Therapeutic Perspectives of Food Bioactive Peptides: A Mini Review

Author(s): Sulochana Priya*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Bioactive peptides are short chain of amino acids (usually 2-20) that are linked by amide bond in a specific sequence which have some biological effects in animals or humans. These can be of diverse origin like plant, animal, fish, microbe, marine organism or even synthetic. They are successfully used in the management of many diseases. In recent years increased attention has been raised for its effects and mechanism of action in various disease conditions like cancer, immunity, cardiovascular disease, hypertension, inflammation, diabetes, microbial infections etc. Bioactive peptides are more bioavailable and less allergenic when compared to total proteins. Food derived bioactive peptides have health benefits and its demand has increased tremendously over the past decade. This review gives a view on last two years research on potential bioactive peptides derived from food which have significant therapeutic effects.

Keywords: Biopeptides, food, antioxidant, antidiabetic, cardioprotective, therapeutic perspectives.

[1]
Hayes, M. Food proteins and bioactive peptides: new and novel sources, characterization strategies and applications. Foods, 2018, 7(3), 38-40.
[http://dx.doi.org/10.3390/foods7030038] [PMID: 29538293]
[2]
Wang, Y.; Huang, Q.; Kong, D.; Xu, P. Production and functionality of food-derived bioactive peptides: A review. Mini Rev. Med. Chem., 2018, 18(18), 1524-1535.
[http://dx.doi.org/10.2174/1389557518666180424110754] [PMID: 29692240]
[3]
Baig, M.H.; Ahmad, K.; Saeed, M.; Alharbi, A.M.; Barreto, G.E.; Ashraf, G.M.; Choi, I. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed. Pharmacother., 2018, 103, 574-581.
[http://dx.doi.org/10.1016/j.biopha.2018.04.025] [PMID: 29677544]
[4]
Daliri, E.B.; Lee, B.H.; Oh, D.H. Current trends and perspectives of bioactive peptides. Crit. Rev. Food Sci. Nutr., 2018, 58(13), 2273-2284.
[http://dx.doi.org/10.1080/10408398.2017.1319795] [PMID: 28604060]
[5]
Toldrá, F.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptides during food processing. Food Chem., 2018, 267, 395-404.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.119] [PMID: 29934183]
[6]
Nasri, M. Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits. A review. Adv. Food Nutr. Res., 2017, 81, 109-159.
[http://dx.doi.org/10.1016/bs.afnr.2016.10.003] [PMID: 28317603]
[7]
C., de Campos Zani S.; Wu, J.; B Chan, C. S.; Wu, J.; Chan, C. Egg and soy-derived peptides and hydrolysates: A review of their physiological actions against diabetes and obesity. Nutrients, 2018, 10(5)E549
[http://dx.doi.org/10.3390/nu10050549] [PMID: 29710777]
[8]
Yao, S.; Agyei, D.; Udenigwe, C.C. Structural basis of bioactivity of food peptides in promoting metabolic health. Adv. Food Nutr. Res., 2018, 84, 145-181.
[http://dx.doi.org/10.1016/bs.afnr.2017.12.002] [PMID: 29555068]
[9]
Li, S.; Liu, L.; He, G.; Wu, J. Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food Funct., 2018, 9(1), 42-52.
[http://dx.doi.org/10.1039/C7FO01323J] [PMID: 29188845]
[10]
Sonklin, C.; Laohakunjit, N.; Kerdchoechuen, O. Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ, 2018, 6e5337
[http://dx.doi.org/10.7717/peerj.5337] [PMID: 30065890]
[11]
Vilcacundo, R.; Martinez-Villaluenga, C.; Miralles, B.; Hernandez-Ledesma, B. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. J. Sci. Food Agric., 2018. [Epub ahead of print
[http://dx.doi.org/10.1002/jsfa.9294] [PMID: 30066387]
[12]
Intiquilla, S.; Jimenez-Aliaga, K.; Guzman, F.; Alvarez, C.A.; Zavaleta, A.; Izaguirre, V.; Hernandez-Ledesma, B. Novel antioxidant peptides obtained by alcalase hydrolysis of Erythrinaedulis (pajuro) protein. J. Sci. Food Agric., 2018. [Epub ahead of print
[http://dx.doi.org/10.1002/jsfa.9449] [PMID: 30362128]
[13]
Yi-Shen, Z.; Shuai, S.; FitzGerald, R. Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food Nutr. Res., 2018, 62.
[http://dx.doi.org/10.29219/fnr.v62.1290] [PMID: 29545737]
[14]
Gupta, N.; Srivastava, N.; Bhagyawant, S.S. Vicilin-A major storage protein of mungbean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS One, , 2018, 13(2), e0191265 1-17.
