A Review on Anticancer Potentials of Benzothiazole Derivatives

Author(s): Nandini Pathak, Ekta Rathi, Nitesh Kumar*, Suvarna G. Kini, C. Mallikarjuna Rao.

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Benzothiazole is an organic compound bearing a heterocyclic nucleus (thiazole) which imparts a broad spectrum of biological activities to it. The significant and potent activity of benzothiazole moiety influenced distinctively by nature and position of substitutions. This review summarizes the effect of various substituents in recent trends and approaches to design and develop novel benzothiazole derivatives for anticancer potential in different cell lines by interpreting the Structure- Activity Relationship (SAR) and mechanism of action of a wide range of derivatives. The list of derivatives is categorized into different groups and reviewed for their anticancer activity. The structure-activity relationship for the various derivatives revealed an excellent understanding of benzothiazole moiety in the field of cancer therapy against different cancer cell line. Data obtained from the various articles showed the potential effect of benzothiazole moiety and its derivatives to produce the peculiar and significant lead compound. The important anticancer mechanisms found are tyrosine kinase inhibition, topoisomerase inhibition and induction of apoptosis by Reactive Oxygen Species (ROS) activation. Therefore, the design and development of novel benzothiazole have broad scope in cancer chemotherapy.

Keywords: Benzothiazole, anticancer, cell line mechanism of action, structure-activity relationship, tyrosine kinase inhibition, Topoisomerase inhibition, apoptosis.

[1]
Siddiqui, N.; Pandeya, S.N.; Khan, S.A.; Stables, J.; Rana, A.; Alam, M.; Arshad, M.F.; Bhat, M.A. Synthesis and anticonvulsant activity of sulfonamide derivatives-hydrophobic domain. Bioorg. Med. Chem. Lett., 2007, 17, 255-259.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.053] [PMID: 17046248]
[2]
Wang, T.; Kadow, J.F.; Meanwell, N.A. Benzothiazole Antiviral Agents. Google Patents August, 2006.
[3]
Katz, L. Antituberculous Compounds. III. Benzothiazole and Benzoxazole Derivatives. J. Am. Chem. Soc., 1953, 75(3), 712-714.
[http://dx.doi.org/10.1021/ja01099a059]
[4]
Burger, A.; Sawhney, S.N. Antimalarials. III. Benzothiazole Amino Alcohols. J. Med. Chem., 1968, 11(2), 270-273.
[http://dx.doi.org/10.1021/jm00308a018] [PMID: 5654216]
[5]
Haugwitz, R.D.; Angel, R.G.; Jacobs, G.A.; Maurer, B.V.; Narayanan, V.L.; Cruthers, L.R.; Szanto, J. Antiparasitic agents. 5. Synthesis and anthelmintic activities of novel 2-heteroaromatic-substituted isothiocyanatobenzoxazoles and benzothiazoles. J. Med. Chem., 1982, 25(8), 969-974.
[http://dx.doi.org/10.1021/jm00350a017] [PMID: 7120286]
[6]
Hu, W-P.; Chen, Y-K.; Liao, C-C.; Yu, H-S.; Tsai, Y-M.; Huang, S-M.; Tsai, F-Y.; Shen, H-C.; Chang, L-S.; Wang, J-J. Synthesis, and biological evaluation of 2-(4-aminophenyl)benzothiazole derivatives as photosensitizing agents. Bioorg. Med. Chem., 2010, 18(16), 6197-6207.
[http://dx.doi.org/10.1016/j.bmc.2010.04.082] [PMID: 20637639]
[7]
Yar, M.S.; Ansari, Z.H. Synthesis and in vivo diuretic activity of biphenyl benzothiazole-2-carboxamide derivatives. Acta Pol. Pharm., 2009, 66(4), 387-392.
[PMID: 19702170]
[8]
Shafi, S.; Alam, M.M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A.M.; Pallu, R.; Alam, M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 2012, 49, 324-333.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.032] [PMID: 22305614]
[9]
Chhabra, M.; Sinha, S.; Banerjee, S.; Paira, P. An efficient green synthesis of 2-arylbenzothiazole analogues as potent antibacterial and anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26, 213-217.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.087] [PMID: 26590102]
[10]
Sahu, P.K.; Sahu, P.K.; Samadhiya, P.; Sahu, P.L.; Agarwal, D.D. POM analyses and evaluation of in vitro antimicrobial, antitumor activity of 4H-Pyrimido[2,1-b] benzothiazole derivatives. Med. Chem. Res., 2016, 25(8), 1551-1563.
