Partners in Crime: NGF and BDNF in Visceral Dysfunction

Author(s): Ana Coelho, Raquel Oliveira, Tiago Antunes-Lopes, Célia Duarte Cruz*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject.

After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS).

More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken.

Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.

Keywords: NGF, BDNF, urinary bladder, urinary frequency, visceral pain, colon, plasticity, painful syndromes, neurotrophins, biomarkers, spinal cord injury.

[1]
Cohen, S.; Levi-Montalcini, R.; Hamburger, V. A nerve growth-stimulating factor isolated from Sarcom as 37 and 180. Proc. Natl. Acad. Sci. USA, 1954, 40(10), 1014-1018.
[http://dx.doi.org/10.1073/pnas.40.10.1014] [PMID: 16589582]
[2]
Levi-Montalcini, R.; Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool., 1951, 116(2), 321-361.
[http://dx.doi.org/10.1002/jez.1401160206] [PMID: 14824426]
[3]
Levi-Montalcini, R.; Meyer, H.; Hamburger, V. In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res., 1954, 14(1), 49-57.
[PMID: 13126933]
[4]
Huang, E.J.; Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[5]
Schinder, A.F.; Poo, M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci., 2000, 23(12), 639-645.
[http://dx.doi.org/10.1016/S0166-2236(00)01672-6] [PMID: 11137155]
[6]
Boyce, V.S.; Mendell, L.M. Neurotrophins and spinal circuit function. Front. Neural Circuits, 2014, 8, 59.
[http://dx.doi.org/10.3389/fncir.2014.00059] [PMID: 24926235]
[7]
Pezet, S.; McMahon, S.B. Neurotrophins: Mediators and modulators of pain. Annu. Rev. Neurosci., 2006, 29, 507-538.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112929] [PMID: 16776595]
[8]
Kashyap, M.P.; Roberts, C.; Waseem, M.; Tyagi, P. Drug targets in neurotrophin signaling in the central and peripheral nervous system. Mol. Neurobiol., 2018, 55(8), 6939-6955.
[http://dx.doi.org/10.1007/s12035-018-0885-3] [PMID: 29372544]
[9]
Chao, M.V.; Rajagopal, R.; Lee, F.S. Neurotrophin signalling in health and disease. Clin. Sci. (Lond.), 2006, 110(2), 167-173.
[http://dx.doi.org/10.1042/CS20050163] [PMID: 16411893]
[10]
Allen, S.J.; Dawbarn, D. Clinical relevance of the neurotrophins and their receptors. Clin. Sci. (Lond.), 2006, 110(2), 175-191.
[http://dx.doi.org/10.1042/CS20050161] [PMID: 16411894]
[11]
Skaper, S.D. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol. Disord. Drug Targets, 2008, 7(1), 46-62.
[http://dx.doi.org/10.2174/187152708783885174] [PMID: 18289031]
[12]
Pezet, S.; Malcangio, M.; McMahon, S.B. BDNF: a neuromodulator in nociceptive pathways? Brain Res. Brain Res. Rev., 2002, 40(1-3), 240-249.
[http://dx.doi.org/10.1016/S0165-0173(02)00206-0] [PMID: 12589922]
[13]
Merighi, A.; Salio, C.; Ghirri, A.; Lossi, L.; Ferrini, F.; Betelli, C.; Bardoni, R. BDNF as a pain modulator. Prog. Neurobiol., 2008, 85(3), 297-317.
[http://dx.doi.org/10.1016/j.pneurobio.2008.04.004] [PMID: 18514997]
[14]
Merighi, A.; Carmignoto, G.; Gobbo, S.; Lossi, L.; Salio, C.; Vergnano, A.M.; Zonta, M. Neurotrophins in spinal cord nociceptive pathways. In: Prog. Brain Res.,; , 2004; 146, pp. 291-321.
[http://dx.doi.org/10.1016/S0079-6123(03)46019-6] [PMID: 14699971]
[15]
Crowley, C.; Spencer, S.D.; Nishimura, M.C.; Chen, K.S.; Pitts-Meek, S.; Armanini, M.P.; Ling, L.H.; McMahon, S.B.; Shelton, D.L.; Levinson, A.D. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell, 1994, 76(6), 1001-1011.
[http://dx.doi.org/10.1016/0092-8674(94)90378-6] [PMID: 8137419]
[16]
Counts, S.E.; Mufson, E.J. The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J. Neuropathol. Exp. Neurol., 2005, 64(4), 263-272.
[http://dx.doi.org/10.1093/jnen/64.4.263] [PMID: 15835262]
[17]
Chen, K.S.; Nishimura, M.C.; Armanini, M.P.; Crowley, C.; Spencer, S.D.; Phillips, H.S. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J. Neurosci., 1997, 17(19), 7288-7296.
[http://dx.doi.org/10.1523/JNEUROSCI.17-19-07288.1997] [PMID: 9295375]
[18]
Glebova, N.O.; Ginty, D.D. Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J. Neurosci., 2004, 24(3), 743-751.
[http://dx.doi.org/10.1523/JNEUROSCI.4523-03.2004] [PMID: 14736860]
[19]
Chaldakov, G.N.; Tonchev, A.B.; Aloe, L. NGF and BDNF: from nerves to adipose tissue, from neurokines to metabokines. Riv. Psichiatr., 2009, 44(2), 79-87.
[PMID: 20066808]
[20]
Sornelli, F.; Fiore, M.; Chaldakov, G.N.; Aloe, L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen. Physiol. Biophys., 2009, 28(Spec No), 179-183.
[PMID: 19893098]
[21]
Barouch, R.; Appel, E.; Kazimirsky, G.; Brodie, C. Macrophages express neurotrophins and neurotrophin receptors. Regulation of nitric oxide production by NT-3. J. Neuroimmunol., 2001, 112(1-2), 72-77.
[http://dx.doi.org/10.1016/S0165-5728(00)00408-2] [PMID: 11108935]
[22]
Lommatzsch, M.; Quarcoo, D.; Schulte-Herbrüggen, O.; Weber, H.; Virchow, J.C.; Renz, H.; Braun, A. Neurotrophins in murine viscera: a dynamic pattern from birth to adulthood. Int. J. Dev. Neurosci., 2005, 23(6), 495-500.
[http://dx.doi.org/10.1016/j.ijdevneu.2005.05.009] [PMID: 15978771]
[23]
Steers, W.D.; Kolbeck, S.; Creedon, D.; Tuttle, J.B. Nerve growth factor in the urinary bladder of the adult regulates neuronal form and function. J. Clin. Invest., 1991, 88(5), 1709-1715.
[http://dx.doi.org/10.1172/JCI115488] [PMID: 1939656]
[24]
Tuttle, J.B.; Steers, W.D. Nerve growth factor responsiveness of cultured major pelvic ganglion neurons from the adult rat. Brain Res., 1992, 588(1), 29-40.
[http://dx.doi.org/10.1016/0006-8993(92)91341-B] [PMID: 1382805]
[25]
Tuttle, J.B.; Mackey, T.; Steers, W.D. NGF, bFGF and CNTF increase survival of major pelvic ganglion neurons cultured from the adult rat. Neurosci. Lett., 1994, 173(1-2), 94-98.
[http://dx.doi.org/10.1016/0304-3940(94)90157-0] [PMID: 7936432]
[26]
Tuttle, J.B.; Steers, W.D.; Albo, M.; Nataluk, E. Neural input regulates tissue NGF and growth of the adult rat urinary bladder. J. Auton. Nerv. Syst., 1994, 49(2), 147-158.
[http://dx.doi.org/10.1016/0165-1838(94)90134-1] [PMID: 7806767]
[27]
Tanner, R.; Chambers, P.; Khadra, M.H.; Gillespie, J.I. The production of nerve growth factor by human bladder smooth muscle cells in vivo and in vitro. BJU Int., 2000, 85(9), 1115-1119.
[http://dx.doi.org/10.1046/j.1464-410x.2000.00562.x] [PMID: 10848707]
[28]
Persson, K.; Sando, J.J.; Tuttle, J.B.; Steers, W.D. Protein kinase C in cyclic stretch-induced nerve growth factor production by urinary tract smooth muscle cells. Am. J. Physiol., 1995, 269(4 Pt 1), C1018-C1024.
[http://dx.doi.org/10.1152/ajpcell.1995.269.4.C1018] [PMID: 7485441]
[29]
Persson, K.; Steers, W.D.; Tuttle, J.B. Regulation of nerve growth factor secretion in smooth muscle cells cultured from rat bladder body, base and urethra. J. Urol., 1997, 157(5), 2000-2006.
[http://dx.doi.org/10.1016/S0022-5347(01)64918-8] [PMID: 9112580]
[30]
Clemow, D.B.; Steers, W.D.; Tuttle, J.B. Stretch-activated signaling of nerve growth factor secretion in bladder and vascular smooth muscle cells from hypertensive and hyperactive rats. J. Cell. Physiol., 2000, 183(3), 289-300.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200006)183:3<289:AID-JCP1>3.0.CO;2-6] [PMID: 10797303]
[31]
Lowe, E.M.; Anand, P.; Terenghi, G.; Williams-Chestnut, R.E.; Sinicropi, D.V.; Osborne, J.L. Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br. J. Urol., 1997, 79(4), 572-577.
[http://dx.doi.org/10.1046/j.1464-410X.1997.00097.x] [PMID: 9126085]
[32]
Guerios, S.D.; Wang, Z.Y.; Boldon, K.; Bushman, W.; Bjorling, D.E. Blockade of NGF and trk receptors inhibits increased peripheral mechanical sensitivity accompanying cystitis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(1), R111-R122.