[http://dx.doi.org/10.1371/journal.pone.0191265] [PMID: 29408872]
[15]
Zhang, Q.; Tong, X.; Sui, X.; Wang, Z.; Qi, B.; Li, Y.; Jiang, L. Antioxidant activity and protective effects of Alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells. Food Res. Int., 2018, 111, 256-264.
[http://dx.doi.org/10.1016/j.foodres.2018.05.046] [PMID: 30007684]
[16]
Pachaiappan, R.; Tamboli, E.; Acharya, A.; Su, C.H.; Gopinath, S.C.B.; Chen, Y.; Velusamy, P. Separation and identification of bioactive peptides from stem of Tinospora cordifolia (Willd.) Miers. PLoS One, 2018, 13(3)e0193717
[http://dx.doi.org/10.1371/journal.pone.0193717] [PMID: 29494663]
[17]
Vilcacundo, R.; Miralles, B.; Carrillo, W.; Hernández-Ledesma, B. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Res. Int., 2018, 105, 403-411.
[http://dx.doi.org/10.1016/j.foodres.2017.11.036] [PMID: 29433229]
[18]
Olagunju, A.I.; Omoba, O.S.; Enujiugha, V.N.; Alashi, A.M.; Aluko, R.E. Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Sci. Nutr., 2018, 6(7), 1879-1889.
[http://dx.doi.org/10.1002/fsn3.740] [PMID: 30349677]
[19]
Mares-Mares, E.; Gutiérrez-Vargas, S.; Pérez-Moreno, L.; Ordoñez-Acevedo, L.G.; Barboza-Corona, J.E.; León-Galván, M.F. Characterization and identification of cryptic biopeptides in Carya illinoinensis (Wangenh K. Koch) storage proteins. BioMed Res. Int., 2017, 20171549156
[http://dx.doi.org/10.1155/2017/1549156] [PMID: 29279842]
[20]
Li, C.; Yan, Q.; Tang, S.; Xiao, W.; Tan, Z. L-Theanine protects H9C2 cells from hydrogen peroxide-induced apoptosis by enhancing antioxidant capability. Med. Sci. Monit., 2018, 24, 2109-2118.
[http://dx.doi.org/10.12659/MSM.907660] [PMID: 29629712]
[21]
Valverde, M.E.; Orona-Tamayo, D.; Nieto-Rendón, B.; Paredes-López, O. Antioxidant and antihypertensive potential of protein fractions from flour and milk substitutes from canary seeds (Phalaris canariensis L.). Plant Foods Hum. Nutr., 2017, 72(1), 20-25.
[http://dx.doi.org/10.1007/s11130-016-0584-z] [PMID: 27830352]
[22]
Baraniak, B.; Kara, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol., 2018, 53, 2542-2551.
[http://dx.doi.org/10.1111/ijfs.13848]
[23]
Liu, Y.Q.; Strappe, P.; Shang, W.T.; Zhou, Z.K. Functional peptides derived from rice bran proteins. Crit. Rev. Food Sci. Nutr., 2017, 8, 1-8.
[PMID: 28886263]
[24]
Pandey, M.; Kapila, S.; Kapila, R.; Trivedi, R.; Karvande, A. Evaluation of the osteoprotective potential of whey derived-antioxidative (YVEEL) and angiotensin-converting enzyme inhibitory (YLLF) bioactive peptides in ovariectomised rats. Food Funct., 2018, 9(9), 4791-4801.
[http://dx.doi.org/10.1039/C8FO00620B] [PMID: 30128468]
[25]
Ibrahim, H.R.; Isono, H.; Miyata, T. Potential antioxidant bioactive peptides from camel milk proteins. Anim Nutr, 2018, 4(3), 273-280.
[http://dx.doi.org/10.1016/j.aninu.2018.05.004] [PMID: 30175255]
[26]
Basilicata, M.G.; Pepe, G.; Adesso, S.; Ostacolo, C.; Sala, M.; Sommella, E.; Scala, M.C.; Messore, A.; Autore, G.; Marzocco, S.; Campiglia, P. Antioxidant properties of Buffalo-milk dairy products: A β-Lg peptide released after gastrointestinal digestion of Buffalo Ricotta Cheese reduces oxidative stress in intestinal epithelial cells. Int. J. Mol. Sci., 2018, 19(7)E1955
[http://dx.doi.org/10.3390/ijms19071955] [PMID: 29973491]
[27]
Kęska, P.; Stadnik, J. Stability of antiradical activity of protein extracts and hydrolysates from dry-cured pork loins with probiotic strains of LAB. Nutrients, 2018, 10(4)E521
[http://dx.doi.org/10.3390/nu10040521] [PMID: 29690547]
[28]
Liao, W.; Jahandideh, F.; Fan, H.; Son, M.; Wu, J. Egg protein-derived bioactive peptides: preparation, efficacy, and absorption. Adv. Food Nutr. Res., 2018, 85, 1-58.
