Green Chemistry Preparation of thiochromeno[4,3-b]pyran and benzo[h]thiazolo[2,3-b]quinazoline Derivatives using HSBM Technique over ZnAl2O4 Nano-Powders

Author(s): Seyyed Jalal Roudbaraki, Sadaf Janghorban, Majid Ghashang*.

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 6 , 2019

Become EABM
Become Reviewer

Abstract:

Aim and Objective: The aim of this paper is to introduce HSBM as a green and environmentally friendly technique for the synthesis of thiochromeno[4,3-b]pyran and benzo[h]thiazolo[2,3-b]quinazoline derivatives over ZnAl2O4 nanopowders as an efficient catalyst.

Materials and Methods: ZnAl2O4 nanopowders were synthesized via a co-precipitation of Zn(NO3)2 and Al(NO3)3 salts and were characterized by XRD, FE-SEM, TEM and DLS techniques. The as-prepared ZnAl2O4 nano-powders have been used as a catalyst on the synthesis of pyran nucleus using high-speed ball milling (HSBM) technique. The structure of products was confirmed with NMR analysis.

Results: ZnAl2O4 exhibits a cubic crystal structure (Space group: Fd-3m) with the average crystallite size of 41 nm. The average particle size of ZnAl2O4 nano-powders determined by DLS technique is 55 nm. The catalytic activity of nano-powders was examined on the synthesis of 2- amino-4,5-dihydro-4-arylthiochromeno[4,3-b]pyran-3-carbonitriles, (8Z)-2-amino-8-arylidene-4,5, 7,8-tetrahydro-4-arylthiopyrano[4,3-b]pyran-3-carbonitriles, 4-aryl-3,4,5,6-tetrahydrobenzo[h]quinazoline- 2(1H)-thiones and 4-aryl-1,3,4,5-tetrahydro-2H-thiochromeno[4,3-d]pyrimidine-2-thione derivatives. All products were obtained in high yields with short reaction times.

Conclusion: ZnAl2O4 nanopowders were prepared via a cost-effective co-precipitation method and showed good potential for the synthesis of 4H-pyran analogous in good yields. The salient advantages of HSBM technique include environmentally friendly with reduced solvents, is a simple technique and has low energy costs.

Keywords: HSBM technique, 4H-pyran, ZnAl2O4, benzo[h]thiazolo[2, 3-b]quinazoline thiochromeno[4, 3-b]pyran, 3- benzylidenethiochroman-4-one, thiopyrano[4, 3-b]pyran.

