Recent Advances in the HPLC Analysis of Tricyclic Antidepressants in Bio-Samples

Author(s): Natalia Manousi, Victoria F. Samanidou*.

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Tricyclic Antidepressants (TCAs) are a group of the main category of antidepressant drugs, which are commonly prescribed to treat major depressive disorder. Determination of TCA drugs is very important for clinical and forensic toxicology, especially for therapeutic drug monitoring in various biofluids. High Performance Liquid Chromatography (HPLC) is a well-established technique for this purpose. A lot of progress has been made in this field since the past 10 years. Novel extraction techniques, and novel materials for sample preparation, novel columns and novel applications of analysis of various biofluids for the determination of TCAs in combination with other drugs are some typical examples. Moreover, advances have been performed in terms of Green Analytical Chemistry principles. Herein, we aim to discuss the developed HPLC methods that were reported in the literature for the time span of 2008-2018.

Keywords: Tricyclic antidepressants, TCAs, HPLC, medicinal chemistry, biological fluids, sample preparation.

[1]
American Psychiatric Association, Depression. psychiatry, psychiatry.org/patients-families/depression/what-is-depression (Accessed November 11, 2018).
[2]
Samanidou, V.F.; Nika, M.K.; Papadoyannis, I.N. HPLC as a tool in medicinal chemistry for the monitoring of tricyclic antidepressants in biofluids. Mini Rev. Med. Chem., 2008, 8(3), 256-275.
[http://dx.doi.org/10.2174/138955708783744038] [PMID: 18336346]
[3]
Brown, W.A.; Rosdolsky, M. The clinical discovery of imipramine. Am. J. Psychiatry, 2015, 172(5), 426-429.
[http://dx.doi.org/10.1176/appi.ajp.2015.14101336] [PMID: 25930134]
[4]
Linde, K.; Kriston, L.; Rücker, G.; Jamil, S.; Schumann, I.; Meissner, K.; Sigterman, K.; Schneider, A. Efficacy and acceptability of pharmacological treatments for depressive disorders in primary care: Systematic review and network meta-analysis. Ann. Fam. Med., 2015, 13(1), 69-79.
[http://dx.doi.org/10.1370/afm.1687] [PMID: 25583895]
[5]
Uddin, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Bio-sample preparation and analytical methods for the determination of tricyclic antidepressants. Bioanalysis, 2011, 3, 97-118.
[http://dx.doi.org/10.4155/bio.10.160] [PMID: 21175370]
[6]
Maurer, H.H. Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or LC-MS/MS) relevant to clinical and forensic toxicology. Clin. Biochem., 2005, 38(4), 310-318.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.01.014] [PMID: 15766732]
[7]
Manousi, N.; Raber, G.; Papadoyannis, I. Recent advances in microextraction techniques of antipsychotics in biological fluids prior to liquid chromatography analysis. Seperations, 2017, 4, 18-32.
[http://dx.doi.org/10.3390/separations4020018]
[8]
Arthur, L.C.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. J. Anal. Chem., 1990, 62, 2145-2148.
[http://dx.doi.org/10.1021/ac00218a019]
[9]
Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A, 2006, 1116(1-2), 1-9.
[http://dx.doi.org/10.1016/j.chroma.2006.03.007] [PMID: 16574135]
[10]
Kabir, A.; Furton, K.G. Fabric Phase Sorptive Extractors, United States Patents and Trademark Oce. 2016.
[11]
Alves, C.; Fernandes, C.; Dos Santos Neto, A.J.; Rodrigues, J.C.; Costa Queiroz, M.E.; Lanças, F.M. Optimization of the SPME parameters and its online coupling with HPLC for the analysis of tricyclic antidepressants in plasma samples. J. Chromatogr. Sci., 2006, 44(6), 340-346.
[http://dx.doi.org/10.1093/chromsci/44.6.340] [PMID: 16884589]
[12]
Dong, M.W.; Zhang, K. Ultra-high-pressure liquid chromatography (UHPLC) in method development. Trends Analyt. Chem., 2014, 63, 21-30.
[http://dx.doi.org/10.1016/j.trac.2014.06.019]
[13]
Li, J.; Zhao, F.; Ju, H. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection. Anal. Chim. Acta, 2006, 575, 57-61.