[http://dx.doi.org/10.1007/s00044-016-1589-8]
[11]
Moreno-Díaz, H.; Villalobos-Molina, R.; Ortiz-Andrade, R.; Díaz-Coutiño, D.; Medina-Franco, J.L.; Webster, S.P.; Binnie, M.; Estrada-Soto, S.; Ibarra-Barajas, M.; León-Rivera, I.; Navarrete-Vázquez, G. Antidiabetic activity of N-(6-substituted-1,3-benzothiazol-2-yl) benzenesulfonamides. Bioorg. Med. Chem. Lett., 2008, 18(9), 2871-2877.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.086] [PMID: 18424136]
[12]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[13]
Henriksen, G.; Hauser, A.I.; Westwell, A.D.; Yousefi, B.H.; Schwaiger, M.; Drzezga, A.; Wester, H-J. Metabolically stabilized benzothiazoles for imaging of amyloid plaques. J. Med. Chem., 2007, 50(6), 1087-1089.
[http://dx.doi.org/10.1021/jm061466g] [PMID: 17319654]
[14]
Milton, N.G.N.; Chilumuri, A.; Rocha-Ferreira, E.; Nercessian, A.N.; Ashioti, M. Kisspeptin prevention of amyloid-β peptide neurotoxicity in vitro. ACS Chem. Neurosci., 2012, 3(9), 706-719.
[http://dx.doi.org/10.1021/cn300045d] [PMID: 23019497]
[15]
Amnerkar, N.D.; Bhusari, K.P. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur. J. Med. Chem., 2010, 45(1), 149-159.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.037] [PMID: 19853976]
[16]
Kumar, P.; Shrivastava, B.; Pandeya, S.N.; Tripathi, L.; Stables, J.P. Design, synthesis, and anticonvulsant evaluation of some novel 1, 3 benzothiazol-2-Yl hydrazones/acetohydrazones. Med. Chem. Res., 2012, 21(9), 2428-2442.
[http://dx.doi.org/10.1007/s00044-011-9768-0]
[17]
Stevens, M.F.G.; McCall, C.J.; Lelieveld, P.; Alexander, P.; Richter, A.; Davies, D.E. Structural studies on bioactive compounds. 23. Synthesis of polyhydroxylated 2-phenylbenzothiazoles and a comparison of their cytotoxicities and pharmacological properties with genistein and quercetin. J. Med. Chem., 1994, 37(11), 1689-1695.
[http://dx.doi.org/10.1021/jm00037a020] [PMID: 8201603]
[18]
Shi, D.F.; Bradshaw, T.D.; Wrigley, S.; McCall, C.J.; Lelieveld, P.; Fichtner, I.; Stevens, M.F.G. Antitumor benzothiazoles 3. Synthesis of 2-(4-aminophenyl) benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J. Med. Chem., 1996, 39(17), 3375-3384.
[http://dx.doi.org/10.1021/jm9600959] [PMID: 8765521]
[19]
Bradshaw, T.D.; Wrigley, S.; Shi, D.F.; Schultz, R.J.; Paull, K.D.; Stevens, M.F.G. 2-(4-Aminophenyl)benzothiazoles: Novel agents with selective profiles of in vitro anti-tumour activity. Br. J. Cancer, 1998, 77(5), 745-752.
[http://dx.doi.org/10.1038/bjc.1998.122] [PMID: 9514053]
[20]
Bradshaw, T.D.; Shi, D.F.; Schultz, R.J.; Paull, K.D.; Kelland, L.; Wilson, A.; Garner, C.; Fiebig, H.H.; Wrigley, S.; Stevens, M.F.G. Influence of 2-(4-aminophenyl) benzothiazoles on growth of human ovarian carcinoma cells in vitro and in vivo. Br. J. Cancer, 1998, 78(4), 421-429.
[http://dx.doi.org/10.1038/bjc.1998.510] [PMID: 9716022]
[21]
Kashiyama, E.; Hutchinson, I.; Chua, M.S.; Stinson, S.F.; Phillips, L.R.; Kaur, G.; Sausville, E.A.; Bradshaw, T.D.; Westwell, A.D.; Stevens, M.F.G. Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl) benzothiazoles. J. Med. Chem., 1999, 42(20), 4172-4184.