[1]
Morgan, L.R.; Jursic, B.S.; Hooper, C.L.; Neumann, D.M.; Thangaraj, K.; Leblance, B. (1H-Imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: Further optimisation as highly potent and selective MSK-1-inhibitors. Bioorg. Med. Chem. Lett., 2002, 12, 3407-3411.
[http://dx.doi.org/10.1016/S0960-894X(02)00725-4] [PMID: 12419372]
[2]
Moon, D.O.; Kim, K.C.; Jin, C.Y.; Han, M.H.; Park, C.; Lee, K.J.; Park, Y.M.; Choi, Y.H.; Kim, G.Y. Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Int. Immunopharmacol., 2007, 7(2), 222-229.
[http://dx.doi.org/10.1016/j.intimp.2006.10.001] [PMID: 17178390]
[3]
Flavin, M.T.; Rizzo, J.D.; Khilevich, A.; Kucherenko, A.; Sheinkman, A.K.; Vilaychack, V.; Lin, L.; Chen, W.; Greenwood, E.M.; Pengsuparp, T.; Pezzuto, J.M.; Hughes, S.H.; Flavin, T.M.; Cibulski, M.; Boulanger, W.A.; Shone, R.L.; Xu, Z.Q.J. Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (+/-)-calanolide A and its enantiomers. J. Med. Chem., 1996, 39(6), 1303-1313.
[http://dx.doi.org/10.1021/jm950797i] [PMID: 8632437]
[4]
Nakib, T.A.; Bezjak, V.; Rashid, S.; Fullam, B.; Meegan, M.J. The synthesis and antifungal activity of 2-amino-4-aryl-4H,SH-[1]benzothiopyrano[4,3-b]pyran-3-carbonitriles and 2-alkoxy-4-aryl-SH-[1]benzothiopyrano[4,3-b]pyridine-3-carbonitriles. Eur. J. Med. Chem., 1991, 26, 221-230.
[http://dx.doi.org/10.1016/0223-5234(91)90033-J]
[5]
Kumar, R.R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. An atom efficient, solvent-free, green synthesis and antimycobacterial evaluation of 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-car-bonitriles. Bioorg. Med. Chem. Lett., 2007, 17(23), 6459-6462.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.095] [PMID: 17933535]
[6]
Ranjith Kumar, R.; Perumal, S.; Menéndez, J.C.; Yogeeswari, P.; Sriram, D. Antimycobacterial activity of novel 1,2,4-oxadiazole-pyranopyridine/chromene hybrids generated by chemoselective 1,3-dipolar cycloadditions of nitrile oxides. Bioorg. Med. Chem., 2011, 19(11), 3444-3450.
[http://dx.doi.org/10.1016/j.bmc.2011.04.033] [PMID: 21592801]
[7]
Wang, X.S.; Yang, G.S.; Zhao, G. Enantioselective synthesis of naphthopyran derivatives catalyzed by bifunctional thiourea-tertiary amines. Tetrahedron Asymmetry, 2008, 19, 709-714.
[http://dx.doi.org/10.1016/j.tetasy.2008.02.018]
[8]
Mobinikhaledi, A.; Foroughifar, N.; Moghanian, H.; Keshvarzi, N. Piperazine catalyzed convenient synthesis of 4H-pyran derivatives from α,α′-bis(substituted-benzylidene) cycloalkanones and ma-lononitrile under reflux conditions. J. Saudi Chem. Soc., 2015, 19, 399-403.
[http://dx.doi.org/10.1016/j.jscs.2012.05.001]
[9]
Hu, Z-P.; Lou, C-L.; Wang, J-J.; Chen, C-X.; Yan, M. Organocatalytic conjugate addition of malononitrile to conformationally restricted dienones. J. Org. Chem., 2011, 76(10), 3797-3804.
[http://dx.doi.org/10.1021/jo200112r] [PMID: 21466227]
[10]
Mobinikhaledi, A.; Yazdanipour, A.; Ghashang, M. Green chemistry preparation of MgO grit like nanostructures: efficient catalyst for the synthesis of 4H-pyrans and α, α′-bis (substituted-benzylidene) cycloalkanone derivatives. Green Process. Synth., 2016, 5, 289-295.
[http://dx.doi.org/10.1515/gps-2015-0136]
[11]
Ghashang, M.; Mansoor, S.S.; Mohammad Shafiee, M.R.; Kargar, M.; Najafi Biregan, M.; Azimi, F.; Taghrir, H. Green chemistry preparation of MgO nanopowders: Efficient catalyst for the synthesis of thiochromeno [4,3-b] pyran and thiopyrano [4,3-b] pyran derivatives. J. Sulfur Chem., 2016, 37, 377-390.
[http://dx.doi.org/10.1080/17415993.2016.1149856]
[12]
Duan, X.; Yuan, D.; Yu, F. Cation distribution in co-doped ZnAl2O4 nanoparticles studied by X-ray photoelectron spectro-scopy and 27Al solid-state NMR spectroscopy. Inorg. Chem., 2011, 50(12), 5460-5467.
[http://dx.doi.org/10.1021/ic200433r] [PMID: 21612229]
[13]
Ianos, R.; Borcǎnescu, S.; Lazaǎu, R. Large surface area ZnAl2O4 powders prepared by a modified combustion technique. Chem. Eng. J., 2014, 240, 260-263.
[http://dx.doi.org/10.1016/j.cej.2013.11.082]
[14]
Foletto, E.L.; Battiston, S.; Marimon Simões, J.; Moro Bassaco, M.; Fagundes Pereira, L.S.; Marlonde Moraes Flores, É.E. IrineuMüller, Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process. Microporous Mesoporous Mater., 2012, 163, 29-33.
[http://dx.doi.org/10.1016/j.micromeso.2012.06.039]
[15]
Stringhini, F.M.; Foletto, E.L.; Sallet, D.; Bertuol, D.A.; Chiavone-Filho, O.; Oller do Nascimento, C.A. Synthesis of porous zinc aluminate spinel (ZnAl2O4) by metal-chitosan complexation method. J. Alloys Compd., 2014, 588, 305-309.
[http://dx.doi.org/10.1016/j.jallcom.2013.11.078]
[16]
Ishii, S.; Nakane, T.; Furusawa, T.; Naka, T. Synthesis of single‐phase ZnAl2O4 nanoparticles via a wet chemical approach and evaluation of crystal structure characteristics. Cryst. Res. Technol., 2016, 51(5), 324-332.