[http://dx.doi.org/10.1016/j.aca.2006.05.067] [PMID: 17723572]
[14]
Hattori, H.; Yamada, T.; Suzuki, O. Gas chromatography with surface ionization detection in forensic analysis. J. Chromatogr. A, 1994, 674, 15-23.
[http://dx.doi.org/10.1016/0021-9673(94)85215-4]
[15]
Wang, J.; Golden, T.; Ozsoz, M.; Lu, Z. Sensitive and selective voltammetric measurements of tricyclic antidepressants using lipid-coated electrodes. Bioelectrochem. Bioenerg., 1990, 23, 217-226.
[http://dx.doi.org/10.1016/0302-4598(90)80011-7]
[16]
Rao, M.L.; Staberock, U.; Baumann, P.; Hiemke, C.; Deister, A.; Cuendet, C.; Amey, M.; Härtter, S.; Kraemer, M. Monitoring tricyclic antidepressant concentrations in serum by fluorescence polarization immunoassay compared with gas chromatography and HPLC. Clin. Chem., 1994, 40(6), 929-933.
[PMID: 8087988]
[17]
Kataky, R.; Palmer, S.; Parker, D.; Spurling, D. Alkylated cyclodextrin‐based potentiometric and amperometric electrodes applied to the measurement of tricyclic antidepressants. Electroanalysis, 1997, 9, 1267-1272.
[http://dx.doi.org/10.1002/elan.1140091610]
[18]
Acedo-Valenzuela, M.I.; Galeano-Díaz, T.; Mora-Díez, N.; Silva-Rodríguez, A. Response surface methodology for the optimisation of flow-injection analysis with in situ solvent extraction and fluorimetric assay of tricyclic antidepressants. Talanta, 2005, 66(4), 952-960.
[http://dx.doi.org/10.1016/j.talanta.2004.12.044] [PMID: 18970077]
[19]
Yazdi, A.S.; Razavi, N.; Yazdinejad, S.R. Separation and determination of amitriptyline and nortriptyline by dispersive liquid-liquid microextraction combined with gas chromatography flame ionization detection. Talanta, 2008, 75(5), 1293-1299.
[http://dx.doi.org/10.1016/j.talanta.2008.01.039] [PMID: 18585215]
[20]
Ito, R.; Ushiro, M.; Takahashi, Y.; Saito, K.; Ookubo, T.; Iwasaki, Y.; Nakazawa, H. Improvement and validation the method using dispersive liquid-liquid microextraction with in situ derivatization followed by gas chromatography-mass spectrometry for determination of tricyclic antidepressants in human urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(31), 3714-3720.
[http://dx.doi.org/10.1016/j.jchromb.2011.10.012] [PMID: 22035981]
[21]
Papoutsis, I.; Khraiwesh, A.; Nikolaou, P.; Pistos, C.; Spiliopoulou, C.; Athanaselis, S. A fully validated method for the simultaneous determination of 11 antidepressant drugs in whole blood by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2012, 70, 557-562.
[http://dx.doi.org/10.1016/j.jpba.2012.05.007] [PMID: 22658904]
[22]
Davarani, S.S.H.; Najarian, A.M.; Nojavan, S.; Tabatabaei, M.A. Electromembrane extraction combined with gas chromatography for quantification of tricyclic antidepressants in human body fluids. Anal. Chim. Acta, 2012, 725, 51-56.
[http://dx.doi.org/10.1016/j.aca.2012.02.048] [PMID: 22502611]
[23]
Seidi, S.; Yamini, Y.; Rezazadeh, M. Combination of electromembrane extraction with dispersive liquid-liquid microextraction followed by gas chromatographic analysis as a fast and sensitive technique for determination of tricyclic antidepressants. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 913-914, 138-146.
[http://dx.doi.org/10.1016/j.jchromb.2012.12.008] [PMID: 23299295]
[24]
Rezazadeh, M.; Yamini, Y.; Seidi, S.; Ebrahimpour, B. Electromembrane surrounded solid phase microextraction: A novel approach for efficient extraction from complicated matrices. J. Chromatogr. A, 2013, 1280, 16-22.