[http://dx.doi.org/10.1152/ajpregu.00728.2007] [PMID: 18448607]
[33]
Teng, J.; Wang, Z.Y.; Bjorling, D.E. Estrogen-induced proliferation of urothelial cells is modulated by nerve growth factor. Am. J. Physiol. Renal Physiol., 2002, 282(6), F1075-F1083.
[http://dx.doi.org/10.1152/ajprenal.00215.2001] [PMID: 11997324]
[34]
Ochodnický, P.; Michel, M.B.; Butter, J.J.; Seth, J.; Panicker, J.N.; Michel, M.C. Bradykinin modulates spontaneous nerve growth factor production and stretch-induced ATP release in human urothelium. Pharmacol. Res., 2013, 70(1), 147-154.
[http://dx.doi.org/10.1016/j.phrs.2013.01.010] [PMID: 23376352]
[35]
Liang, C.C.; Tseng, L.H.; Ko, Y.S.; Lee, T.H. Expression of nerve growth factor immunoreactivity and messenger RNA in ischemic urinary bladder. Neurourol. Urodyn., 2010, 29(3), 512-516.
[PMID: 19618449]
[36]
Coelho, A.; Wolf-Johnston, A.S.; Shinde, S.; Cruz, C.D.; Cruz, F.; Avelino, A.; Birder, L.A. Urinary bladder inflammation induces changes in urothelial nerve growth factor and TRPV1 channels. Br. J. Pharmacol., 2015, 172(7), 1691-1699.
[http://dx.doi.org/10.1111/bph.12958] [PMID: 25297375]
[37]
Mingin, G.C.; Heppner, T.J.; Tykocki, N.R.; Erickson, C.S.; Vizzard, M.A.; Nelson, M.T. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, 309(6), R629-R638.
[http://dx.doi.org/10.1152/ajpregu.00013.2015] [PMID: 26224686]
[38]
Mingin, G.C.; Peterson, A.; Erickson, C.S.; Nelson, M.T.; Vizzard, M.A. Social stress induces changes in urinary bladder function, bladder NGF content, and generalized bladder inflammation in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 307(7), R893-R900.
[http://dx.doi.org/10.1152/ajpregu.00500.2013] [PMID: 25100077]
[39]
Merrill, L.; Malley, S.; Vizzard, M.A. Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 305(2), R147-R156.
[http://dx.doi.org/10.1152/ajpregu.00089.2013] [PMID: 23657640]
[40]
Murray, E.; Malley, S.E.; Qiao, L.Y.; Hu, V.Y.; Vizzard, M.A. Cyclophosphamide induced cystitis alters neurotrophin and receptor tyrosine kinase expression in pelvic ganglia and bladder. J. Urol., 2004, 172(6 Pt 1), 2434-2439.
[http://dx.doi.org/10.1097/01.ju.0000143549.29867.4e] [PMID: 15538286]
[41]
Klinger, M.B.; Girard, B.; Vizzard, M.A. p75NTR expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide-induced cystitis. J. Comp. Neurol., 2008, 507(3), 1379-1392.
[http://dx.doi.org/10.1002/cne.21627] [PMID: 18189308]
[42]
Klinger, M.B.; Vizzard, M.A. Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Am. J. Physiol. Renal Physiol., 2008, 295(6), F1778-F1789.
[http://dx.doi.org/10.1152/ajprenal.90501.2008] [PMID: 18842820]
[43]
Sasaki, K.; Chancellor, M.B.; Phelan, M.W.; Yokoyama, T.; Fraser, M.O.; Seki, S.; Kubo, K.; Kumon, H.; Groat, W.C.; Yoshimura, N. Diabetic cystopathy correlates with a long-term decrease in nerve growth factor levels in the bladder and lumbosacral dorsal root Ganglia. J. Urol., 2002, 168(3), 1259-1264.
[http://dx.doi.org/10.1016/S0022-5347(05)64636-8] [PMID: 12187278]
[44]
Liu, H.T.; Tyagi, P.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor level is increased in patients with interstitial cystitis/bladder pain syndrome and decreased in responders to treatment. BJU Int., 2009, 104(10), 1476-1481.
[http://dx.doi.org/10.1111/j.1464-410X.2009.08675.x] [PMID: 19522864]
[45]
Kim, J.C.; Park, E.Y.; Seo, S.I.; Park, Y.H.; Hwang, T.K. Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J. Urol., 2006, 175(5), 1773-1776.
[http://dx.doi.org/10.1016/S0022-5347(05)00992-4] [PMID: 16600756]
[46]
Liu, H.T.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor level could be a biomarker in the differential diagnosis of mixed urinary incontinence in women. BJU Int., 2008, 102(10), 1440-1444.
[http://dx.doi.org/10.1111/j.1464-410X.2008.07757.x] [PMID: 18489524]
[47]
Antunes-Lopes, T.; Pinto, R.; Barros, S.C.; Botelho, F.; Silva, C.M.; Cruz, C.D.; Cruz, F. Urinary neurotrophic factors in healthy individuals and patients with overactive bladder. J. Urol., 2013, 189(1), 359-365.
[http://dx.doi.org/10.1016/j.juro.2012.08.187] [PMID: 23174241]
[48]
Chen, W.; Ye, D.Y.; Han, D.J.; Fu, G.Q.; Zeng, X.; Lin, W.; Liang, Y. Elevated level of nerve growth factor in the bladder pain syndrome/interstitial cystitis: a meta-analysis. Springerplus, 2016, 5(1), 1072.
[http://dx.doi.org/10.1186/s40064-016-2719-y] [PMID: 27462520]
[49]
Dmitrieva, N.; McMahon, S.B. Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain, 1996, 66(1), 87-97.
[http://dx.doi.org/10.1016/0304-3959(96)02993-4] [PMID: 8857635]
[50]
Dmitrieva, N.; Shelton, D.; Rice, A.S.; McMahon, S.B. The role of nerve growth factor in a model of visceral inflammation. Neuroscience, 1997, 78(2), 449-459.
[http://dx.doi.org/10.1016/S0306-4522(96)00575-1] [PMID: 9145801]
[51]
Zvara, P.; Vizzard, M.A. Exogenous overexpression of nerve growth factor in the urinary bladder produces bladder overactivity and altered micturition circuitry in the lumbosacral spinal cord. BMC Physiol., 2007, 7, 9.
[http://dx.doi.org/10.1186/1472-6793-7-9] [PMID: 17725832]
[52]
Lamb, K.; Gebhart, G.F.; Bielefeldt, K. Increased nerve growth factor expression triggers bladder overactivity. J. Pain, 2004, 5(3), 150-156.
[http://dx.doi.org/10.1016/j.jpain.2004.01.001] [PMID: 15106127]
[53]
Yoshimura, N.; Bennett, N.E.; Hayashi, Y.; Ogawa, T.; Nishizawa, O.; Chancellor, M.B.; de Groat, W.C.; Seki, S. Bladder overactivity and hyperexcitability of bladder afferent neurons after intrathecal delivery of nerve growth factor in rats. J. Neurosci., 2006, 26(42), 10847-10855.
[http://dx.doi.org/10.1523/JNEUROSCI.3023-06.2006] [PMID: 17050722]
[54]
Steers, W.D.; Tuttle, J.B. Mechanisms of Disease: the role of nerve growth factor in the pathophysiology of bladder disorders. Nat. Clin. Pract. Urol., 2006, 3(2), 101-110.
[http://dx.doi.org/10.1038/ncpuro0408] [PMID: 16470209]
[55]
Ochodnický, P.; Cruz, C.D.; Yoshimura, N.; Michel, M.C. Nerve growth factor in bladder dysfunction: contributing factor, biomarker, and therapeutic target. Neurourol. Urodyn., 2011, 30(7), 1227-1241.
[http://dx.doi.org/10.1002/nau.21022] [PMID: 21520250]
[56]
Cruz, C.D. Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol. Urodyn., 2014, 33(1), 39-45.
[http://dx.doi.org/10.1002/nau.22438] [PMID: 23775873]
[57]
Chung, C.W.; Zhang, Q.L.; Qiao, L.Y. Endogenous nerve growth factor regulates collagen expression and bladder hypertrophy through Akt and MAPK pathways during cystitis. J. Biol. Chem., 2010, 285(6), 4206-4212.
[http://dx.doi.org/10.1074/jbc.M109.040444] [PMID: 19996110]
[58]
Girard, B.M.; Tompkins, J.D.; Parsons, R.L.; May, V.; Vizzard, M.A. Effects of CYP-induced cystitis on PACAP/VIP and receptor expression in micturition pathways and bladder function in mice with overexpression of NGF in urothelium. J. Mol. Neurosci., 2012, 48(3), 730-743.
[http://dx.doi.org/10.1007/s12031-012-9834-1] [PMID: 22700375]
[59]
Guerios, S.D.; Wang, Z.Y.; Bjorling, D.E. Nerve growth factor mediates peripheral mechanical hypersensitivity that accompanies experimental cystitis in mice. Neurosci. Lett., 2006, 392(3), 193-197.
[http://dx.doi.org/10.1016/j.neulet.2005.09.026] [PMID: 16203088]
[60]
Cruz, C.D.; Avelino, A.; McMahon, S.B.; Cruz, F. Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. Eur. J. Neurosci., 2005, 21(3), 773-781.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03893.x] [PMID: 15733095]
[61]
Kashyap, M.; Pore, S.; Yoshimura, N.; Tyagi, P. Constitutive expression Of NGF And P75(NTR) affected by bladder distension and NGF antisense treatment. Life Sci., 2016, 148, 93-98.