[http://dx.doi.org/10.1016/bs.afnr.2018.02.001] [PMID: 29860972]
[29]
Chang, C.; Lahti, T.; Tanaka, T.; Nickerson, M.T. Egg proteins: fractionation, bioactive peptides and allergenicity. J. Sci. Food Agric., 2018, 98(15), 5547-5558.
[http://dx.doi.org/10.1002/jsfa.9150] [PMID: 29797412]
[30]
Abeyrathne, E.D.N.S.; Huang, X.; Ahn, D.U. Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides - A review. Poult. Sci., 2018, 97(4), 1462-1468.
[http://dx.doi.org/10.3382/ps/pex399] [PMID: 29340654]
[31]
Wang, X.; Qiu, N.; Liu, Y. Effect of different heat treatments on in vitro digestion of egg white proteins and identification of bioactive peptides in digested products. J. Food Sci., 2018, 83(4), 1140-1148.
[http://dx.doi.org/10.1111/1750-3841.14107] [PMID: 29577301]
[32]
Gallego, M.; Mora, L.; Escudero, E.; Toldrá, F. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int. J. Food Microbiol., 2018, 276, 71-78.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.04.009] [PMID: 29674143]
[33]
Gallego, M.; Mora, L.; Toldrá, F. Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chem., 2018, 258, 8-15.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.035] [PMID: 29655758]
[34]
Latorres, J.M.; Rios, D.G.; Saggiomo, G.; Wasielesky, W., Jr; Prentice-Hernandez, C. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol., 2018, 55(2), 721-729.
[http://dx.doi.org/10.1007/s13197-017-2983-z] [PMID: 29391637]
[35]
Tonolo, F.; Sandre, M.; Ferro, S.; Folda, A.; Scalcon, V.; Scutari, G.; Feller, E.; Marin, O.; Bindoli, A.; Rigobello, M.P. Milk-derived bioactive peptides protect against oxidative stress in a Caco-2 cell model. Food Funct., 2018, 9(2), 1245-1253.
[http://dx.doi.org/10.1039/C7FO01646H] [PMID: 29387856]
[36]
Lee, S.Y.; Hur, S.J. Angiotensin converting enzyme inhibitory and antioxidant activities of enzymatic hydrolysates of korean native cattle (hanwoo) myofibrillar protein. BioMed Res. Int., 2017, 2017, 5274637-5274646.
[http://dx.doi.org/10.1155/2017/5274637] [PMID: 29392136]
[37]
Xing, L.; Liu, R.; Gao, X.; Zheng, J.; Wang, C.; Zhou, G.; Zhang, W. The proteomics homology of antioxidant peptides extracted from dry-cured Xuanwei and Jinhua ham. Food Chem., 2018, 266, 420-426.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.034] [PMID: 30381207]
[38]
Wang, L.; Li, X.; Li, Y.; Liu, W.; Jia, X.; Qiao, X.; Qu, C.; Cheng, X.; Wang, S. Antioxidant and angiotensin I-converting enzyme inhibitory activities of Xuanwei ham before and after cooking and in vitro simulated gastrointestinal digestion. R. Soc. Open Sci., 2018, 5(7)180276
[http://dx.doi.org/10.1098/rsos.180276] [PMID: 30109083]
[39]
Zhang, Y.; Liu, Y.; Zhu, K.; Dong, Y.; Cui, H.; Mao, L.; Xu, X.; Zhou, H. Acute toxicity, antioxidant, and antifatigue activities of protein-rich extract from Oviductus ranae. Oxid. Med. Cell. Longev., 2018, 20189021371
[http://dx.doi.org/10.1155/2018/9021371] [PMID: 29991975]
[40]
Sarbon, N.M.; Badii, F.; Howell, N.K. Purification and characterization of antioxidative peptides derived from chicken skin gelatin hydrolysate. Food Hydrocoll., 2018, 85, 311-320.
[http://dx.doi.org/10.1016/j.foodhyd.2018.06.048]
[41]
Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J. Food Sci., 2018, 83(1), 6-16.
[http://dx.doi.org/10.1111/1750-3841.14011] [PMID: 29227526]
[42]
Wang, X.; Yu, H.; Xing, R.; Chen, X.; Liu, S.; Li, P. Optimization of antioxidative peptides from mackerel (Pneumatophorus japonicus) viscera. PeerJ, 2018, 6e4373 .