[http://dx.doi.org/10.1021/jm990104o] [PMID: 10514287]
[22]
Yurttaş, L.; Tay, F.; Demirayak, Ş. Synthesis and antitumor activity evaluation of new 2-(4-aminophenyl) benzothiazole derivatives bearing different heterocyclic rings. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 458-465.
[http://dx.doi.org/10.3109/14756366.2014.945168] [PMID: 25198890]
[23]
Hutchinson, I.; Chua, M-S.; Browne, H.L.; Trapani, V.; Bradshaw, T.D.; Westwell, A.D.; Stevens, M.F.G. Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl) benzothiazoles. J. Med. Chem., 2001, 44(9), 1446-1455.
[http://dx.doi.org/10.1021/jm001104n] [PMID: 11311068]
[24]
Hutchinson, I.; Jennings, S.A.; Vishnuvajjala, B.R.; Westwell, A.D.; Stevens, M.F. Antitumor benzothiazoles. 16. Synthesis and pharmaceutical properties of antitumor 2-(4-aminophenyl)-benzothiazole amino acid prodrugs. J. Med. Chem., 2002, 45(3), 744-747.
[http://dx.doi.org/10.1021/jm011025r] [PMID: 11806726]
[25]
Sahin, B.; Yaglioglu, A.S.; Ceylan, M. Synthesis and cytotoxic activities of novel 2-(1, 5-bis (aryl) penta-1, 4-dien-2-yl) benzo [d] thiazol derivatives. Organ. Communicat., 2016, 9(3), 65.
[26]
Manjula, S.N.; Malleshappa Noolvi, N.; Vipan Parihar, K.; Manohara Reddy, S.A.; Ramani, V.; Gadad, A.K.; Singh, G.; Gopalan Kutty, N.; Mallikarjuna Rao, C. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents. Eur. J. Med. Chem., 2009, 44(7), 2923-2929.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.002] [PMID: 19128861]
[27]
Hallur, G.; Jimeno, A.; Dalrymple, S.; Zhu, T.; Jung, M. K.; Hidalgo, M.; Isaacs, J. T.; Sukumar, S.; Hamel, E.; Khan, S. R. Benzoylphenylurea sulfur analogues with potent antitumor activity. J. Med. Chem., 2006, 6 49(7), 2357-60.,
[28]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016] [PMID: 20056520]
[29]
Esteves-Souza, A.; Pissinate, K.; Nascimento, M.G.; Grynberg, N.F.; Echevarria, A. Synthesis, cytotoxicity, and DNA-topoisomerase inhibitory activity of new asymmetric ureas and thioureas. Bioorg. Med. Chem., 2006, 14(2), 492-499.
[http://dx.doi.org/10.1016/j.bmc.2005.08.031] [PMID: 16183295]
[30]
Choi, S.J.; Park, H.J.; Lee, S.K.; Kim, S.W.; Han, G.; Choo, H.Y.P. Solid phase combinatorial synthesis of benzothiazoles and evaluation of topoisomerase II inhibitory activity. Bioorg. Med. Chem., 2006, 14(4), 1229-1235.
[http://dx.doi.org/10.1016/j.bmc.2005.09.051] [PMID: 16242334]
[31]
Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2010, 45(4), 1323-1331.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.016] [PMID: 20056520]
[32]
Lesyk, R.B.; Zimenkovsky, B.S. 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr. Org. Chem., 2004, 8(16), 1547-1577.
[http://dx.doi.org/10.2174/1385272043369773]
[33]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem., 2009, 44(4), 1396-1404.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.032] [PMID: 19000643]
[34]
Geronikaki, A.; Eleftheriou, P.; Vicini, P.; Alam, I.; Dixit, A.; Saxena, A.K. 2-Thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidinones as new agents with SHP-2 inhibitory action. J. Med. Chem., 2008, 51(17), 5221-5228.
[35]
Havrylyuk, D.; Mosula, L.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem., 2010, 45(11), 5012-5021.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.008] [PMID: 20810193]
[36]
Brantley, E.; Trapani, V.; Alley, M.C.; Hose, C.D.; Bradshaw, T.D.; Stevens, M.F.G.; Sausville, E.A.; Stinson, S.F. Fluorinated 2-(4-amino-3-methylphenyl) benzothiazoles induce CYP1A1 expression, become metabolized, and bind to macromolecules in sensitive human cancer cells. Drug Metab. Dispos., 2004, 32(12), 1392-1401.