[http://dx.doi.org/10.1016/j.lfs.2016.02.009] [PMID: 26855002]
[62]
Saban, M.R.; Saban, R.; Hammond, T.G.; Haak-Frendscho, M.; Steinberg, H.; Tengowski, M.W.; Bjorling, D.E. LPS-sensory peptide communication in experimental cystitis. Am. J. Physiol. Renal Physiol., 2002, 282(2), F202-F210.
[http://dx.doi.org/10.1152/ajprenal.0163.2001] [PMID: 11788433]
[63]
Kashyap, M.; Kawamorita, N.; Tyagi, V.; Sugino, Y.; Chancellor, M.; Yoshimura, N.; Tyagi, P. Down-regulation of nerve growth factor expression in the bladder by antisense oligonucleotides as new treatment for overactive bladder. J. Urol., 2013, 190(2), 757-764.
[http://dx.doi.org/10.1016/j.juro.2013.02.090] [PMID: 23454160]
[64]
Oddiah, D.; Anand, P.; McMahon, S.B.; Rattray, M. Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder. Neuroreport, 1998, 9(7), 1455-1458.
[http://dx.doi.org/10.1097/00001756-199805110-00038] [PMID: 9631447]
[65]
Clemow, D.B.; McCarty, R.; Steers, W.D.; Tuttle, J.B. Efferent and afferent neuronal hypertrophy associated with micturition pathways in spontaneously hypertensive rats. Neurourol. Urodyn., 1997, 16(4), 293-303.
[http://dx.doi.org/10.1002/(SICI)1520-6777(1997)16:4<293:AID-NAU5>3.0.CO;2-9] [PMID: 9220478]
[66]
Kim, J.C.; Kim, D.B.; Seo, S.I.; Park, Y.H.; Hwang, T.K. Nerve growth factor and vanilloid receptor expression, and detrusor instability, after relieving bladder outlet obstruction in rats. BJU Int., 2004, 94(6), 915-918.
[http://dx.doi.org/10.1111/j.1464-4096.2003.05059.x] [PMID: 15476535]
[67]
Seki, S.; Sasaki, K.; Fraser, M.O.; Igawa, Y.; Nishizawa, O.; Chancellor, M.B.; de Groat, W.C.; Yoshimura, N. Immunoneutralization of nerve growth factor in lumbosacral spinal cord reduces bladder hyperreflexia in spinal cord injured rats. J. Urol., 2002, 168(5), 2269-2274.
[http://dx.doi.org/10.1016/S0022-5347(05)64369-8] [PMID: 12394773]
[68]
Seki, S.; Sasaki, K.; Igawa, Y.; Nishizawa, O.; Chancellor, M.B.; De Groat, W.C.; Yoshimura, N. Suppression of detrusor-sphincter dyssynergia by immunoneutralization of nerve growth factor in lumbosacral spinal cord in spinal cord injured rats. J. Urol., 2004, 171(1), 478-482.
[http://dx.doi.org/10.1097/01.ju.0000088340.26588.74] [PMID: 14665959]
[69]
Vizzard, M.A. Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp. Neurol., 2000, 161(1), 273-284.
[http://dx.doi.org/10.1006/exnr.1999.7254] [PMID: 10683293]
[70]
Steers, W.D.; Creedon, D.J.; Tuttle, J.B. Immunity to nerve growth factor prevents afferent plasticity following urinary bladder hypertrophy. J. Urol., 1996, 155(1), 379-385.
[http://dx.doi.org/10.1016/S0022-5347(01)66664-3] [PMID: 7490891]
[71]
Hu, V.Y.; Zvara, P.; Dattilio, A.; Redman, T.L.; Allen, S.J.; Dawbarn, D.; Stroemer, R.P.; Vizzard, M.A. Decrease in bladder overactivity with REN1820 in rats with cyclophosphamide induced cystitis. J. Urol., 2005, 173(3), 1016-1021.
[http://dx.doi.org/10.1097/01.ju.0000155170.15023.e5] [PMID: 15711368]
[72]
Tyagi, P.; Banerjee, R.; Basu, S.; Yoshimura, N.; Chancellor, M.; Huang, L. Intravesical antisense therapy for cystitis using TAT-peptide nucleic acid conjugates. Mol. Pharm., 2006, 3(4), 398-406.
[http://dx.doi.org/10.1021/mp050093x] [PMID: 16889433]
[73]
Frias, B.; Charrua, A.; Pinto, R.; Allen, S.; Dawbarn, D.; Cruz, F.; Cruz, C.D. Intrathecal blockade of Trk receptors and neurotrophin sequestration reduces pain and urinary frequency in an animal model of chronic bladder inflammation. Neurourol. Urodyn., 2009, 28(7), 708-708.
[74]
Qiao, L.; Vizzard, M.A. Up-regulation of tyrosine kinase (Trka, Trkb) receptor expression and phosphorylation in lumbosacral dorsal root ganglia after chronic spinal cord (T8-T10) injury. J. Comp. Neurol., 2002, 449(3), 217-230.
[http://dx.doi.org/10.1002/cne.10283] [PMID: 12115676]
[75]
Qiao, L.Y.; Vizzard, M.A. Spinal cord injury-induced expression of TrkA, TrkB, phosphorylated CREB, and c-Jun in rat lumbosacral dorsal root ganglia. J. Comp. Neurol., 2005, 482(2), 142-154.
[http://dx.doi.org/10.1002/cne.20394] [PMID: 15611995]
[76]
Wakabayashi, Y.; Maeda, T.; Kwok, Y.N. Increase of p75 immunoreactivity in rat urinary bladder following inflammation. Neuroreport, 1996, 7(6), 1141-1144.
[http://dx.doi.org/10.1097/00001756-199604260-00008] [PMID: 8817519]
[77]
Schnegelsberg, B.; Sun, T.T.; Cain, G.; Bhattacharya, A.; Nunn, P.A.; Ford, A.P.; Vizzard, M.A.; Cockayne, D.A. Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298(3), R534-R547.
[http://dx.doi.org/10.1152/ajpregu.00367.2009] [PMID: 20032263]
[78]
Girard, B.M.; Malley, S.E.; Braas, K.M.; May, V.; Vizzard, M.A. PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J. Mol. Neurosci., 2010, 42(3), 378-389.
[http://dx.doi.org/10.1007/s12031-010-9384-3] [PMID: 20449688]
[79]
Girard, B.M.; Malley, S.E.; Vizzard, M.A. Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium. Am. J. Physiol. Renal Physiol., 2011, 300(2), F345-F355.
[http://dx.doi.org/10.1152/ajprenal.00515.2010] [PMID: 21048026]
[80]
Girard, B.M.; Merrill, L.; Malley, S.; Vizzard, M.A. Increased TRPV4 expression in urinary bladder and lumbosacral dorsal root ganglia in mice with chronic overexpression of NGF in urothelium. J. Mol. Neurosci., 2013, 51(2), 602-614.
[http://dx.doi.org/10.1007/s12031-013-0033-5] [PMID: 23690258]
[81]
Thompson, S.W.; Bennett, D.L.; Kerr, B.J.; Bradbury, E.J.; McMahon, S.B. Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc. Natl. Acad. Sci. USA, 1999, 96(14), 7714-7718.
[http://dx.doi.org/10.1073/pnas.96.14.7714] [PMID: 10393886]
[82]
Michael, G.J.; Averill, S.; Nitkunan, A.; Rattray, M.; Bennett, D.L.; Yan, Q.; Priestley, J.V. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J. Neurosci., 1997, 17(21), 8476-8490.
[http://dx.doi.org/10.1523/JNEUROSCI.17-21-08476.1997] [PMID: 9334420]
[83]
Elliott, J.; MacLellan, A.; Saini, J.K.; Chan, J.; Scott, S.; Kawaja, M.D. Transgenic mice expressing nerve growth factor in smooth muscle cells. Neuroreport, 2009, 20(3), 223-227.
[http://dx.doi.org/10.1097/WNR.0b013e32831add70] [PMID: 19444944]
[84]
Petrie, C.N.; Smithson, L.J.; Crotty, A.M.; Michalski, B.; Fahnestock, M.; Kawaja, M.D. Overexpression of nerve growth factor by murine smooth muscle cells: role of the p75 neurotrophin receptor on sympathetic and sensory sprouting. J. Comp. Neurol., 2013, 521(11), 2621-2643.
[http://dx.doi.org/10.1002/cne.23302] [PMID: 23322532]
[85]
Floyd, K.; McMahon, S.B.; Morrison, J.F. Inhibition of the micturition reflex by stimulation of pelvic nerve afferents from the colon proceedings. J. Physiol., 1978, 284, 39-40.
[PMID: 731551]
[86]
Vilensky, J.A.; Bell, D.R.; Gilman, S. “On the physiology of micturition” by Denny-Brown and Robertson: a classic paper revisited. Urology, 2004, 64(1), 182-186.
[http://dx.doi.org/10.1016/S0090-4295(03)00341-8] [PMID: 15245967]
[87]
Buffington, C.A. Comorbidity of interstitial cystitis with other unexplained clinical conditions. J. Urol., 2004, 172(4 Pt 1), 1242-1248.
[http://dx.doi.org/10.1097/01.ju.0000137953.49304.6c] [PMID: 15371816]
[88]
Chelimsky, G.; Heller, E.; Buffington, C.A.; Rackley, R.; Zhang, D.; Chelimsky, T. Co-morbidities of interstitial cystitis. Front. Neurosci., 2012, 6, 114.
[http://dx.doi.org/10.3389/fnins.2012.00114] [PMID: 22907988]
[89]
Whorwell, P.J.; McCallum, M.; Creed, F.H.; Roberts, C.T. Non-colonic features of irritable bowel syndrome. Gut, 1986, 27(1), 37-40.
