zagaynova E. Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study. J Biomed Opt 2009; 14(2)021017
[http://dx.doi.org/10.1117/1.3122373] [PMID: 19405730]
[68]
Kah JC, Olivo M, Chow TH, et al. Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo. J Biomed Opt 2009; 14(5)054015
[http://dx.doi.org/10.1117/1.3233946] [PMID: 19895117]
[69]
Lu W, Huang Q, Ku G, et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 2010; 31(9): 2617-26.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.007] [PMID: 20036000]
[70]
Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: From probe design to imaging and treatment of cancer. Acc Chem Res 2011; 44(10): 936-46.
[http://dx.doi.org/10.1021/ar200023x] [PMID: 21612199]
[71]
Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL. Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small 2014; 10(3): 556-65.
[http://dx.doi.org/10.1002/smll.201302217] [PMID: 24115690]
[72]
Chen W, Ayala-Orozco C, Biswal NC, et al. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine (Lond) 2014; 9(8): 1209-22.
[http://dx.doi.org/10.2217/nnm.13.84] [PMID: 24063415]
[73]
Guo Y, Zhang Z, Kim DH, et al. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Int J Nanomedicine 2013; 8: 3437-46.
[http://dx.doi.org/10.2147/IJN.S47585] [PMID: 24039426]
[74]
Xie H, Jim Z, Bao A, Goins B, Phillips WT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm. 2010; 16; 395(1-2): 324-30.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.005]
[75]
Huang Y, He S, Cao W, Cai K, Liang XJ. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 2012; 4(20): 6135-49.
[http://dx.doi.org/10.1039/c2nr31715j] [PMID: 22929990]
[76]
Shanavas A, Rengan AK, Chauhan D, et al. Glycol chitosan assisted in situ reduction of gold on polymeric template for anti-cancer theranostics. Int J Biol Macromol 2018; 110: 392-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.127] [PMID: 29174361]
[77]
Guan Q, Wang C, Wu D, et al. Cerasome-based gold-nanoshell encapsulating L-menthol for ultrasound contrast imaging and photothermal therapy of cancer. Nanotechnology 2019; 4(30)015101
[78]
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298-307.
[79]
Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater 2013; 12(11): 958-62.
[http://dx.doi.org/10.1038/nmat3792] [PMID: 24150413]
[80]
Shetty A, Elliott AM, Schwartz JA, et al. Use of gold nanoshells to mediate heating induced perfusion changes in prostate tumors. Prog Biomed Opt Imaging -. Proc SPIE 2008; 6842.
[81]
Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 2009; 30(30): 6065-75.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.048] [PMID: 19674777]
[82]
Singhana B, Slattery P, Chen A, Wallace M, Melancon MP. Light-activatable gold nanoshells for drug delivery applications. AAPS PharmSciTech 2014; 15(3): 741-52.
[http://dx.doi.org/10.1208/s12249-014-0097-8] [PMID: 24550102]
[83]
Svaasand LO, Gomer CJ, Morinelli E. On the physical rationale of laser induced hyperthermia. Lasers Med Sci 1990; 5: 121.
[http://dx.doi.org/10.1007/BF02031373]
[84]
Musiol R, Serda M, Polanski J. Prodrugs in photodynamic anticancer therapy. Curr Pharm Des 2011; 17(32): 3548-59.
[http://dx.doi.org/10.2174/138161211798194549] [PMID: 22074426]
[85]
Liu Y, Ma W, Wang J. Theranostics of gold nanoparticles with an emphasis on photoacoustic imaging and photothermal therapy. Curr Pharm Des 2018; 24(23): 2719-28.
[http://dx.doi.org/10.2174/1381612824666180604112201] [PMID: 29865999]
[86]
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003; 100(23): 13549-54.
[http://dx.doi.org/10.1073/pnas.2232479100] [PMID: 14597719]
[87]
Stern JM, Stanfield J, Lotan Y, Park S, Hsieh JT, Cadeddu JA. Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol 2007; 21(8): 939-43.
[http://dx.doi.org/10.1089/end.2007.0437] [PMID: 17867958]
[88]
Derakhshan MA. Faridani, Muhammadnejad S, et al Plasmonic photothermal therapy of colon cancer cells utilising gold nanoshells: An in vitro study. IET Nanobiotechnol 2018; 12(2): 12.
[89]
O’Neal DP, Hirsch LR, Halas NJ, Payne JDWJ, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004; 209(2): 171-6.
[http://dx.doi.org/10.1016/j.canlet.2004.02.004] [PMID: 15159019]
[90]
You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010; 4(2): 1033-41.
[http://dx.doi.org/10.1021/nn901181c] [PMID: 20121065]
[91]
You J, Zhang R, Zhang G, et al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J Control Release 2012; 158(2): 319-28.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.028] [PMID: 22063003]
[92]
Lee HJ, Liu Y, Zhao J, et al. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J Control Release 2013; 172(1): 152-8.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.020] [PMID: 23920038]
[93]
Liu Y, Zhang X, Liu Z, et al. Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomedicine NBM 2017; 13(6): 1891-900.
[http://dx.doi.org/10.1016/j.nano.2017.03.012] [PMID: 28363771]
[94]
Goodman AM, Neumann O, Nørregaard K, et al. Near-infrared remotely triggered drug-release strategies for cancer treatment. Proc Natl Acad Sci USA 2017; 114(47): 12419-24.
[http://dx.doi.org/10.1073/pnas.1713137114] [PMID: 29109274]
[95]
Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater 2013; 12(11): 967-77.
[http://dx.doi.org/10.1038/nmat3765] [PMID: 24150415]
[96]
Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther 2014; 22(6): 1075-83.
[http://dx.doi.org/10.1038/mt.2014.30] [PMID: 24599278]
[97]
Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A 2003; 100(16): 9138-43.
[http://dx.doi.org/10.1073/pnas.1233634100] [PMID: 12886020]
[98]
Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 2012; 6(9): 7681-91.
[http://dx.doi.org/10.1021/nn301135w] [PMID: 22862291]
[99]
Krpetić Z, Nativo P, Sée V, Prior IA, Brust M, Volk M. Inflicting controlled nonthermal damage to subcellular structures by laser-activated gold nanoparticles. Nano Lett 2010; 10(11): 4549-54.
[http://dx.doi.org/10.1021/nl103142t] [PMID: 20923168]
[100]
Lu W, Zhang G, Zhang R, et al. Tumor Site - Specific Silencing of NF- κ B p65 by targeted hollow gold nanosphere - mediated photothermal transfection. Cancer Res 2010; 70(8): 3177-89.
[PMID: 20388791]
[101]
Strong LE, Dahotre SN, West JL. Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. J Control Release 2014; 178: 63-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.014] [PMID: 24462898]
[102]
Stern JM, Solomonov VVK, Sazykina E, Schwartz JA, Gad SC, Goodrich GP. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int J Toxicol 2016; 35(1): 38-46.
[http://dx.doi.org/10.1177/1091581815600170] [PMID: 26296672]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 13
Year: 2019
Page: [1477 - 1489]
Pages: 13
DOI: 10.2174/1381612825666190618155127
Price: $58

Article Metrics

PDF: 20
HTML: 3

Special-new-year-discount