[http://dx.doi.org/10.7717/peerj.4373] [PMID: 29473003]
[43]
Xie, C.L.; Kang, S.S.; Lu, C.; Choi, Y.J. Quantification of multifunctional dipeptide YA from Oyster hydrolysate for quality control and efficacy evaluation. BioMed Res. Int., 2018.20188437379
[http://dx.doi.org/10.1155/2018/8437379] [PMID: 30345307]
[44]
Wang, L.; Sun, J.; Ding, S.; Qi, B. Isolation and identification of novel antioxidant and antimicrobial oligopeptides from enzymatically hydrolyzed anchovy fish meal. Process Biochem., 2018, 74, 148-155.
[http://dx.doi.org/10.1016/j.procbio.2018.08.021]
[45]
Kim, E.Y.; Choi, Y.H.; Nam, T.J. Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis. Int. J. Mol. Med., 2018, 42(2), 789-798.
[http://dx.doi.org/10.3892/ijmm.2018.3650] [PMID: 29717771]
[46]
Fideler, J.; Johanningsmeier, S.D.; Ekelöf, M.; Muddiman, D.C. Discovery and quantification of bioactive peptides in fermented cucumber by direct analysis IR-MALDESI mass spectrometry and LC-QQQ-MS. Food Chem., 2019, 271, 715-723.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.187] [PMID: 30236736]
[47]
He, Y.Y.; Li, T.T.; Chen, J.X.; She, X.X.; Ren, D.F.; Lu, J. Transport of ACE inhibitory peptides Ile-Gln-Pro and Val-Glu-Pro derived from Spirulinaplatensis across Caco-2 monolayers. J. Food Sci., 2018, 83(10), 2586-2592.
[http://dx.doi.org/10.1111/1750-3841.14350] [PMID: 30229911]
[48]
Grazioso, G.; Bollati, C.; Sgrignani, J.; Arnoldi, A.; Lammi, C. bdLammi, C. First food-derived Peptide inhibitor of the protein-protein interaction between gain-of-function PCSK9D374Y and the low-density lipoprotein receptor. J. Agric. Food Chem., 2018, 66(40), 10552-10557.
[http://dx.doi.org/10.1021/acs.jafc.8b03233] [PMID: 30226051]
[49]
Cian, R.E.; Garzón, A.G.; Martínez-Augustin, O.; Botto, C.C.; Drago, S.R. Antithrombotic activity of Brewers’ spent grain peptides and their effects on blood coagulation pathways. Plant Foods Hum. Nutr., 2018, 73(3), 241-246. Epub ahead of print
[http://dx.doi.org/10.1007/s11130-018-0682-1] [PMID: 29992417]
[50]
Ngoh, Y.Y.; Gan, C.Y. Identification of Pinto bean peptides with inhibitory effects on α-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach. Food Chem., 2018, 267, 124-131.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.166] [PMID: 29934146]
[51]
Jahandideh, F.; Liu, P.; Wu, J. Purification and identification of adipogenic-differentiating peptides from egg white hydrolysate. Food Chem., 2018, 259, 25-30.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.099] [PMID: 29680051]
[52]
Hanafi, M.A.; Hashim, S.N.; Chay, S.Y.; Ebrahimpour, A.; Zarei, M.; Muhammad, K.; Abdul-Hamid, A.; Saari, N. High angiotensin-I converting enzyme (ACE) inhibitory activity of Alcalase-digested green soybean (Glycine max) hydrolysates. Food Res. Int., 2018, 106, 589-597.
[http://dx.doi.org/10.1016/j.foodres.2018.01.030] [PMID: 29579964]
[53]
Sangsawad, P.; Roytrakul, S.; Choowongkomon, K.; Kitts, D.D.; Chen, X.M.; Meng, G.; Li-Chan, E.C.Y.; Yongsawatdigul, J. Transepithelial transport across Caco-2 cell monolayers of angiotensin converting enzyme (ACE) inhibitory peptides derived from simulated in vitro gastrointestinal digestion of cooked chicken muscles. Food Chem., 2018, 251, 77-85.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.047] [PMID: 29426427]
[54]
Wang, Z.; Cui, Y.; Liu, P.; Zhao, Y.; Wang, L.; Liu, Y.; Xie, J. Small peptides isolated from enzymatic hydrolyzate of fermented soybean meal promote endothelium-independent vasorelaxation and ACE inhibition. J. Agric. Food Chem., 2017, 65(50), 10844-10850.
[http://dx.doi.org/10.1021/acs.jafc.7b05026] [PMID: 29172521]
[55]
Moayedi, A.; Mora, L.; Aristoy, M.C.; Safari, M.; Hashemi, M.; Toldrá, F. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chem., 2018, 250, 180-187.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.033] [PMID: 29412909]
[56]
González Garza, N.G.; Chuc Koyoc, J.A.; Torres Castillo, J.A.; García Zambrano, E.A.; Betancur Ancona, D.; Chel Guerrero, L.; Sinagawa García, S.R. Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). J. Food Sci. Technol., 2017, 54(13), 4268-4276.