[http://dx.doi.org/10.1136/gut.27.1.37] [PMID: 3949235]
[90]
Brumovsky, P.R.; Gebhart, G.F. Visceral organ cross-sensitization - an integrated perspective. Auton. Neurosci., 2010, 153(1-2), 106-115.
[http://dx.doi.org/10.1016/j.autneu.2009.07.006] [PMID: 19679518]
[91]
Christianson, J.A.; Liang, R.; Ustinova, E.E.; Davis, B.M.; Fraser, M.O.; Pezzone, M.A. Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain, 2007, 128(3), 235-243.
[http://dx.doi.org/10.1016/j.pain.2006.09.023] [PMID: 17070995]
[92]
Pezzone, M.A.; Liang, R.; Fraser, M.O. A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders. Gastroenterology, 2005, 128(7), 1953-1964.
[http://dx.doi.org/10.1053/j.gastro.2005.03.008] [PMID: 15940629]
[93]
Bielefeldt, K.; Lamb, K.; Gebhart, G.F. Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 291(4), G658-G665.
[http://dx.doi.org/10.1152/ajpgi.00585.2005] [PMID: 16500917]
[94]
Lamb, K.; Zhong, F.; Gebhart, G.F.; Bielefeldt, K. Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(3), G451-G457.
[http://dx.doi.org/10.1152/ajpgi.00353.2005] [PMID: 16195421]
[95]
Petrie, C.N.; Armitage, M.N.; Kawaja, M.D. Myenteric expression of nerve growth factor and the p75 neurotrophin receptor regulate axonal remodeling as a consequence of colonic inflammation in mice. Exp. Neurol., 2015, 271, 228-240.
[http://dx.doi.org/10.1016/j.expneurol.2015.06.010] [PMID: 26073142]
[96]
Dothel, G.; Barbaro, M.R.; Boudin, H.; Vasina, V.; Cremon, C.; Gargano, L.; Bellacosa, L.; De Giorgio, R.; Le Berre-Scoul, C.; Aubert, P.; Neunlist, M.; De Ponti, F.; Stanghellini, V.; Barbara, G. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology, 2015, 148(5), 1002-1011.
[http://dx.doi.org/10.1053/j.gastro.2015.01.042]
[97]
Willot, S.; Gauthier, C.; Patey, N.; Faure, C. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil., 2012, 24(8), 734-739.
[http://dx.doi.org/10.1111/j.1365-2982.2012.01933.x]
[98]
di Mola, F.F.; Friess, H.; Zhu, Z.W.; Koliopanos, A.; Bley, T.; Di Sebastiano, P.; Innocenti, P.; Zimmermann, A.; Büchler, M.W. Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut, 2000, 46(5), 670-679.
[http://dx.doi.org/10.1136/gut.46.5.670] [PMID: 10764711]
[99]
Barada, K.A.; Mourad, F.H.; Sawah, S.I.; Khoury, C.; Safieh-Garabedian, B.; Nassar, C.F.; Tawil, A.; Jurjus, A.; Saadé, N.E. Up-regulation of nerve growth factor and interleukin-10 in inflamed and non-inflamed intestinal segments in rats with experimental colitis. Cytokine, 2007, 37(3), 236-245.
[http://dx.doi.org/10.1016/j.cyto.2007.04.005] [PMID: 17517520]
[100]
Stanzel, R.D.; Lourenssen, S.; Blennerhassett, M.G. Inflammation causes expression of NGF in epithelial cells of the rat colon. Exp. Neurol., 2008, 211(1), 203-213.
[http://dx.doi.org/10.1016/j.expneurol.2008.01.028] [PMID: 18377896]
[101]
Qiao, L.Y.; Grider, J.R. Colitis elicits differential changes in the expression levels of receptor tyrosine kinase TrkA and TrkB in colonic afferent neurons: a possible involvement of axonal transport. Pain, 2010, 151(1), 117-127.
[http://dx.doi.org/10.1016/j.pain.2010.06.029] [PMID: 20638179]
[102]
Delafoy, L.; Gelot, A.; Ardid, D.; Eschalier, A.; Bertrand, C.
Doherty, A.M.; Diop, L. Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut, 2006, 55(7), 940-945.
[http://dx.doi.org/10.1136/gut.2005.064063] [PMID: 16401692]
[103]
Delafoy, L.; Raymond, F.; Doherty, A.M.; Eschalier, A.; Diop, L. Role of nerve growth factor in the trinitrobenzene sulfonic acid-induced colonic hypersensitivity. Pain, 2003, 105(3), 489-497.
[http://dx.doi.org/10.1016/S0304-3959(03)00266-5] [PMID: 14527709]
[104]
Chan, C.L.; Facer, P.; Davis, J.B.; Smith, G.D.; Egerton, J.; Bountra, C.; Williams, N.S.; Anand, P. Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet, 2003, 361(9355), 385-391.
[http://dx.doi.org/10.1016/S0140-6736(03)12392-6] [PMID: 12573376]
[105]
Holzer, P. TRPV1: a new target for treatment of visceral pain in IBS? Gut, 2008, 57(7), 882-884.
[http://dx.doi.org/10.1136/gut.2008.149724] [PMID: 18559382]
[106]
Yu, S.J.; Grider, J.R.; Gulick, M.A.; Xia, C.M.; Shen, S.; Qiao, L.Y. Up-regulation of brain-derived neurotrophic factor is regulated by extracellular signal-regulated protein kinase 5 and by nerve growth factor retrograde signaling in colonic afferent neurons in colitis. Exp. Neurol., 2012, 238(2), 209-217.
[http://dx.doi.org/10.1016/j.expneurol.2012.08.007] [PMID: 22921460]
[107]
Qiao, L.Y.; Grider, J.R. Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp. Neurol., 2007, 204(2), 667-679.
[http://dx.doi.org/10.1016/j.expneurol.2006.12.024] [PMID: 17303123]
[108]
Qiao, L.Y.; Gulick, M.A.; Bowers, J.; Kuemmerle, J.F.; Grider, J.R. Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol. Motil., 2008, 20(8), 928-938.
[http://dx.doi.org/10.1111/j.1365-2982.2008.01119.x] [PMID: 18373519]
[109]
Yang, J.; Yu, Y.; Yu, H.; Zuo, X.; Liu, C.; Gao, L.; Chen, Z.Y.; Li, Y. The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut. Eur. J. Pain, 2010, 14(6), 574-579.
[http://dx.doi.org/10.1016/j.ejpain.2009.10.007] [PMID: 19932037]
[110]
Yu, Y.B.; Zuo, X.L.; Zhao, Q.J.; Chen, F.X.; Yang, J.; Dong, Y.Y.; Wang, P.; Li, Y.Q. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut, 2012, 61(5), 685-694.
[http://dx.doi.org/10.1136/gutjnl-2011-300265] [PMID: 21997550]
[111]
Matricon, J.; Muller, E.; Accarie, A.; Meleine, M.; Etienne, M.; Voilley, N.; Busserolles, J.; Eschalier, A.; Lazdunski, M.; Bourdu, S.; Gelot, A.; Ardid, D. Peripheral contribution of NGF and ASIC1a to colonic hypersensitivity in a rat model of irritable bowel syndrome. Neurogastroenterol. Motil., 2013, 25(11), e740-e754.
[http://dx.doi.org/10.1111/nmo.12199] [PMID: 23902154]
[112]
Yoshioka, K.; Tanahashi, M.; Takeda, M.; Masuda, N. Induction of Bladder Overactivity by Nerve Growth Factor in Testes in Rats: Possible Neural Crosstalk Between the Testes and Urinary Bladder. Low. Urin. Tract Symptoms, 2016, 8(1), 62-67.
[http://dx.doi.org/10.1111/luts.12075] [PMID: 26789545]
[113]
Miller, L.J.; Fischer, K.A.; Goralnick, S.J.; Litt, M.; Burleson, J.A.; Albertsen, P.; Kreutzer, D.L. Nerve growth factor and chronic prostatitis/chronic pelvic pain syndrome. Urology, 2002, 59(4), 603-608.
[http://dx.doi.org/10.1016/S0090-4295(01)01597-7] [PMID: 11927336]
[114]
Watanabe, T.; Inoue, M.; Sasaki, K.; Araki, M.; Uehara, S.; Monden, K.; Saika, T.; Nasu, Y.; Kumon, H.; Chancellor, M.B. Nerve growth factor level in the prostatic fluid of patients with chronic prostatitis/chronic pelvic pain syndrome is correlated with symptom severity and response to treatment. BJU Int., 2011, 108(2), 248-251.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09716.x] [PMID: 20883485]
[115]
Schwartz, E.S.; La, J.H.; Young, E.E.; Feng, B.; Joyce, S.; Gebhart, G.F. Chronic prostatitis induces urinary bladder hypersensitivity and sensitizes bladder afferents in the mouse. J. Urol., 2016, 196(3), 892-901.
[http://dx.doi.org/10.1016/j.juro.2016.03.077]
[116]
Schwartz, E.S.; Xie, A.; La, J.H.; Gebhart, G.F. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis. Pain, 2015, 156(8), 1537-1544.
[http://dx.doi.org/10.1097/j.pain.0000000000000201] [PMID: 25915147]
[117]
Anaf, V.; Simon, P.; El Nakadi, I.; Fayt, I.; Simonart, T.; Buxant, F.; Noel, J.C. Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. Hum. Reprod., 2002, 17(7), 1895-1900.
[http://dx.doi.org/10.1093/humrep/17.7.1895] [PMID: 12093857]
[118]
Tokushige, N.; Markham, R.; Russell, P.; Fraser, I.S. Nerve fibres in peritoneal endometriosis. Hum. Reprod., 2006, 21(11), 3001-3007.