[http://dx.doi.org/10.1016/j.chroma.2013.01.034] [PMID: 23357753]
[25]
Banitaba, M.H.; Davarani, S.S.H.; Ahmar, H.; Movahed, S.K. Application of a new fiber coating based on electrochemically reduced graphene oxide for the cold-fiber headspace solid-phase microextraction of tricyclic antidepressants. J. Sep. Sci., 2014, 37(9-10), 1162-1169.
[http://dx.doi.org/10.1002/jssc.201301369] [PMID: 24610828]
[26]
Asghari, A.; Saffarzadeh, Z.; Bazregar, M.; Rajabi, M.; Boutorabi, L. Low-toxic air-agitated liquid-liquid microextraction using a solidifiable organic solvent followed by gas chromatography for analysis of amitriptyline and imipramine in human plasma and wastewater samples. Microchem. J., 2017, 130, 122-128.
[http://dx.doi.org/10.1016/j.microc.2016.08.014]
[27]
Mohebbi, A.; Yaripour, S.; Farajzadeh, M.A.; Afshar Mogaddam, M.R. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids. J. Chromatogr. A, 2018, 1571, 84-93.
[http://dx.doi.org/10.1016/j.chroma.2018.08.022] [PMID: 30119972]
[28]
Ahmadi, F.; Mahmoudi-Yamchi, T.; Azizian, H. Super paramagnetic core-shells anchored onto silica grafted with C8/NH2 nano-particles for ultrasound-assisted magnetic solid phase extraction of imipramine and desipramine from plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1077-1078, 52-59.
[http://dx.doi.org/10.1016/j.jchromb.2018.01.033] [PMID: 29413577]
[29]
dos Santos, M.F.; Ferri, C.C.; Seulin, S.C.; Leyton, V.; Pasqualucci, C.A.G.; Munoz, D.R.; Yonamine, M. Determination of antidepressants in whole blood using hollow-fiber liquid-phase microextraction and gas chromatography-mass spectrometry. Forensic Toxicol., 2014, 32, 214-224.
[http://dx.doi.org/10.1007/s11419-014-0226-9]
[30]
Rana, S.; Uralets, V.P.; Ross, W. A new method for simultaneous determination of cyclic antidepressants and their metabolites in urine using enzymatic hydrolysis and fast GC-MS. J. Anal. Toxicol., 2008, 32(5), 355-363.
[http://dx.doi.org/10.1093/jat/32.5.355] [PMID: 18544221]
[31]
Lee, X.P.; Hasegawa, C.; Kumazawa, T.; Shinmen, N.; Shoji, Y.; Seno, H.; Sato, K. Determination of tricyclic antidepressants in human plasma using pipette tip solid-phase extraction and gas chromatography-mass spectrometry. J. Sep. Sci., 2008, 31(12), 2265-2271.
[http://dx.doi.org/10.1002/jssc.200700627] [PMID: 18546392]
[32]
Acedo-Valenzuela, M.I.; Mora-Díez, N.; Galeano-Díaz, T.; Silva-Rodríguez, A. Determination of tricyclic antidepressants in human breast milk by capillary electrophoresis. Anal. Sci., 2010, 26(6), 699-702.
[http://dx.doi.org/10.2116/analsci.26.699] [PMID: 20543503]
[33]
Wu, H.; Kailasa, S.K.; Yan, J.; Chin, C. f, Ku, H. Comparison of single-drop microextraction with microvolume pipette extraction directly coupled with capillary electrophoresis for extraction and separation of tricyclic antidepressant drugs. J. Ind. Eng. Chem., 2014, 20, 2071-2076.
[http://dx.doi.org/10.1016/j.jiec.2013.09.034]
[34]
Furlanetto, S.; Orlandini, S.; Pasquini, B.; Del Bubba, M.; Pinzauti, S. Quality by Design approach in the development of a solvent-modified micellar electrokinetic chromatography method: Finding the design space for the determination of amitriptyline and its impurities. Anal. Chim. Acta, 2013, 802, 113-124.
[http://dx.doi.org/10.1016/j.aca.2013.10.005] [PMID: 24176512]
[35]
Yu, C.; Du, H.; You, T. Determination of imipramine and trimipramine by capillary electrophoresis with electrochemiluminescence detection. Talanta, 2011, 83(5), 1376-1380.