[http://dx.doi.org/10.1124/dmd.104.001057] [PMID: 15355884]
[37]
Chua, M.; Kashiyama, E.; Bradshaw, T.D.; Stinson, S.F.; Brantley, E.; Sausville, E.A.; Stevens, M.F. Role of CYP1A1 in modulation of antitumor properties of the novel agent human breast cancer cells. Cancer Res., 2000, 60(18), 5196-5203.
[38]
Crochard, J-P.; Bradshaw, T.D.; Mortimer, C.G.; Wells, G.; Stone, E.L.; Westwell, A.D.; Stevens, M.F.G. Antitumor Benzothiazoles. 26. 1 2-(3,4-Dimethoxyphenyl)-5-Fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem., 2006, 49, 179-185.
[http://dx.doi.org/10.1021/jm050942k] [PMID: 16392802]
[39]
Gomez, A.; Karlgren, M.; Edler, D.; Bernal, M.L.; Mkrtchian, S.; Ingelman-Sundberg, M. Expression of CYP2W1 in colon tumors: Regulation by gene methylation. Pharmacogenomics, 2007, 8(10), 1315-1325.
[http://dx.doi.org/10.2217/14622416.8.10.1315] [PMID: 17979506]
[40]
Stenstedt, K.; Hallstrom, M.; Johansson, I.; Ingelman-Sundberg, M.; Ragnhammar, P.; Edler, D. The expression of CYP2W1: A prognostic marker in colon cancer. Anticancer Res., 2012, 32(9), 3869-3874.
[PMID: 22993331]
[41]
Hallstro, M.; Edler, D.; Stenstedt, K.; Katarina, O.; Ingelman-sundberg, M.; Ragnhammar, P. The expression of the novel cyp2w1 enzyme is an independent prognostic factor in colorectal cancer – A pilot study. Eur. J. Cancer, 2008, 5, 3-10.
[PMID: 19118998]
[42]
Gomez, A.; Nekvindova, J.; Travica, S.; Lee, M.Y.; Johansson, I.; Edler, D.; Mkrtchian, S.; Ingelman-Sundberg, M. Colorectal cancer-specific cytochrome P450 2W1: Intracellular localization, glycosylation, and catalytic activity. Mol. Pharmacol., 2010, 78(6), 1004-1011.
[http://dx.doi.org/10.1124/mol.110.067652] [PMID: 20805301]
[43]
Tan, B.S.; Tiong, K.H.; Muruhadas, A.; Randhawa, N.; Choo, H.L.; Bradshaw, T.D.; Stevens, M.F.; Leong, C.O. CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol. Cancer Ther., 2011, 10(10), 1982-1992.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0391] [PMID: 21831963]
[44]
Chua, M.S.; Kashiyama, E.; Bradshaw, T.D.; Stinson, S.F.; Brantley, E.; Sausville, E.A.S.M. Role of CYP1A1 in Modulation of antitumor properties of the novel agent. Cancer Res., 2000, 60(18), 5196-5203.
[PMID: 11016648]
[45]
Tan, B.S.; Tiong, K.H.; Muruhadas, A.; Randhawa, N.; Choo, H.L.; Bradshaw, T.D.; Stevens, M.F.G.; Leong, C-O. CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol. Cancer Ther., 2011, 10(10), 1982-1992.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0391] [PMID: 21831963]
[46]
Wang, K.; Guengerich, F.P. Bioactivation of fluorinated 2-aryl-benzothiazole antitumor molecules by human cytochrome P450s 1A1 and 2W1 and deactivation by cytochrome P450 2S1. Chem. Res. Toxicol., 2012, 25(8), 1740-1751.
[http://dx.doi.org/10.1021/tx3001994] [PMID: 22734839]
[47]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[48]
Topcu, Z. DNA topoisomerases as targets for anticancer drugs. J. Clin. Pharm. Ther., 2001, 26(6), 405-416.
[http://dx.doi.org/10.1046/j.1365-2710.2001.00368.x] [PMID: 11722677]
[49]
Kaplan-Ozen, C.; Tekiner-Gulbas, B.; Foto, E.; Yildiz, I.; Diril, N.; Aki, E.; Yalcin, I. Benzothiazole derivatives as human DNA topoisomerase IIα inhibitors. Med. Chem. Res., 2013, 22(12), 5798-5808.
[http://dx.doi.org/10.1007/s00044-013-0577-5]
[50]
Aki-Yalcin, E.; Ertan-Bolelli, T.; Taskin-Tok, T.; Ozturk, O.; Ataei, S.; Ozen, C.; Yildiz, I.; Yalcin, I. Evaluation of inhibitory effects of benzothiazole and 3-amino-benzothiazolium derivatives on DNA topoisomerase II by molecular modeling studies. SAR QSAR Environ. Res., 2014, 25(8), 637-649.