[http://dx.doi.org/10.1093/humrep/del260] [PMID: 16950827]
[119]
Wang, G.; Tokushige, N.; Markham, R.; Fraser, I.S. Rich innervation of deep infiltrating endometriosis. Hum. Reprod., 2009, 24(4), 827-834.
[http://dx.doi.org/10.1093/humrep/den464] [PMID: 19151028]
[120]
Choi, Y.S.; Cho, S.; Lim, K.J.; Jeon, Y.E.; Yang, H.I.; Lee, K.E.; Heena, K.; Seo, S.K.; Kim, H.Y.; Lee, B.S. Effects of LNG-IUS on nerve growth factor and its receptors expression in patients with adenomyosis. Growth Factors, 2010, 28(6), 452-460.
[http://dx.doi.org/10.3109/08977194.2010.511619] [PMID: 20854189]
[121]
Tanmahasamut, P.; Rattanachaiyanont, M.; Angsuwathana, S.; Techatraisak, K.; Indhavivadhana, S.; Leerasiri, P. Postoperative levonorgestrel-releasing intrauterine system for pelvic endometriosis-related pain: a randomized controlled trial. Obstet. Gynecol., 2012, 119(3), 519-526.
[http://dx.doi.org/10.1097/AOG.0b013e31824264c3] [PMID: 22314873]
[122]
Barcena de Arellano, M.L.; Arnold, J.; Vercellino, F.; Chiantera, V.; Schneider, A.; Mechsner, S. Overexpression of nerve growth factor in peritoneal fluid from women with endometriosis may promote neurite outgrowth in endometriotic lesions. Fertil. Steril., 2011, 95(3), 1123-1126.
[http://dx.doi.org/10.1016/j.fertnstert.2010.10.023] [PMID: 21047631]
[123]
Barcena de Arellano, M.L.; Arnold, J.; Lang, H.; Vercellino, G.F.; Chiantera, V.; Schneider, A.; Mechsner, S. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine, 2013, 62(2), 253-261.
[http://dx.doi.org/10.1016/j.cyto.2013.03.003] [PMID: 23545214]
[124]
McKinnon, B.; Bersinger, N.A.; Wotzkow, C.; Mueller, M.D. Endometriosis-associated nerve fibers, peritoneal fluid cytokine concentrations, and pain in endometriotic lesions from different locations. Fertil. Steril., 2012, 97(2), 373-380.
[http://dx.doi.org/10.1016/j.fertnstert.2011.11.011] [PMID: 22154765]
[125]
Medina, M.G.; Lebovic, D.I. Endometriosis-associated nerve fibers and pain. Acta Obstet. Gynecol. Scand., 2009, 88(9), 968-975.
[http://dx.doi.org/10.1080/00016340903176826] [PMID: 19657753]
[126]
Li, Y.; Zhang, S.F.; Zou, S.E.; Xia, X.; Bao, L. Accumulation of nerve growth factor and its receptors in the uterus and dorsal root ganglia in a mouse model of adenomyosis. Reprod. Biol. Endocrinol., 2011, 9, 30.
[http://dx.doi.org/10.1186/1477-7827-9-30] [PMID: 21385399]
[127]
Chen, Y.; Li, D.; Zhang, Z.; Takushige, N.; Kong, B.H.; Wang, G.Y. Effect of siRNA against β-NGF on nerve fibers of a rat model with endometriosis. Reprod. Sci., 2014, 21(3), 329-339.
[http://dx.doi.org/10.1177/1933719113497279] [PMID: 23885099]
[128]
Lane, N.E.; Schnitzer, T.J.; Birbara, C.A.; Mokhtarani, M.; Shelton, D.L.; Smith, M.D.; Brown, M.T. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med., 2010, 363(16), 1521-1531.
[http://dx.doi.org/10.1056/NEJMoa0901510] [PMID: 20942668]
[129]
Brown, M.T.; Murphy, F.T.; Radin, D.M.; Davignon, I.; Smith, M.D.; West, C.R. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J. Pain, 2012, 13(8), 790-798.
[http://dx.doi.org/10.1016/j.jpain.2012.05.006] [PMID: 22784777]
[130]
Evans, R.J.; Moldwin, R.M.; Cossons, N.; Darekar, A.; Mills, I.W.; Scholfield, D. Proof of concept trial of tanezumab for the treatment of symptoms associated with interstitial cystitis. J. Urol., 2011, 185(5), 1716-1721.
[http://dx.doi.org/10.1016/j.juro.2010.12.088] [PMID: 21420111]
[131]
Nickel, J.C.; Mills, I.W.; Crook, T.J.; Jorga, A.; Smith, M.D.; Atkinson, G.; Krieger, J.N. Tanezumab reduces pain in women with interstitial cystitis/bladder pain syndrome and patients with Nonurological Associated Somatic Syndromes. J. Urol., 2015, 195(4 Pt 1), 942-948.
[PMID: 26576710]
[132]
Zweifel, L.S.; Kuruvilla, R.; Ginty, D.D. Functions and mechanisms of retrograde neurotrophin signalling. Nat. Rev. Neurosci., 2005, 6(8), 615-625.
[http://dx.doi.org/10.1038/nrn1727] [PMID: 16062170]
[133]
Yamamoto, M.; Sobue, G.; Yamamoto, K.; Terao, S.; Mitsuma, T. Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75NGFR, trkA, trkB, and trkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem. Res., 1996, 21(8), 929-938.
[http://dx.doi.org/10.1007/BF02532343] [PMID: 8895847]
[134]
Qiao, L.Y.; Shen, S.; Liu, M.; Xia, C.; Kay, J.C.; Zhang, Q.L. Inflammation and activity augment brain-derived neurotrophic factor peripheral release. Neuroscience, 2016, 318, 114-121.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.018] [PMID: 26794594]
[135]
Borst, J.M.; Frings-Dresen, M.H.; Sluiter, J.K. Prevalence and incidence of mental health problems among Dutch medical students and the study-related and personal risk factors: a longitudinal study. Int. J. Adolesc. Med. Health, 2015, 28(4), 349-355.
[PMID: 26234948]
[136]
Uchida, M.; Okuyama, T.; Ito, Y.; Nakaguchi, T.; Miyazaki, M.; Sakamoto, M.; Kamiya, T.; Sato, S.; Takeyama, H.; Joh, T.; Meagher, D.; Akechi, T. Prevalence, course and factors associated with delirium in elderly patients with advanced cancer: a longitudinal observational study. Jpn. J. Clin. Oncol., 2015, 45(10), 934-940.
[http://dx.doi.org/10.1093/jjco/hyv100] [PMID: 26185141]
[137]
Zhou, X.F.; Rush, R.A. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience, 1996, 74(4), 945-953.
[http://dx.doi.org/10.1016/0306-4522(96)00237-0] [PMID: 8895863]
[138]
Bardoni, R.; Ghirri, A.; Salio, C.; Prandini, M.; Merighi, A. BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats. Dev. Neurobiol., 2007, 67(7), 960-975.
[http://dx.doi.org/10.1002/dneu.20401] [PMID: 17506495]
[139]
Salio, C.; Averill, S.; Priestley, J.V.; Merighi, A. Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Dev. Neurobiol., 2007, 67(3), 326-338.
[http://dx.doi.org/10.1002/dneu.20358] [PMID: 17443791]
[140]
Li, W.P.; Xian, C.; Rush, R.A.; Zhou, X.F. Upregulation of brain-derived neurotrophic factor and neuropeptide Y in the dorsal ascending sensory pathway following sciatic nerve injury in rat. Neurosci. Lett., 1999, 260(1), 49-52.
[http://dx.doi.org/10.1016/S0304-3940(98)00958-6] [PMID: 10027697]
[141]
Derrett, S.; Wilson, S.; Samaranayaka, A.; Langley, J.; Wyeth, E.; Ameratunga, S.; Lilley, R.; Davie, G.; Mauiliu, M. Prevalence and predictors of disability 24-months after injury for hospitalised and non-hospitalised participants: results from a longitudinal cohort study in New Zealand. PLoS One, 2013, 8(11)e80194
[http://dx.doi.org/10.1371/journal.pone.0080194] [PMID: 24278258]
[142]
Lommatzsch, M.; Braun, A.; Renz, H. Neurotrophins in allergic airway dysfunction: what the mouse model is teaching us. Ann. N. Y. Acad. Sci., 2003, 992, 241-249.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb03154.x] [PMID: 12794063]
[143]
Ernfors, P.; Lee, K.F.; Jaenisch, R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature, 1994, 368(6467), 147-150.
[http://dx.doi.org/10.1038/368147a0] [PMID: 8139657]
[144]
MacQueen, G.M.; Ramakrishnan, K.; Croll, S.D.; Siuciak, J.A.; Yu, G.; Young, L.T.; Fahnestock, M. Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav. Neurosci., 2001, 115(5), 1145-1153.
[http://dx.doi.org/10.1037/0735-7044.115.5.1145] [PMID: 11584927]
[145]
Korte, M.; Carroll, P.; Wolf, E.; Brem, G.; Thoenen, H.; Bonhoeffer, T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8856-8860.
[http://dx.doi.org/10.1073/pnas.92.19.8856] [PMID: 7568031]
[146]
Song, Q.X.; Chermansky, C.J.; Birder, L.A.; Li, L.; Damaser, M.S. Brain-derived neurotrophic factor in urinary continence and incontinence. Nat. Rev. Urol., 2014, 11(10), 579-588.
[http://dx.doi.org/10.1038/nrurol.2014.244] [PMID: 25224451]
[147]
Ochodnicky, P.; Cruz, C.D.; Yoshimura, N.; Cruz, F. Neurotrophins as regulators of urinary bladder function. Nat. Rev. Urol., 2012, 9(11), 628-637.