[http://dx.doi.org/10.1016/j.talanta.2010.11.011] [PMID: 21238724]
[36]
Sasajima, Y.; Lim, L.W.; Takeuchi, T.; Suenami, K.; Sato, K.; Takekoshi, Y. Simultaneous determination of antidepressants by non-aqueous capillary electrophoresis-time of flight mass spectrometry. J. Chromatogr. A, 2010, 1217(48), 7598-7604.
[http://dx.doi.org/10.1016/j.chroma.2010.10.003] [PMID: 20970802]
[37]
Zad, Z.R.; Davarani, S.S.H.; Taheri, A.R.; Bide, Y. Highly selective determination of amitriptyline using Nafion-AuNPs@branched polyethyleneimine-derived carbon hollow spheres in pharmaceutical drugs and biological fluids. Biosens. Bioelectron., 2016, 86, 616-622.
[http://dx.doi.org/10.1016/j.bios.2016.07.028] [PMID: 27471151]
[38]
Knihnicki, P.; Wieczorek, M.; Moos, A.; Koscielniak, P.; Wietecha-Posłuszny, R.; Wozniakiewicz, M. Electrochemical sensor for determination of desipramine in biological material. Sens. Actuators B Chem., 2013, 189, 37-42.
[http://dx.doi.org/10.1016/j.snb.2012.12.021]
[39]
Knihnicki, P.; Wieczorek, M.; Bienias, M.; Wietecha-Posłuszny, R.; Woźniakiewicz, M.; Kościelniak, P. Electrochemical sensor for determination of desipramine in biological materials. Procedia Eng., 2012, 47, 1342-1345.
[http://dx.doi.org/10.1016/j.proeng.2012.09.404]
[40]
Santos, M.G.; Tavares, I.M.C.; Barbosa, A.F.; Bettini, J.; Figueiredo, E.C. Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification. Talanta, 2017, 163, 8-16.
[http://dx.doi.org/10.1016/j.talanta.2016.10.047] [PMID: 27886774]
[41]
Aladaghlo, Z.; Fakhari, A.R.; Hasheminasab, K.S. Application of electromembrane extraction followed by corona discharge ion mobility spectrometry analysis as a fast and sensitive technique for determination of tricyclic antidepressants in urine samples. Microchem. J., 2016, 129, 41-48.
[http://dx.doi.org/10.1016/j.microc.2016.05.013]
[42]
Breaud, A.R.; Harlan, R.; Di Bussolo, J.M.; McMillin, G.A.; Clarke, W. A rapid and fully-automated method for the quantitation of tricyclic antidepressants in serum using turbulent-flow liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta, 2010, 411(11-12), 825-832.
[http://dx.doi.org/10.1016/j.cca.2010.02.067] [PMID: 20206615]
[43]
Breaud, A.R.; Harlan, R.; Kozak, M.; Clarke, W. A rapid and reliable method for the quantitation of tricyclic antidepressants in serum using HPLC-MS/MS. Clin. Biochem., 2009, 42(12), 1300-1307.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.05.006] [PMID: 19463806]
[44]
Sempio, C.; Morini, L.; Vignali, C.; Groppi, A. Simple and sensitive screening and quantitative determination of 88 psychoactive drugs and their metabolites in blood through LC-MS/MS: Application on postmortem samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 970, 1-7.
[http://dx.doi.org/10.1016/j.jchromb.2014.08.039] [PMID: 25218917]
[45]
Lin, C.N.; Juenke, J.M.; Johnson-Davis, K.L. Method validation of a tricyclic antidepressant drug panel in urine by UPLC-MS/MS. Ann. Clin. Lab. Sci., 2014, 44(4), 431-436.
[PMID: 25361928]
[46]
Zhao, J.; Shin, Y.; Chun, K-H.; Yoon, H-R.; Lee, J. A simple, rapid and reliable method to determine imipramine and desipramine in mouse serum using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. J. Chromatogr. Sci., 2016, 54(4), 561-568.
[http://dx.doi.org/10.1093/chromsci/bmv187] [PMID: 26688563]
[47]
Mercolini, L.; Mandrioli, R.; Finizio, G.; Boncompagni, G.; Raggi, M.A. Simultaneous HPLC determination of 14 tricyclic antidepressants and metabolites in human plasma. J. Sep. Sci., 2010, 33, 23-30.