[http://dx.doi.org/10.1080/1062936X.2014.923039] [PMID: 25027467]
[51]
Boumendjel, A.; Nicolle, E.; Moraux, T.; Gerby, B.; Blanc, M.; Ronot, X.; Boutonnat, J. Piperazinobenzopyranones and phenalkylaminobenzopyranones: Potent inhibitors of breast cancer resistance protein (ABCG2) J. Med. Chem., 2005, 17;48(23), 7275-81.,
[52]
Yarim, M.; Koksal, M.; Durmaz, I.; Atalay, R. Cancer cell cytotoxicities of 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl)-piperazine derivatives. Int. J. Mol. Sci., 2012, 13(7), 8071-8085.
[http://dx.doi.org/10.3390/ijms13078071] [PMID: 22942690]
[53]
Tuncbilek, M.; Guven, E.B.; Onder, T.; Atalay, R.C. Synthesis of novel 6-(4-substituted piperazine-1-yl)-9-(β-D-ribofuranosyl)purine derivatives, which lead to senescence-induced cell death in liver cancer cells. J. Med. Chem., 2012, 55(7), 3058-3065.
[54]
Gurdal, E.E.; Yarim, M.; Durmaz, I.; Cetin-Atalay, R. Cytotoxic activities of some novel benzhydrylpiperazine derivatives. Drug Res. (Stuttg.), 2013, 63(3), 121-128.
[http://dx.doi.org/10.1055/s-0032-1333275] [PMID: 23447090]
[55]
Gurdal, E.E.; Durmaz, I.; Cetin-Atalay, R.; Yarim, M. Synthesis and cytotoxicity studies of novel benzhydrylpiperazine carboxamide and thioamide derivatives. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 205-214.
[http://dx.doi.org/10.3109/14756366.2013.765416] [PMID: 23391169]
[56]
Gurdal, E.E.; Durmaz, I.; Cetin-Atalay, R.; Yarim, M. Cytotoxic activities of some benzothiazole-piperazine derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 649-654.
[http://dx.doi.org/10.3109/14756366.2014.959513] [PMID: 25333766]
[57]
Singh, M.; Modi, A.; Narayan, G.; Singh, S.K. Benzothiazole derivatives bearing amide moiety: Potential cytotoxic and apoptosis-inducing agents against cervical cancer. Anticancer Drugs, 2016, 27(6), 519-532.
[http://dx.doi.org/10.1097/CAD.0000000000000357] [PMID: 26945135]
[58]
Li, M-H.; Yang, P.; Yang, T.; Zhang, K.; Liu, Y.; Liu, J.; Li, L-M.; Luo, X-Y.; Yang, S-X.; Zou, Q.; Zhang, C.J. A novel water-soluble benzothiazole derivative BD926 triggers ROS-mediated B lymphoma cell apoptosis via mitochondrial and endoplasmic reticulum signaling pathways. Int. J. Oncol., 2016, 49(5), 2127-2134.
[http://dx.doi.org/10.3892/ijo.2016.3684] [PMID: 27600372]
[59]
Bolelli, K.; Musdal, Y.; Aki-Yalcin, E.; Mannervik, B.; Yalcin, I. Synthesis and activity mechanism of some novel 2-substituted benzothiazoles as hGSTP1-1 enzyme inhibitors. SAR QSAR Environ. Res., 2017, 28(11), 927-940.
[http://dx.doi.org/10.1080/1062936X.2017.1402820] [PMID: 29206502]
[60]
El-Damasy, A.K.; Lee, J.H.; Seo, S.H.; Cho, N.C.; Pae, A.N.; Keum, G. Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-Raf(V600E) and C-Raf kinase inhibitory activities. Eur. J. Med. Chem., 2016, 115(115), 201-216.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.039] [PMID: 27017549]
[61]
Cao, S.; Cao, R.; Liu, X.X.L.; and W.Z., Design synthesis and biological evaluation of novel benzothiazole derivatives as selective PI3Kβ inhibitors. Molecules, 2016, 6-10.