[http://dx.doi.org/10.1038/nrurol.2012.178] [PMID: 23045265]
[148]
Huang, Y.T.; Lai, P.C.; Wu, C.C.; Hsu, S.H.; Cheng, C.C.; Lan, Y.F.; Chiu, T.H. BDNF mediated TrkB activation is a survival signal for transitional cell carcinoma cells. Int. J. Oncol., 2010, 36(6), 1469-1476.
[PMID: 20428771]
[149]
Lai, P.C.; Chiu, T.H.; Huang, Y.T. Overexpression of BDNF and TrkB in human bladder cancer specimens. Oncol. Rep., 2010, 24(5), 1265-1270.
[PMID: 20878119]
[150]
Jiang, Y.H.; Liu, H.T.; Kuo, H.C. Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic acid. PLoS One, 2014, 9(3)e91609
[http://dx.doi.org/10.1371/journal.pone.0091609] [PMID: 24614892]
[151]
Wang, L.W.; Han, X.M.; Chen, C.H.; Ma, Y.; Hai, B. Urinary brain-derived neurotrophic factor: a potential biomarker for objective diagnosis of overactive bladder. Int. Urol. Nephrol., 2014, 46(2), 341-347.
[http://dx.doi.org/10.1007/s11255-013-0540-x] [PMID: 23982767]
[152]
Vizzard, M.A.; Wu, K.H.; Jewett, I.T. Developmental expression of urinary bladder neurotrophic factor mRNA and protein in the neonatal rat. Brain Res. Dev. Brain Res., 2000, 119(2), 217-224.
[http://dx.doi.org/10.1016/S0165-3806(99)00174-1] [PMID: 10675771]
[153]
Kawakami, T.; Wakabayashi, Y.; Isono, T.; Aimi, Y.; Okada, Y. Expression of neurotrophin messenger RNAs during rat urinary bladder development. Neurosci. Lett., 2002, 329(1), 77-80.
[http://dx.doi.org/10.1016/S0304-3940(02)00598-0] [PMID: 12161267]
[154]
Pinto, R.; Frias, B.; Allen, S.; Dawbarn, D.; McMahon, S.B.; Cruz, F.; Cruz, C.D. Sequestration of brain derived nerve factor by intravenous delivery of TrkB-Ig2 reduces bladder overactivity and noxious input in animals with chronic cystitis. Neuroscience, 2010, 166(3), 907-916.
[http://dx.doi.org/10.1016/j.neuroscience.2010.01.015] [PMID: 20079809]
[155]
Yuk, S.M.; Shin, J.H.; Song, K.H.; Na, Y.G.; Lim, J.S.; Sul, C.K. Expression of brain derived-neurotrophic factor and granulocyte-colony stimulating factor in the urothelium: relation with voiding function. BMC Urol., 2015, 15, 37.
[http://dx.doi.org/10.1186/s12894-015-0036-3] [PMID: 25951823]
[156]
Qiao, L.Y.; Vizzard, M.A. Cystitis-induced upregulation of tyrosine kinase (TrkA, TrkB) receptor expression and phosphorylation in rat micturition pathways. J. Comp. Neurol., 2002, 454(2), 200-211.
[http://dx.doi.org/10.1002/cne.10447] [PMID: 12412144]
[157]
Kashyap, M.P.; Pore, S.K.; de Groat, W.C.; Chermansky, C.J.; Yoshimura, N.; Tyagi, P. BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity. Am. J. Physiol. Renal Physiol., 2018, 315(1), F45-F56.
[http://dx.doi.org/10.1152/ajprenal.00386.2017] [PMID: 29092846]
[158]
Frias, B.; Allen, S.; Dawbarn, D.; Charrua, A.; Cruz, F.; Cruz, C.D. Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation. Neuroscience, 2013, 234, 88-102.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.044] [PMID: 23313710]
[159]
Lommatzsch, M.; Braun, A.; Mannsfeldt, A.; Botchkarev, V.A.; Botchkareva, N.V.; Paus, R.; Fischer, A.; Lewin, G.R.; Renz, H. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. Am. J. Pathol., 1999, 155(4), 1183-1193.
[http://dx.doi.org/10.1016/S0002-9440(10)65221-2] [PMID: 10514401]
[160]
Wang, P.; Chen, F.X.; Du, C.; Li, C.Q.; Yu, Y.B.; Zuo, X.L.; Li, Y.Q. Increased production of BDNF in colonic epithelial cells induced by fecal supernatants from diarrheic IBS patients. Sci. Rep., 2015, 5, 10121.
[http://dx.doi.org/10.1038/srep10121] [PMID: 25998025]
[161]
Ebbesen, M.H.; Hunskaar, S.; Rortveit, G.; Hannestad, Y.S. Prevalence, incidence and remission of urinary incontinence in women: longitudinal data from the Norwegian HUNT study (EPINCONT). BMC Urol., 2013, 13, 27.
[http://dx.doi.org/10.1186/1471-2490-13-27] [PMID: 23721491]
[162]
Wang, P.; Du, C.; Chen, F.X.; Li, C.Q.; Yu, Y.B.; Han, T.; Akhtar, S.; Zuo, X.L.; Tan, X.D.; Li, Y.Q. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Sci. Rep., 2016, 6, 20320.
[http://dx.doi.org/10.1038/srep20320] [PMID: 26837784]
[163]
Maw, A.R.; Hall, A.J.; Pothier, D.D.; Gregory, S.P.; Steer, C.D. The prevalence of tympanic membrane and related middle ear pathology in children: a large longitudinal cohort study followed from birth to age ten. Otol. Neurotol., 2011, 32(8), 1256-1261.
[http://dx.doi.org/10.1097/MAO.0b013e31822f10cf] [PMID: 21897314]
[164]
Guo, Y.J.; Ho, C.H.; Chen, S.C.; Yang, S.S.; Chiu, H.M.; Huang, K.H. Lower urinary tract symptoms in women with irritable bowel syndrome. Int. J. Urol., 2010, 17(2), 175-181.
[http://dx.doi.org/10.1111/j.1442-2042.2009.02442.x]
[165]
Swenson, C.W.; Menees, S.B.; Haefner, H.K.; Berger, M.B. Lower urinary tract and functional bowel symptoms in women with vulvar diseases and controls. Female Pelvic Med. Reconstr. Surg., 2015, 21(4), 211-214.
[http://dx.doi.org/10.1097/SPV.0000000000000184] [PMID: 26052645]
[166]
Seifer, D.B.; Feng, B.; Shelden, R.M.; Chen, S.; Dreyfus, C.F. Brain-derived neurotrophic factor: a novel human ovarian follicular protein. J. Clin. Endocrinol. Metab., 2002, 87(2), 655-659.
[http://dx.doi.org/10.1210/jcem.87.2.8213] [PMID: 11836300]
[167]
Paredes, A.; Romero, C.; Dissen, G.A.; DeChiara, T.M.; Reichardt, L.; Cornea, A.; Ojeda, S.R.; Xu, B. TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary. Dev. Biol., 2004, 267(2), 430-449.
[http://dx.doi.org/10.1016/j.ydbio.2003.12.001] [PMID: 15013804]
[168]
Browne, A.S.; Yu, J.; Huang, R.P.; Francisco, A.M.; Sidell, N.; Taylor, R.N. Proteomic identification of neurotrophins in the eutopic endometrium of women with endometriosis. Fertil. Steril., 2012, 98(3), 713-719.
[http://dx.doi.org/10.1016/j.fertnstert.2012.05.027] [PMID: 22717347]
[169]
Borghese, B.; Vaiman, D.; Mondon, F.; Mbaye, M.; Anaf, V.; Noël, J.C.; de Ziegler, D.; Chapron, C. Neurotrophins and pain in endometriosis. Gynécol. Obstét. Fertil., 2010, 38(7-8), 442-446.
[http://dx.doi.org/10.1016/j.gyobfe.2010.05.005] [PMID: 20579920]
[170]
Wessels, J.M.; Kay, V.R.; Leyland, N.A.; Agarwal, S.K.; Foster, W.G. Assessing brain-derived neurotrophic factor as a novel clinical marker of endometriosis. Fertil. Steril., 2016, 105(1), 119-128.
[http://dx.doi.org/10.1016/j.fertnstert.2015.09.003]
[171]
Baj, G.; Carlino, D.; Gardossi, L.; Tongiorgi, E. Toward a unified biological hypothesis for the BDNF Val66Met-associated memory deficits in humans: a model of impaired dendritic mRNA trafficking. Front. Neurosci., 2013, 7, 188.
[http://dx.doi.org/10.3389/fnins.2013.00188] [PMID: 24198753]
[172]
Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258.
[http://dx.doi.org/10.1124/pr.111.005108] [PMID: 22407616]
[173]
Boulle, F.; van den Hove, D.L.; Jakob, S.B.; Rutten, B.P.; Hamon, M.; van Os, J.; Lesch, K.P.; Lanfumey, L.; Steinbusch, H.W.; Kenis, G. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol. Psychiatry, 2012, 17(6), 584-596.
[http://dx.doi.org/10.1038/mp.2011.107] [PMID: 21894152]
[174]
Erickson, K.I.; Miller, D.L.; Roecklein, K.A. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist, 2012, 18(1), 82-97.
[http://dx.doi.org/10.1177/1073858410397054] [PMID: 21531985]
[175]
Di Lorenzo, C.; Di Lorenzo, G.; Daverio, A.; Pasqualetti, P.; Coppola, G.; Giannoudas, I.; Barone, Y.; Grieco, G.S.; Niolu, C.; Pascale, E.; Santorelli, F.M.; Nicoletti, F.; Pierelli, F.; Siracusano, A.; Seri, S. The Val66Met polymorphism of the BDNF gene influences trigeminal pain-related evoked responses. J. Pain, 2012, 13(9), 866-873.