[http://dx.doi.org/10.1002/jssc.200900493] [PMID: 20091716]
[48]
Coulter, C.; Taruc, M.; Tuyay, J.; Moore, C. Antidepressant drugs in oral fluid using liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol., 2010, 34(2), 64-72.
[http://dx.doi.org/10.1093/jat/34.2.64] [PMID: 20223097]
[49]
Uddin, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Simultaneous determination of 1,4-Benzodiazepines and tricyclic antidepressants in saliva after sequential SPE elution by the same HPLC conditions. J. Chin. Chem. Soc. (Taipei), 2011, 58, 142-154.
[http://dx.doi.org/10.1002/jccs.201190070]
[50]
Uddin, M.N.; Samanidou, V.F.; Papadoyannis, I.N. HPLC Method for Simultaneous Determination of 1,4-Benzodiazepines and tricyclic antidepressants in pharmaceutical formulations and saliva-A useful tool in medicinal chemistry. J. Liq. Chromatogr. Relat. Technol., 2009, 32, 1475-1504.
[http://dx.doi.org/10.1080/10826070902901499]
[51]
Uddin, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Development and validation of an HPLC method for the determination of benzodiazepines and tricyclic antidepressants in biological fluids after sequential SPE. J. Sep. Sci., 2008, 31(13), 2358-2370.
[http://dx.doi.org/10.1002/jssc.200800079] [PMID: 18646258]
[52]
Chambers, E.E.; Woodcock, M.J.; Wheaton, J.P.; Pekol, T.M.; Diehl, D.M. Systematic development of an UPLC-MS/MS method for the determination of tricyclic antidepressants in human urine. J. Pharm. Biomed. Anal., 2014, 88, 660-665.
[http://dx.doi.org/10.1016/j.jpba.2013.09.001] [PMID: 24239905]
[53]
Woźniakiewicz, M.; Wietecha-Posłuszny, R.; Garbacik, A.; Kościelniak, P. Microwave-assisted extraction of tricyclic antidepressants from human serum followed by high performance liquid chromatography determination. J. Chromatogr. A, 2008, 1190(1-2), 52-56.
[http://dx.doi.org/10.1016/j.chroma.2008.03.013] [PMID: 18378249]
[54]
Ganzler, K.; Salgó, A.; Valkó, K. Microwave extraction. A novel sample preparation method for chromatography. J. Chromatogr. A, 1986, 371, 299-306.
[http://dx.doi.org/10.1016/S0021-9673(01)94714-4] [PMID: 3558551]
[55]
Shen, Y.; Zhu, R.H.; Li, H.D.; Liu, Y.W.; Xu, P. Validated LC-MS (ESI) assay for the simultaneous determination of amitriptyline and its metabolite nortriptyline in rat plasma: Application to a pharmacokinetic comparison. J. Pharm. Biomed. Anal., 2010, 53(3), 735-739.
[http://dx.doi.org/10.1016/j.jpba.2010.04.031] [PMID: 20570077]
[56]
Wietecha-Posłuszny, R.; Garbacik, A.; Woźniakiewicz, M.; Kościelniak, P. Microwave-assisted hydrolysis and extraction of tricyclic antidepressants from human hair. Anal. Bioanal. Chem., 2011, 399(9), 3233-3240.
[http://dx.doi.org/10.1007/s00216-010-4440-y] [PMID: 21127844]
[57]
Poklis, J.L.; Wolf, C.E.; Goldstein, A.; Wolfe, M.L.; Poklis, A. Detection and quantification of tricyclic antidepressants and other psychoactive drugs in urine by HPLC/MS/MS for pain management compliance testing. J. Clin. Lab. Anal., 2012, 26(4), 286-294.
[http://dx.doi.org/10.1002/jcla.21519] [PMID: 22811363]
[58]
Farag, R.S.; Darwish, M.Z.; Fathy, W.M.; Ahmed, H.H. New HPLC method to detect amitriptyline in the blood of rats on combination treatment. Int. J. Chem. Anal. Sci., 2013, 4, 120-124.