[http://dx.doi.org/10.1002/crat.201500297]
[17]
Chaudhary, A.; Mohammad, A.; Mobin, S.M. Facile synthesis of phase pure ZnAl2O4 nanoparticles for effective photocatalytic degradation of organic dyes. Mater. Sci. Eng. B, 2018, 227, 136-144.
[http://dx.doi.org/10.1016/j.mseb.2017.10.009]
[18]
Grigorie, A.C.; Muntean, C.; Vlase, G.; Ştefănescu, M. Synthesis and characterization of ZnAl2O4 spinel from Zn (II) and Al (III) carboxylates. J. Therm. Anal. Calorim., 2018, 131(1), 183-189.
[http://dx.doi.org/10.1007/s10973-017-6268-6]
[19]
Frauenkron, M.; Melder, J-P.; Ruider, G.; Rossbacher, R.; Höke, H. Ethanolamines and Propanolamines. In: Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2002.
[20]
Yarahmadi, H.; Ghashang, M.; Jabbarzare, S.; Khodaivandi, A. Barium aluminate nano-powders efficient catalyst for the synthesis of novel benzo[b]thiophene, thieno[2,3-c]thiopyran and thieno[2,3-c]pyridine derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192, 945-949.
[http://dx.doi.org/10.1080/10426507.2017.1295961]
[21]
Khosravian, P.; Ghashang, M.; Ghayoor, H. Effective removal of penicillin from aqueous solution using Zinc oxide/natural-Zeolite composite nano-powders prepared via ball milling technique. Recent Pat. Nanotechnol., 2017, 11(2), 154-164.
[http://dx.doi.org/10.2174/1872210511666170105141550] [PMID: 28056750]
[22]
Sheikhan-Shamsabadi, N.; Ghashang, M. Nano-basic silica as an efficient catalyst for the multi-component preparation of pyrano [2, 3-d] pyrimidine derivatives. Main Group Met. Chem., 2017, 40, 19-25.
[http://dx.doi.org/10.1515/mgmc-2016-0034]
[23]
Mohammad Shafiee, M.R.; Sattari, A.; Kargar, M.; Ghashang, M. Investigation of natural solution effect in electrical conductivity of PANI-CeO2 nanocomposites. Steel Compos. Struct., 2017, 24, 15-22.
[http://dx.doi.org/10.12989/scs.2017.24.1.015]
[24]
Khosravian, P.; Ghashang, M.; Ghayoor, H. Zinc oxide/natural-Zeolite composite nano-powders: Efficient catalyst for the amoxicillin removal from wastewater. Biointerface Res. Appl. Chem., 2016, 6, 1538-1540.
[25]
Ghashang, M. ZnAl2O4–Bi2O3 composite nano-powder as an efficient catalyst for the multi-component, one-pot, aqueous media preparation of novel 4H-chromene-3-carbonitriles. Res. Chem. Intermed., 2016, 42, 4191-4205.
[http://dx.doi.org/10.1007/s11164-015-2269-x]
[26]
Taghrir, H.; Ghashang, M.; Biregan, M.N. Preparation of 1-amidoalkyl-2-naphthol derivatives using barium phosphate nano-powders. Chin. Chem. Lett., 2016, 27, 119-126.
[http://dx.doi.org/10.1016/j.cclet.2015.08.011]
[27]
Ghashang, M.; Taghrir, H.; Biregan, M.N.; Heydari, N.; Azimi, F. Preparation of novel 2-(2-oxo-2H-chromen-4-yl)-3-arylthiazolidin-4-one derivatives using an efficient ionic liquid catalyst. J. Sulfur Chem., 2016, 37, 61-69.
[http://dx.doi.org/10.1080/17415993.2015.1089440]
[28]
Ghashang, M.; Mansoor, S.S.; Shams-Solaree, L.; Sharifian-esfahani, A. Multi-component, one-pot, aqueous media preparation of dihydropyrano [3,2-c]chromene derivatives over MgO nanoplates as an efficient catalyst. Iran J. Catal., 2016, 6, 237-243.
[29]
Zare, M.; Ghashang, M.; Saffar-Teluri, A. BaO-ZnO nano-composite efficient catalyst for the photo-catalytic degradation of 4-chlorophenol. Biointerface Res. Appl. Chem., 2016, 6, 1049-1052.
[30]
Ghashang, M.; Kargar, M.; Shafiee, M.R.M.; Mansoor, S.S.; Fazlinia, A.; Esfandiari, H. CuO nano-structures prepared in rosmarinus officinalis leaves extract medium: efficient catalysts for the aqueous media preparation of dihydropyrano [3,2-c] chromene Derivatives. Recent Pat. Nanotechnol., 2015, 9(3), 204-211.
[http://dx.doi.org/10.2174/1872210510999151126110657] [PMID: 27009135]
[31]
Mohammad Shafiee, M.R.; Kargar, M.; Hashemi, M.S.; Ghashang, M. Green Synthesis of NiFe2O4/Fe2O3/CeO2 Nanocomposite in a walnut green hulls extract medium: Magnetic properties and characterization. Curr. Nanosci., 2016, 12, 645-649.
[http://dx.doi.org/10.2174/1573413712666160513124809]
[32]
Abbasi-Dehnavi, H.; Ghashang, M. Solvent-free preparation of 3-aryl-2-[(aryl)(arylamino)] methyl-4H-furo [3, 2-c] chromen-4-one derivatives using ZnO- ZnAl2O4 nanocomposite as a heterogeneous catalyst. Heterocycl. Commun., 2018, 24, 19-22.
[http://dx.doi.org/10.1515/hc-2017-0141]
[33]
Ghashang, M. An aurivillius perovskite nano-structure of SrBi4Ti4O15: efficient catalyst for the preparation of novel dihydronaphtho[2′,1′: 4,5]thieno[2, 3-d] pyrimidin-7 (6H)-one derivatives using HSBM technique. J. Iran. Chem. Soc., 2018, 15, 55-60.
[http://dx.doi.org/10.1007/s13738-017-1208-8]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 6
Year: 2019
Page: [421 - 427]
Pages: 7
DOI: 10.2174/1386207322666190617164617
Price: $58

Article Metrics

PDF: 33
HTML: 2
EPUB: 1