[http://dx.doi.org/10.1016/j.jpain.2012.05.014] [PMID: 22901763]
[176]
Vossen, H.; Kenis, G.; Rutten, B.; van Os, J.; Hermens, H.; Lousberg, R. The genetic influence on the cortical processing of experimental pain and the moderating effect of pain status. PLoS One, 2010, 5(10)e13641
[http://dx.doi.org/10.1371/journal.pone.0013641] [PMID: 21049025]
[177]
Smith, P.A. BDNF: No gain without pain? Neuroscience, 2014, 283, 107-123.
[http://dx.doi.org/10.1016/j.neuroscience.2014.05.044] [PMID: 24887639]
[178]
Lee, L.C.; Tu, C.H.; Chen, L.F.; Shen, H.D.; Chao, H.T.; Lin, M.W.; Hsieh, J.C. Association of brain-derived neurotrophic factor gene Val66Met polymorphism with primary dysmenorrhea. PLoS One, 2014, 9(11)e112766
[http://dx.doi.org/10.1371/journal.pone.0112766] [PMID: 25383981]
[179]
Wei, S.Y.; Chao, H.T.; Tu, C.H.; Lin, M.W.; Li, W.C.; Low, I.; Shen, H.D.; Chen, L.F.; Hsieh, J.C. The BDNF Val66Met polymorphism is associated with the functional connectivity dynamics of pain modulatory systems in primary dysmenorrhea. Sci. Rep., 2016, 6, 23639.
[http://dx.doi.org/10.1038/srep23639] [PMID: 27010666]
[180]
Zhang, Q.Y.; Guan, Q.; Wang, Y.; Feng, X.; Sun, W.; Kong, F.Y.; Wen, J.; Cui, W.; Yu, Y.; Chen, Z.Y. BDNF Val66Met polymorphism is associated with Stage III-IV endometriosis and poor in vitro fertilization outcome. Hum. Reprod., 2012, 27(6), 1668-1675.
[http://dx.doi.org/10.1093/humrep/des094] [PMID: 22447624]
[181]
Galan, A.; Cervero, F.; Laird, J.M. Extracellular signaling-regulated kinase-1 and -2 (ERK 1/2) mediate referred hyperalgesia in a murine model of visceral pain. Brain Res. Mol. Brain Res., 2003, 116(1-2), 126-134.
[http://dx.doi.org/10.1016/S0169-328X(03)00284-5] [PMID: 12941468]
[182]
Ji, R.R.; Gereau, R.W., IV; Malcangio, M.; Strichartz, G.R. MAP kinase and pain. Brain Res. Brain Res. Rev., 2009, 60(1), 135-148.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.011] [PMID: 19150373]
[183]
Andersson, K.E.S.A. Pharmacology of the lower urinary tract.Textbook of the neurogenic bladder, Corcos, J. S., E; Dunitz, M., Ed.; London, 2004, pp. 57-72.
[184]
Moran, M.M.; McAlexander, M.A.; Bíró, T.; Szallasi, A. Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov., 2011, 10(8), 601-620.
[http://dx.doi.org/10.1038/nrd3456] [PMID: 21804597]
[185]
Frias, B.; Charrua, A.; Avelino, A.; Michel, M.C.; Cruz, F.; Cruz, C.D. Transient receptor potential vanilloid 1 mediates nerve growth factor-induced bladder hyperactivity and noxious input. BJU Int., 2012, 110(8 Pt B), E422-E428.
[http://dx.doi.org/10.1111/j.1464-410X.2012.11187.x] [PMID: 22540670]
[186]
Zabbarova, I.V.; Ikeda, Y.; Carder, E.J.; Wipf, P.; Wolf-Johnston, A.S.; Birder, L.A.; Yoshimura, N.; Getchell, S.E.; Almansoori, K.; Tyagi, P.; Fry, C.H.; Drake, M.J.; Kanai, A.J. Targeting p75 neurotrophin receptors ameliorates spinal cord injury-induced detrusor sphincter dyssynergia in mice. Neurourol. Urodyn., 2018, 37(8), 2452-2461.
[http://dx.doi.org/10.1002/nau.23722] [PMID: 29806700]
[187]
Ryu, J.C.; Tooke, K.; Malley, S.E.; Soulas, A.; Weiss, T.; Ganesh, N.; Saidi, N.; Daugherty, S.; Saragovi, U.; Ikeda, Y.; Zabbarova, I.; Kanai, A.J.; Yoshiyama, M.; Farhadi, H.F.; de Groat, W.C.; Vizzard, M.A.; Yoon, S.O. Role of proNGF/p75 signaling in bladder dysfunction after spinal cord injury. J. Clin. Invest., 2018, 128(5), 1772-1786.
[http://dx.doi.org/10.1172/JCI97837] [PMID: 29584618]
[188]
Nykjaer, A.; Willnow, T.E. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci., 2012, 35(4), 261-270.
[http://dx.doi.org/10.1016/j.tins.2012.01.003] [PMID: 22341525]
[189]
Wheeler, T.L.; de Groat, W.; Eisner, K.; Emmanuel, A.; French, J.; Grill, W.; Kennelly, M.J.; Krassioukov, A.; Gallo Santacruz, B.; Biering-Sørensen, F.; Kleitman, N. Translating promising strategies for bowel and bladder management in spinal cord injury. Exp. Neurol., 2018, 306, 169-176.
[http://dx.doi.org/10.1016/j.expneurol.2018.05.006] [PMID: 29753647]
[190]
Sahai, A.; Cortes, E.; Seth, J.; Khan, M.S.; Panicker, J.; Kelleher, C.; Kessler, T.M.; Fowler, C.J.; Dasgupta, P. Neurogenic detrusor overactivity in patients with spinal cord injury: evaluation and management. Curr. Urol. Rep., 2011, 12(6), 404-412.
[http://dx.doi.org/10.1007/s11934-011-0221-1] [PMID: 21964989]
[191]
Yoshimura, N. Bladder afferent pathway and spinal cord injury: possible mechanisms inducing hyperreflexia of the urinary bladder. Prog. Neurobiol., 1999, 57(6), 583-606.
[http://dx.doi.org/10.1016/S0301-0082(98)00070-7] [PMID: 10221783]
[192]
Zinck, N.D.; Rafuse, V.F.; Downie, J.W. Sprouting of CGRP primary afferents in lumbosacral spinal cord precedes emergence of bladder activity after spinal injury. Exp. Neurol., 2007, 204(2), 777-790.
[http://dx.doi.org/10.1016/j.expneurol.2007.01.011] [PMID: 17331502]
[193]
Martinez, L.; Neshatian, L.; Khavari, R. Neurogenic bowel dysfunction in patients with neurogenic bladder. Curr. Bladder Dysfunct. Rep., 2016, 11(4), 334-340.
[http://dx.doi.org/10.1007/s11884-016-0390-3] [PMID: 28717406]
[194]
Deng, Y.; Dong, Y.; Liu, Y.; Zhang, Q.; Guan, X.; Chen, X.; Li, M.; Xu, L.; Yang, C. A systematic review of clinical studies on electrical stimulation therapy for patients with neurogenic bowel dysfunction after spinal cord injury. Medicine (Baltimore), 2018, 97(41)e12778
[http://dx.doi.org/10.1097/MD.0000000000012778] [PMID: 30313096]
[195]
Zinck, N.D.; Downie, J.W. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence? In: Prog. Brain Res; , 2006; 152, pp. 147-162.
[http://dx.doi.org/10.1016/S0079-6123(05)52010-7] [PMID: 16198699]
[196]
Vizzard, M.A. Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury. In: Prog. Brain Res.,; , 2006; 152, pp. 97-115.
[http://dx.doi.org/10.1016/S0079-6123(05)52007-7] [PMID: 16198696]
[197]
de Groat, W.C.; Yoshimura, N. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. In: Prog. Brain Res., ; , 2006; 152, pp. 59-84.
[http://dx.doi.org/10.1016/S0079-6123(05)52005-3] [PMID: 16198694]
[198]
de Groat, W.C.; Yoshimura, N. Changes in afferent activity after spinal cord injury. Neurourol. Urodyn., 2010, 29(1), 63-76.
[http://dx.doi.org/10.1002/nau.20761] [PMID: 20025033]
[199]
Wada, N.; Shimizu, T.; Shimizu, N.; de Groat, W.C.; Kanai, A.J.; Tyagi, P.; Kakizaki, H.; Yoshimura, N. The effect of neutralization of nerve growth factor (NGF) on bladder and urethral dysfunction in mice with spinal cord injury. Neurourol. Urodyn., 2018, 37(6), 1889-1896.
[http://dx.doi.org/10.1002/nau.23539] [PMID: 29516546]
[200]
Hodgetts, S.I.; Harvey, A.R. Neurotrophic factors used to treat spinal cord injury. Vitam. Horm., 2017, 104, 405-457.
[http://dx.doi.org/10.1016/bs.vh.2016.11.007] [PMID: 28215303]
[201]
Widenfalk, J.; Lundströmer, K.; Jubran, M.; Brene, S.; Olson, L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J. Neurosci., 2001, 21(10), 3457-3475.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-03457.2001] [PMID: 11331375]
[202]
Zabbarova, I.V.; Ikeda, Y.; Carder, E.J.; Wipf, P.; Wolf-Johnston, A.S.; Birder, L.A.; Yoshimura, N.; Getchell, S.E.; Almansoori, K.; Tyagi, P.; Fry, C.H.; Drake, M.J.; Kanai, A.J. Targeting p75 neurotrophin receptors ameliorates spinal cord injury-induced detrusor sphincter dyssynergia in mice. Neurourol. Urodyn., 2018, 37(8), 2452-2461.