[http://dx.doi.org/10.1007/s13197-017-2898-8] [PMID: 29184233]
[57]
Orio, L.P.; Boschin, G.; Recca, T.; Morelli, C.F.; Ragona, L.; Francescato, P.; Arnoldi, A.; Speranza, G. New ACE-inhibitory peptides from Hemp Seed (Cannabis sativa L.) proteins. J. Agric. Food Chem., 2017, 65(48), 10482-10488.
[http://dx.doi.org/10.1021/acs.jafc.7b04522] [PMID: 29112398]
[58]
Coelho, M.S.; Soares-Freitas, R.A.M.; Arêas, J.A.G.; Gandra, E.A.; Salas-Mellado, M.L.M. Peptides from Chia present antibacterial activity and inhibit cholesterol synthesis. Plant Foods Hum. Nutr., 2018, 73(2), 101-107.
[http://dx.doi.org/10.1007/s11130-018-0668-z] [PMID: 29679358]
[59]
Drori, A.; Rotnemer-Golinkin, D.; Zolotarov, L.; Ilan, Y. Oral administration of cardio aid and lunasin alleviates liver damage in a high-fat diet nonalcoholic steatohepatitis model. Digestion, 2017, 96(2), 110-118.
[http://dx.doi.org/10.1159/000479734] [PMID: 28796993]
[60]
Tong, L.T.; Ju, Z.; Qiu, J.; Wang, L.; Liu, L.; Zhou, X.; Zhou, S. Peptide GEQQQQPGM derived from rice α-globulin reduces the risk of atherosclerosis in hamsters by improving vascular endothelial cells injury. RSC Advances, 2017, 7, 49194-49203.
[http://dx.doi.org/10.1039/C7RA08304A]
[61]
Mora, L.; Gallego, M.; Toldrá, F. ACE-inhibitory peptides naturally generated in meat and meat products and their health relevance. Nutrients, 2018, 10(9)E1259
[http://dx.doi.org/10.3390/nu10091259] [PMID: 30205453]
[62]
Choe, J.; Seol, K.H.; Kim, H.J.; Hwang, J.T.; Lee, M.; Jo, C. Isolation and identification of angiotensin I-converting enzyme inhibitory peptides derived from thermolysin-injected beef M. longissimus. Asian-Australas. J. Anim. Sci., 2018. Epub ahead of print
[http://dx.doi.org/10.5713/ajas.18.0455] [PMID: 30145878]
[63]
Aspri, M.; Leni, G.; Galaverna, G.; Papademas, P. Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion. Food Chem., 2018, 268, 476-484.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.119] [PMID: 30064786]
[64]
Ahtesh, F.B.; Stojanovska, L.; Apostolopoulos, V. Anti-hypertensive peptides released from milk proteins by probiotics. Maturitas, 2018, 115, 103-109.
[http://dx.doi.org/10.1016/j.maturitas.2018.06.016] [PMID: 30049341]
[65]
Tu, M.; Wang, C.; Chen, C.; Zhang, R.; Liu, H.; Lu, W.; Jiang, L.; Du, M. Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem., 2018, 256, 98-104.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.107] [PMID: 29606478]
[66]
Qiao, M.; Tu, M.; Wang, Z.; Mao, F.; Chen, H.; Qin, L.; Du, M. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein. Int. J. Mol. Sci., 2018, 19(1)E138
[http://dx.doi.org/10.3390/ijms19010138] [PMID: 29300301]
[67]
Qiao, M.; Tu, M.; Chen, H.; Mao, F.; Yu, C.; Du, M. Identification and in silico prediction of anticoagulant peptides from the enzymatic hydrolysates of Mytilus edulis proteins. Int. J. Mol. Sci., 2018, 19(7), 2100-2112.
[http://dx.doi.org/10.3390/ijms19072100] [PMID: 30029529]
[68]
Woo, M.; Song, Y.O.; Kang, K.H.; Noh, J.S. Anti-obesity effects of collagen peptide derived from skate (Raja kenojei) skin through regulation of lipid metabolism. Mar. Drugs, 2018, 16(9), 1-12.