[http://dx.doi.org/10.1016/j.ijcas.2013.06.001]
[59]
Patel, N.P.; Sanyal, M.; Sharma, N.; Patel, D.S.; Shrivastav, P.S.; Patel, B.N. Highly sensitive LC-MS/MS method to estimate doxepin and its metabolite nordoxepin in human plasma for a bioequivalence study. J. Pharm. Anal., 2018, 8(6), 378-385.
[http://dx.doi.org/10.1016/j.jpha.2017.06.004] [PMID: 30595944]
[60]
Woźniakiewicz, M.; Wietecha-Posłuszny, R.; Moos, A.; Wieczorek, M.; Knihnicki, P.; Kościelniak, P. Development of microextraction by packed sorbent for toxicological analysis of tricyclic antidepressant drugs in human oral fluid. J. Chromatogr. A, 2014, 1337, 9-16.
[http://dx.doi.org/10.1016/j.chroma.2014.02.037] [PMID: 24636563]
[61]
Rani, S.; Kumar, A.; Malik, A.K.; Singh, B. Quantification of tricyclic and nontricyclic antidepressants in spiked plasma and urine samples using microextraction in packed syringe and analysis by LC and GC-MS. Chromatographia, 2011, 74, 235-242.
[http://dx.doi.org/10.1007/s10337-011-2052-0]
[62]
Alves, V.; Gonçalves, J.; Conceição, C.; Teixeira, H.M.; Câmara, J.S. An improved analytical strategy combining microextraction by packed sorbent combined with ultra-high pressure liquid chromatography for the determination of fluoxetine, clomipramine and their active metabolites in human urine. J. Chromatogr. A, 2015, 1408, 30-40.
[http://dx.doi.org/10.1016/j.chroma.2015.07.021] [PMID: 26189207]
[63]
Alves, V.; Conceição, C.; Gonçalves, J.; Teixeira, H.M.; Câmara, J.S. Improved analytical approach based on QuECHERS/UHPLC-PDA for quantification of fluoxetine, clomipramine and their active metabolites in human urine samples. J. Anal. Toxicol., 2017, 41, 45-53.
[http://dx.doi.org/10.1093/jat/bkw077] [PMID: 27681341]
[64]
Usui, K.; Hayashizaki, Y.; Hashiyada, M.; Funayama, M. Rapid drug extraction from human whole blood using a modified QuEChERS extraction method. Leg. Med. (Tokyo), 2012, 14(6), 286-296.
[http://dx.doi.org/10.1016/j.legalmed.2012.04.008] [PMID: 22682428]
[65]
Alidoust, M.; Seidi, S.; Rouhollahi, A.; Shanehsaz, M. In-tube electrochemically controlled solid phase microextraction of amitriptyline, imipramine and chlorpromazine from human plasma by using an indole-thiophene copolymer nanocomposite. Mikrochim. Acta, 2017, 184, 2473-2481.
[http://dx.doi.org/10.1007/s00604-017-2258-4]
[66]
Gupta, M.; Jain, A.; Verma, K.K. Determination of amoxapine and nortriptyline in blood plasma and serum by salt-assisted liquid-liquid microextraction and high-performance liquid chromatography. J. Sep. Sci., 2010, 33(23-24), 3774-3780.
[http://dx.doi.org/10.1002/jssc.201000434] [PMID: 21082678]
[67]
Xiong, C.; Ruan, J.; Cai, Y.; Tang, Y. Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2009, 49(2), 572-578.
[http://dx.doi.org/10.1016/j.jpba.2008.11.036] [PMID: 19135820]
[68]
Shamsipur, M.; Mirmohammadi, M. High performance liquid chromatographic determination of ultra-traces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid-liquid microextraction coupled with response surface optimization. J. Pharm. Biomed. Anal., 2014, 100, 271-278.
[http://dx.doi.org/10.1016/j.jpba.2014.08.008] [PMID: 25178259]
[69]
Fisichella, M.; Odoardi, S.; Strano-Rossi, S. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchem. J., 2015, 123, 33-41.
[http://dx.doi.org/10.1016/j.microc.2015.05.009]
[70]
Mohebbi, A.; Farajzadeh, M.A.; Yaripour, S.; Afshar Mogaddam, M.R. Determination of tricyclic antidepressants in human urine samples by the three-step sample pretreatment followed by HPLC-UV analysis: An efficient analytical method for further pharmacokinetic and forensic studies. EXCLI J., 2018, 17, 952-963.