[http://dx.doi.org/10.1002/nau.23722] [PMID: 29806700]
[203]
Frias, B.; Santos, J.; Morgado, M.; Sousa, M.M.; Gray, S.M.; McCloskey, K.D.; Allen, S.; Cruz, F.; Cruz, C.D. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J. Neurosci., 2015, 35(5), 2146-2160.
[http://dx.doi.org/10.1523/JNEUROSCI.0373-14.2015] [PMID: 25653370]
[204]
Gavazzi, I.; Kumar, R.D.; McMahon, S.B.; Cohen, J. Growth responses of different subpopulations of adult sensory neurons to neurotrophic factors in vitro. Eur. J. Neurosci., 1999, 11(10), 3405-3414.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00756.x] [PMID: 10564348]
[205]
Ramer, L.M.; McPhail, L.T.; Borisoff, J.F.; Soril, L.J.; Kaan, T.K.; Lee, J.H.; Saunders, J.W.; Hwi, L.P.; Ramer, M.S. Endogenous TrkB ligands suppress functional mechanosensory plasticity in the deafferented spinal cord. J. Neurosci., 2007, 27(21), 5812-5822.
[http://dx.doi.org/10.1523/JNEUROSCI.0491-07.2007] [PMID: 17522325]
[206]
Biomarkers definition working group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[207]
Antunes-Lopes, T.; Cruz, C.D.; Cruz, F.; Sievert, K.D. Biomarkers in lower urinary tract symptoms/overactive bladder: a critical overview. Curr. Opin. Urol., 2014, 24(4), 352-357.
[http://dx.doi.org/10.1097/MOU.0000000000000064] [PMID: 24841379]
[208]
Fry, C.H.; Sahai, A.; Vahabi, B.; Kanai, A.J.; Birder, L.A. What is the role for biomarkers for lower urinary tract disorders? ICI-RS 2013. Neurourol. Urodyn., 2014, 33(5), 602-605.
[http://dx.doi.org/10.1002/nau.22558] [PMID: 24436105]
[209]
Okragly, A.J.; Niles, A.L.; Saban, R.; Schmidt, D.; Hoffman, R.L.; Warner, T.F.; Moon, T.D.; Uehling, D.T.; Haak-Frendscho, M. Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J. Urol., 1999, 161(2), 438-441.
[http://dx.doi.org/10.1016/S0022-5347(01)61915-3] [PMID: 9915421]
[210]
Ochodnický, P.; Cruz, C.D.; Yoshimura, N.; Michel, M.C. Nerve growth factor in bladder dysfunction: Contributing factor, biomarker, and therapeutic target. Neurourol. Urodyn., 2011, 30(7), 1227-1241.
[http://dx.doi.org/10.1002/nau.21022] [PMID: 21520250]
[211]
Liu, B.; Zheng, B.Z.; Zhou, Z.L.; Xu, Z.H.; Cai, S.L. Change of nerve growth factor mRNA in human detrusor in bladder outlet obstruction with benign prostatic hyperplasia and their implication. Zhonghua Wai Ke Za Zhi, 2004, 42(14), 874-876.
[PMID: 15363280]
[212]
Liu, H.T.; Kuo, H.C. Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis. Urology, 2007, 70(3), 463-468.
[http://dx.doi.org/10.1016/j.urology.2007.04.038] [PMID: 17905097]
[213]
Yokoyama, T.; Kumon, H.; Nagai, A. Correlation of urinary nerve growth factor level with pathogenesis of overactive bladder. Neurourol. Urodyn., 2008, 27(5), 417-420.
[http://dx.doi.org/10.1002/nau.20519] [PMID: 17924444]
[214]
Liu, H.T.; Chen, C.Y.; Kuo, H.C. Urinary nerve growth factor in women with overactive bladder syndrome. BJU Int., 2011, 107(5), 799-803.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09585.x] [PMID: 20804479]
[215]
Liu, H.T.; Kuo, H.C. Urinary nerve growth factor level could be a potential biomarker for diagnosis of overactive bladder. J. Urol., 2008, 179(6), 2270-2274.
[http://dx.doi.org/10.1016/j.juro.2008.01.146] [PMID: 18423678]
[216]
Liu, H.T.; Chancellor, M.B.; Kuo, H.C. Decrease of urinary nerve growth factor levels after antimuscarinic therapy in patients with overactive bladder. BJU Int., 2009, 103(12), 1668-1672.
[http://dx.doi.org/10.1111/j.1464-410X.2009.08380.x] [PMID: 19220267]
[217]
Liu, H.T.; Chancellor, M.B.; Kuo, H.C. Urinary nerve growth factor levels are elevated in patients with detrusor overactivity and decreased in responders to detrusor botulinum toxin-A injection. Eur. Urol., 2009, 56(4), 700-706.
[http://dx.doi.org/10.1016/j.eururo.2008.04.037] [PMID: 18472208]
[218]
Oktar, T.; Kocak, T.; Oner-Iyidogan, Y.; Erdem, S.; Seyithanoglu, M.; Ziylan, O.; Kocak, H. Urinary nerve growth factor in children with overactive bladder: a promising, noninvasive and objective biomarker. J. Pediatr. Urol., 2013, 9(5), 617-621.
[http://dx.doi.org/10.1016/j.jpurol.2012.06.003] [PMID: 22789557]
[219]
Cho, K.J.; Kim, H.S.; Koh, J.S.; Kim, J.C. Changes in urinary nerve growth factor and prostaglandin E2 in women with overactive bladder after anticholinergics. Int. Urogynecol. J. Pelvic Floor Dysfunct., 2013, 24(2), 325-330.
[http://dx.doi.org/10.1007/s00192-012-1854-4] [PMID: 22717785]
[220]
Shalom, D.F.; Pillalamarri, N.; Xue, X.; Kohn, N.; Lind, L.R.; Winkler, H.A.; Metz, C.N. Sacral nerve stimulation reduces elevated urinary nerve growth factor levels in women with symptomatic detrusor overactivity. Am. J. Obstet. Gynecol., 2014, 211(5), 1-5.
[http://dx.doi.org/10.1016/j.ajog.2014.07.007]
[221]
Chuang, F.C.; Liu, H.T.; Wang, L.Y.; Kuo, H.C. Overactive bladder changes with time: a 5-year longitudinal followup of changes in overactive bladder symptoms, urodynamic studies and urinary nerve growth factor levels. J. Urol., 2014, 192(2), 458-463.
[http://dx.doi.org/10.1016/j.juro.2014.02.091] [PMID: 24594404]
[222]
Pinto, R.; Lopes, T.; Frias, B.; Silva, A.; Silva, J.A.; Silva, C.M.; Cruz, C.; Cruz, F.; Dinis, P. Trigonal injection of botulinum toxin A in patients with refractory bladder pain syndrome/interstitial cystitis. Eur. Urol., 2010, 58(3), 360-365.
[http://dx.doi.org/10.1016/j.eururo.2010.02.031] [PMID: 20227820]
[223]
Liu, H.T.; Kuo, H.C. Increased urine and serum nerve growth factor levels in interstitial cystitis suggest chronic inflammation is involved in the pathogenesis of disease. PLoS One, 2012, 7(9)e44687
[http://dx.doi.org/10.1371/journal.pone.0044687] [PMID: 23028581]
[224]
Pinto, R.; Lopes, T.; Costa, D.; Barros, S.; Silva, J.; Silva, C.; Cruz, C.; Dinis, P.; Cruz, F. Ulcerative and nonulcerative forms of bladder pain syndrome/interstitial cystitis do not differ in symptom intensity or response to onabotulinum toxin A. Urology, 2014, 83(5), 1030-1034.
[http://dx.doi.org/10.1016/j.urology.2014.01.018] [PMID: 24767520]
[225]
Jacobs, B.L.; Smaldone, M.C.; Tyagi, V.; Philips, B.J.; Jackman, S.V.; Leng, W.W.; Tyagi, P. Increased nerve growth factor in neurogenic overactive bladder and interstitial cystitis patients. Can. J. Urol., 2010, 17(1), 4989-4994.
[PMID: 20156378]
[226]
Seth, J.H.; Sahai, A.; Khan, M.S.; van der Aa, F.; de Ridder, D.; Panicker, J.N.; Dasgupta, P.; Fowler, C.J. Nerve growth factor (NGF): a potential urinary biomarker for overactive bladder syndrome (OAB)? BJU Int., 2013, 111(3), 372-380.
[http://dx.doi.org/10.1111/j.1464-410X.2012.11672.x] [PMID: 23444927]
[227]
Pennycuff, J.F.; Schutte, S.C.; Hudson, C.O.; Karp, D.R.; Malykhina, A.P.; Northington, G.M. Urinary neurotrophic peptides in postmenopausal women with and without overactive bladder. Neurourol. Urodyn., 2016.
[PMID: 27062604]
[228]
Alkis, O.; Zumrutbas, A.E.; Toktas, C.; Aybek, H.; Aybek, Z. The use of biomarkers in the diagnosis and treatment of overactive bladder: Can we predict the patients who will be resistant to treatment? Neurourol. Urodyn., 2017, 36(2), 390-393.
[PMID: 26661444]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 17
ISSUE: 11
Year: 2019
Page: [1021 - 1038]
Pages: 18
DOI: 10.2174/1570159X17666190617095844
Price: $65

Article Metrics

PDF: 34
HTML: 6