[http://dx.doi.org/10.3390/md16090306] [PMID: 30200239]
[69]
Drotningsvik, A.; Vikøren, L.A.; Mjøs, S.A.; Oterhals, Å.; Pampanin, D.; Flesland, O.; Gudbrandsen, O.A. Water-soluble fish protein intake led to lower serum and liver cholesterol concentrations in obese zucker fa/fa rats. Mar. Drugs, 2018, 16(5)E149
[http://dx.doi.org/10.3390/md16050149] [PMID: 29724010]
[70]
Nasri, R.; Abdelhedi, O.; Jemil, I.; Amor, B.I.; Elfeki, A.; Gargouri, J.; Boualga, A.; Karra-Chaabouni, M.; Nasri, M. Preventive effect of goby fish protein hydrolysates on hyperlipidemia and cardiovascular disease in Wistar rats fed a high-fat/fructose diet. RSC Advances, 2018, 8, 9383-9393.
[http://dx.doi.org/10.1039/C7RA13102J]
[71]
Marya; Khan, H.; Nabavi, S.M.; Habtemariam, S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci., 2018, 193, 153-158.
[http://dx.doi.org/10.1016/j.lfs.2017.10.025] [PMID: 29055800]
[72]
Deng, X.; Sun, L.; Lai, X.; Xiang, L.; Li, Q.; Zhang, W.; Zhang, L.; Sun, S. Tea polypeptide ameliorates diabetic nephropathy through RAGE and NF-κB signaling pathway in type 2 diabetes mice. J. Agric. Food Chem., 2018, 66(45), 11957-11967.
[http://dx.doi.org/10.1021/acs.jafc.8b04819] [PMID: 30354109]
[73]
Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients, 2018, 10(9)E1211
[http://dx.doi.org/10.3390/nu10091211] [PMID: 30200502]
[74]
González-Montoya, M.; Hernández-Ledesma, B.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. Int. J. Mol. Sci., 2018, 19(10)E2883
[http://dx.doi.org/10.3390/ijms19102883] [PMID: 30249015]
[75]
Lammi, C.; Bollati, C.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Arnoldi, A. Soybean- and Lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum. Nutrients, 2018, 10(8)E1082
[http://dx.doi.org/10.3390/nu10081082] [PMID: 30104520]
[76]
Zhang, M.; Yan, Z.; Bu, L.; An, C.; Wang, D.; Liu, X.; Zhang, J.; Yang, W.; Deng, B.; Xie, J.; Zhang, B. Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy. Drug Des. Devel. Ther., 2018, 12, 1255-1268.
[http://dx.doi.org/10.2147/DDDT.S162288] [PMID: 29795979]
[77]
Sato, K.; Miyasaka, S.; Tsuji, A.; Tachi, H. Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chem., 2018, 261, 51-56.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.029] [PMID: 29739605]
[78]
Sosa Crespo, I.; Laviada Molina, H.; Chel Guerrero, L.; Ortiz Andrade, R.; Betancur Ancona, D. [Inhibitory effect of peptide fractions derivatives from chia (Salvia hispanica) hydrolysis against α-amylase and α-glucosidase enzymes Nutr. Hosp., 2018, 35(4), 928-935.
[http://dx.doi.org/10.20960/nh.1713] [PMID: 30070884]
[79]
Evaristus, N.A.; Wan Abdullah, W.N.; Gan, C.Y. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes. Peptides, 2018, 102, 61-67.
[http://dx.doi.org/10.1016/j.peptides.2018.03.001] [PMID: 29510154]
[80]
Mune, M. M.A.; Minka, S.R.; Henle, T. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Food Chem., 2018, 250, 162-169.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.001] [PMID: 29412907]
[81]
Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int., 2017, 100(Pt 1), 489-496.
[http://dx.doi.org/10.1016/j.foodres.2017.07.046] [PMID: 28873712]
[82]
Chakrabarti, S.; Jahandideh, F.; Davidge, S.T.; Wu, J. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) enhance insulin sensitivity and prevent insulin resistance in 3T3-F442A preadipocytes. J. Agric. Food Chem., 2018, 66(39), 10179-10187.
[http://dx.doi.org/10.1021/acs.jafc.8b02051] [PMID: 30160110]
[83]
Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem., 2018, 259, 46-54.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.082] [PMID: 29680061]
[84]
Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem., 2018, 244, 340-348.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.033] [PMID: 29120791]
[85]
Ningonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. J. Funct. Foods, 2017, 34, 49-58.
[http://dx.doi.org/10.1016/j.jff.2017.04.016]
[86]
Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Identification of bioactive peptides with α-Amylase inhibitory potential from enzymatic protein hydrolysates of Red Seaweed (Porphyraspp). J. Agric. Food Chem., 2018, 66(19), 4872-4882.