[PMID: 30564074]
[71]
Ghambarian, M.; Yamini, Y.; Esrafili, A. Three-phase hollow fiber microextraction based on two immiscible organic solvents for determination of tricyclic antidepressant drugs: Comparison with conventional three-phase hollow fiber microextraction. J. Chromatogr. A, 2012, 1222, 5-12.
[http://dx.doi.org/10.1016/j.chroma.2011.11.055] [PMID: 22197253]
[72]
Rajabi, A.A.; Yamini, Y.; Faraji, M.; Seidi, S. Solid-phase microextraction based on cetyltrimethylammonium bromide-coated magnetic nanoparticles for determination of antidepressants from biological fluids. Med. Chem. Res., 2012, 22, 1570-1577.
[http://dx.doi.org/10.1007/s00044-012-0158-z]
[73]
Zare, F.; Ghaedi, M.; Daneshfar, A. Solid phase extraction of antidepressant drugs amitriptyline and nortriptyline from plasma samples using core-shell nanoparticles of the type Fe3O4@ZrO2@N- cetylpyridinium, and their subsequent determination by HPLC with UV detection. Mikrochim. Acta, 2014, 182, 1893-1902.
[http://dx.doi.org/10.1007/s00604-015-1499-3]
[74]
Jannesar, R.; Zare, F.; Ghaedi, M.; Daneshfar, A. Dispersion of hydrophobic magnetic nanoparticles using ultarsonic-assisted in combination with coacervative microextraction for the simultaneous preconcentration and determination of tricyclic antidepressant drugs in biological fluids. Ultrason. Sonochem., 2016, 32, 380-386.
[http://dx.doi.org/10.1016/j.ultsonch.2016.04.010] [PMID: 27150784]
[75]
Hamidi, F.; Hadjmohammadi, M.R.; Aghaie, A.B.G. Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe3O4 adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1063, 18-24.
[http://dx.doi.org/10.1016/j.jchromb.2017.08.005] [PMID: 28825989]
[76]
Safari, M.; Shahlaei, M.; Yamini, Y.; Shakorian, M.; Arkan, E. Magnetic framework composite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of tricyclic antidepressants. Anal. Chim. Acta, 2018, 1034, 204-213.
[http://dx.doi.org/10.1016/j.aca.2018.06.023] [PMID: 30193635]
[77]
Fahimirad, B.; Rajabi, M.; Elhampour, A. A rapid and simple extraction of anti-depressant drugs by effervescent salt-assisted dispersive magnetic micro solid-phase extraction method using new adsorbent Fe3O4@SiO2@N3. Anal. Chim. Acta, 2019, 1047, 275-284.
[http://dx.doi.org/10.1016/j.aca.2018.10.028] [PMID: 30567660]
[78]
Calabuig-Hernández, S.; Peris-García, E.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Suitability of 1-hexyl-3-methylimidazolium ionic liquids for the analysis of pharmaceutical formulations containing tricyclic antidepressants. J. Chromatogr. A, 2018, 1559, 118-127.
[http://dx.doi.org/10.1016/j.chroma.2017.11.063] [PMID: 29203112]
[79]
Almudever, P.; Peris, J.E.; Garrigues, T.; Diez, O.; Melero, A.; Alós, M. Quantification of nortriptyline in plasma by HPLC and fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(9-10), 841-844.
[http://dx.doi.org/10.1016/j.jchromb.2010.01.033] [PMID: 20172767]
[80]
Berm, E.J.J.; Paardekooper, J.; Brummel-Mulder, E.; Hak, E.; Wilffert, B.; Maring, J.G. A simple dried blood spot method for therapeutic drug monitoring of the tricyclic antidepressants amitriptyline, nortriptyline, imipramine, clomipramine, and their active metabolites using LC-MS/MS. Talanta, 2015, 134, 165-172.
[http://dx.doi.org/10.1016/j.talanta.2014.10.041] [PMID: 25618654]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Page: [24 - 38]
Pages: 15
DOI: 10.2174/1389557519666190617150518
Price: $65

Article Metrics

PDF: 22
HTML: 4
EPUB: 1
PRC: 1