[http://dx.doi.org/10.3390/molecules21070876]
[62]
Collier, P.N.; Martinez-Botella, G.; Cornebise, M.; Cottrell, K.M.; Doran, J.D.; Griffith, J.P.; Mahajan, S.; Maltais, F.; Moody, C.S.; Huck, E.P.; Wang, T.; Aronov, A.M. Structural basis for isoform selectivity in a class of benzothiazole inhibitors of phosphoinositide 3-kinase γ. J. Med. Chem., 2015, 58(1), 517-521.
[http://dx.doi.org/10.1021/jm500362j] [PMID: 24754609]
[63]
Peng, X.; Xie, G.; Wang, Z.; Lin, H.; Zhou, T.; Xiang, P.; Jiang, Y.; Yang, S.; Wei, Y.; Yu, L.; Zhao, Y. SKLB-163, a new benzothiazole- 2-thiol derivative, exhibits potent anticancer activity by affecting RhoGDI/JNK-1 signaling pathway Cell Death Dis, 2014, 5e1143.
[http://dx.doi.org/10.1038/cddis.2014.107] [PMID: 24675461]
[64]
Sankara Rao, N.; Nagesh, N.; Lakshma Nayak, V.; Sunkari, S.; Tokala, R.; Kiranmai, G.; Regur, P.; Shankaraiah, N.; Kamal, A. Design and synthesis of DNA-intercalative naphthalimide-benzothiazole/cinnamide derivatives: Cytotoxicity evaluation and topoisomerase-IIα inhibition. Med.Chem.Comm, 2018, 10, 72-79.
[http://dx.doi.org/10.1039/C8MD00395E] [PMID: 30774856]
[65]
Hegde, M.; Vartak, S.V.; Kavitha, C.V.; Ananda, H.; Prasanna, D.S.; Gopalakrishnan, V.; Choudhary, B.; Rangappa, K.S.; Raghavan, S.C. A benzothiazole derivative (5g) induces DNA damage and potent G2/M arrest in cancer cells. Sci. Rep., 2017, 7(1), 2533.
[http://dx.doi.org/10.1038/s41598-017-02489-3] [PMID: 28566733]
[66]
Uremis, N.; Uremis, M.M.; Tolun, F.I.; Ceylan, M.; Doganer, A.; Kurt, A.H. Synthesis of 2-Substituted benzothiazole derivatives and their in vitro anticancer effects and antioxidant activities against pancreatic cancer cells. Anticancer Res., 2017, 37(11), 6381-6389.
[PMID: 29061823]
[67]
Repicky, A.; Jantova, S.; Cipak, L. Apoptosis induced by 2-acetyl-3-(6-methoxybenzothiazo)-2-yl-amino-acrylonitrile in human leukemia cells involves ROS-mitochondrial mediated death signaling and activation of p38 MAPK. Cancer Lett., 2009, 277, 55-63.
[http://dx.doi.org/10.1016/j.canlet.2008.11.026] [PMID: 19108948]
[68]
Sultana, F.; Saifi, M.A.; Riyaz, S.; Mani, G.S.; Shaik, S.P.; Godugu, C.; Kamal, A. Synthesis of 2-anilinopyridyl linked benzothiazole hydrazones as apoptosis inducing cytotoxic agents. New J. Chem., 2019, 43, 7150-7161.
[http://dx.doi.org/10.1039/C8NJ06517A]
[69]
Yang, Y.; Karakhanova, S.; Hartwig, W.; D’Haese, J.G.; Philippov, P.P.; Werner, J.; Bazhin, A.V. Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy. J. Cell. Physiol., 2016, 231(12), 2570-2581.
[http://dx.doi.org/10.1002/jcp.25349] [PMID: 26895995]
[70]
Subba Rao, A.V.; Swapna, K.; Shaik, S.P.; Lakshma Nayak, V.; Srinivasa Reddy, T.; Sunkari, S.; Shaik, T.B.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of cis-restricted triazole/tetrazole mimics of combretastatin-benzothiazole hybrids as tubulin polymerization inhibitors and apoptosis inducers. Bioorg. Med. Chem., 2017, 25(3), 977-999.
[http://dx.doi.org/10.1016/j.bmc.2016.12.010] [PMID: 28034647]
[71]
Singh, M.; Singh, S. K. Benzothiazoles: How relevant in cancer drug design strategy? Anti-Cancer Agents Med. Chem (Formerly Curr. Med. Chem. Agents), 2014, 14, 127-146.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Page: [12 - 23]
Pages: 12
DOI: 10.2174/1389557519666190617153213
Price: $65

Article Metrics

PDF: 24
HTML: 3
EPUB: 1
PRC: 1