[http://dx.doi.org/10.1021/acs.jafc.8b00960] [PMID: 29667406]
[87]
Liu, R.; Zhou, L.; Zhang, Y.; Sheng, N.J.; Wang, Z.K.; Wu, T.Z.; Wang, X.Z.; Wu, H. Rapid identification of Dipeptidyl Peptidase-IV (DPP-IV) inhibitory peptides from Ruditapes philippinarum hydrolysate. Molecules, 2017, 22(10)E1714
[http://dx.doi.org/10.3390/molecules22101714] [PMID: 29027968]
[88]
Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; Alashi, M.A.; Aluko, R.E.; FitzGerald, R.J. Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res. Int., 2017, 100(Pt 1), 112-120.
[http://dx.doi.org/10.1016/j.foodres.2017.06.065] [PMID: 28873669]
[89]
Dumeus, S.; Shibu, M.A.; Lin, W.T.; Wang, M.F.; Lai, C.H.; Shen, C.Y.; Lin, Y.M.; Viswanadha, V.P.; Kuo, W.W.; Huang, C.Y. Bioactive peptide improves diet-induced hepatic fat deposition and hepatocyte proinflammatory response in SAMP8 ageing mice. Cell. Physiol. Biochem., 2018, 48(5), 1942-1952.
[http://dx.doi.org/10.1159/000492518] [PMID: 30092591]
[90]
Yu, W.; Field, C.J.; Wu, J. A spent hen muscle protein hydrolysate: a potential IL-10 stimulator in a murine model. Food Funct., 2018, 9(9), 4714-4719.
[http://dx.doi.org/10.1039/C8FO00589C] [PMID: 30091766]
[91]
Juritsch, A.F.; Moreau, R. Role of soybean-derived bioactive compounds in inflammatory bowel disease. Nutr. Rev., 2018, 76(8), 618-638.
[http://dx.doi.org/10.1093/nutrit/nuy021] [PMID: 29800381]
[92]
Milán-Noris, A.K.; Gutiérrez-Uribe, J.A.; Santacruz, A.; Serna-Saldívar, S.O.; Martínez-Villaluenga, C. Peptides and isoflavones in gastrointestinal digests contribute to the anti-inflammatory potential of cooked or germinated desi and kabuli chickpea (Cicer arietinum L.). Food Chem., 2018, 268, 66-76.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.068] [PMID: 30064805]
[93]
Galli, V.; Mazzoli, L.; Luti, S.; Venturi, M.; Guerrini, S.; Paoli, P.; Vincenzini, M.; Granchi, L.; Pazzagli, L. Effect of selected strains of lactobacilli on the antioxidant and anti-inflammatory properties of sourdough. Int. J. Food Microbiol., 2018, 286, 55-65.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.07.018] [PMID: 30036730]
[94]
Vo, T.S.; Kim, Y.S.; Ngo, D.H.; Le, P.U.; Kim, S.Y.; Kim, S.K. Spirulina maxima peptides suppress mast cell degranulation via inactivating Akt and MAPKs phosphorylation in RBL-2H3 cells. Int. J. Biol. Macromol, 2018, 118(Pt B). , 2224-2229.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.096] [PMID: 30016657]
[95]
Cian, R.E.; Hernández-Chirlaque, C.; Gámez-Belmonte, R.; Drago, S.R.; Sánchez de Medina, F.; Martínez-Augustin, O. Green Alga Ulva spp. hydrolysates and their peptide fractions regulate cytokine production in splenic macrophages and lymphocytes involving the TLR4-NFκB/MAPK pathways. Mar. Drugs, 2018, 16(7)E235
[http://dx.doi.org/10.3390/md16070235] [PMID: 29997311]
[96]
Hu, Q.; Du, H.; Ma, G.; Pei, F.; Ma, N.; Yuan, B.; Nakata, P.A.; Yang, W. Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii. Food Funct., 2018, 9(7), 3764-3775.
[http://dx.doi.org/10.1039/C8FO00604K] [PMID: 29897364]
[97]
Jones, L.D.; Pangloli, P.; Krishnan, H.B.; Dia, V.P. BG-4, a novel bioactive peptide from Momordica charantia, inhibits lipopolysaccharide-induced inflammation in THP-1 human macrophages. Phytomedicine, 2018, 42, 226-232.
[http://dx.doi.org/10.1016/j.phymed.2018.03.047] [PMID: 29655690]
[98]
Lutaty, A.; Soboh, S.; Schif-Zuck, S.; Zeituni-Timor, O.; Rostoker, R.; Podolska, M.J.; Schauer, C.; Herrmann, M.; Muñoz, L.E.; Ariel, A. 17-kDa fragment of Lactoferrin associates with the termination of inflammation and peptides within promote resolution. Front. Immunol., 2018, 9, 644.
[http://dx.doi.org/10.3389/fimmu.2018.00644] [PMID: 29643857]
[99]
Martínez Leo, E.E.; Arana Argáez, V.E.; Acevedo Fernández, J.J.; Puc, R.M.; Segura Campos, M.R. Effect of enzymatic digestion of protein derivatives obtained from Mucuna pruriens L. on production of proinflammatory mediators by BALB/c mouse macrophages. Appl. Biochem. Biotechnol., 2018, 186(3), 597-612.
[http://dx.doi.org/10.1007/s12010-018-2740-4] [PMID: 29691792]
[100]
Cai, X.; Yan, A.; Fu, N.; Wang, S. In vitro antioxidant activities of enzymatic hydrolysate from Schizochytrium sp. and its hepatoprotective effects on acute alcohol-induced liver injury in vivo. Mar. Drugs, 2017, 15(4)E115
[http://dx.doi.org/10.3390/md15040115] [PMID: 28394291]
[101]
Panya, A.; Yongpitakwattana, P.; Budchart, P.; Sawasdee, N.; Krobthong, S.; Paemanee, A.; Roytrakul, S.; Rattanbunyong, S.; Choowongkomon, K.; Yenchitsomanus, P.T. Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia catechu. Chem. Biol. Drug Des., 2018, 2018, 1-10.
[PMID: 30225997]
[102]
Carrillo, W.; Ramos, M. Identification of antimicrobial peptides of native and heated hydrolysates from hen egg white lysozyme. J. Med. Food, 2018, 21(9), 915-926.
[http://dx.doi.org/10.1089/jmf.2017.0132] [PMID: 29688795]
[103]
Coelho, M.S.; Soares-Freitas, R.A.M.; Arêas, J.A.G.; Gandra, E.A.; Salas-Mellado, M.L.M. Peptides from Chia present antibacterial activity and inhibit cholesterol synthesis. Plant Foods Hum. Nutr., 2018, 73(2), 101-107.
[http://dx.doi.org/10.1007/s11130-018-0668-z] [PMID: 29679358]
[104]
Fialho, T.L.; Carrijo, L.C.; Magalhães Júnior, M.J.; Baracat-Pereira, M.C.; Piccoli, R.H.; de Abreu, L.R. Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese. Food Res. Int., 2018, 107, 406-413.
[http://dx.doi.org/10.1016/j.foodres.2018.02.009] [PMID: 29580501]
[105]
Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci., 2017, 24(1), 21-36.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[106]
Rajendran, S.R.; Ejike, C.E.; Gong, M.; Hannah, W.; Udenigwe, C.C. Preclinical Evidence on the anticancer properties of food peptides. Protein Pept. Lett., 2017, 24(2), 126-136.
[http://dx.doi.org/10.2174/0929866523666160816152755] [PMID: 27538700]
[107]
Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources. (Review) Oncol. Rep., 2017, 38(2), 637-651.
[http://dx.doi.org/10.3892/or.2017.5778] [PMID: 28677775]
[108]
Wakabayashi, N.; Yano, Y.; Kawano, K.; Matsuzaki, K. A pH-dependent charge reversal peptide for cancer targeting. Eur. Biophys. J., 2017, 46(2), 121-127.
[http://dx.doi.org/10.1007/s00249-016-1145-y] [PMID: 27278924]
[109]
González-Montoya, M.; Cano-Sampedro, E.; Mora-Escobedo, R. Bioactive peptides from legumes as anticancer therapeutic agents. Int. J. Cancer Clin. Res., 2017, 4, 81-91.
[110]
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem., 2018, 245, 205-222.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[111]
Hernández-Corroto, E.; Marina, M.L.; García, M.C. Multiple protective effect of peptides released from Olea europaea and Prunus persica seeds against oxidative damage and cancer cell proliferation. Food Res. Int., 2018, 106, 458-467.
[http://dx.doi.org/10.1016/j.foodres.2018.01.015] [PMID: 29579948]
[112]
Luna-Vital, D.A.; González de Mejía, E.; Loarca-Piña, G. Dietary peptides from Phaseolus vulgaris L. reduced AOM/DSS-induced colitis-associated colon carcinogenesis in Balb/c mice. Plant Foods Hum. Nutr., 2017, 72(4), 445-447.
[http://dx.doi.org/10.1007/s11130-017-0633-2] [PMID: 28965253]
[113]
Mojica, L.; Luna-Vital, D.A.; Gonzalez de Mejia, E. Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters. Toxicol. Rep., 2018, 5, 552-560.
[http://dx.doi.org/10.1016/j.toxrep.2018.04.007] [PMID: 29854625]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 9
Year: 2019
Page: [664 - 675]
Pages: 12
DOI: 10.2174/0929866526666190617092140
Price: $65

Article Metrics

PDF: 23
HTML: 8
EPUB: 1
PRC: 1