Nanomedicine: Bioavailability, Biotransformation and Biokinetics

Author(s): Selvan Ravindran* , Amlesh J. Tambe , Jitendra K. Suthar , Digamber S. Chahar , Joyleen M. Fernandes , Vedika Desai .

Journal Name: Current Drug Metabolism

Volume 20 , Issue 7 , 2019


Graphical Abstract:


Abstract:

Background: Nanomedicine is increasingly used to treat various ailments. Biocompatibility of nanomedicine is primarily governed by its properties such as bioavailability, biotransformation and biokinetics. One of the major advantages of nanomedicine is enhanced bioavailability of drugs. Biotransformation of nanomedicine is important to understand the pharmacological effects of nanomedicine. Biokinetics includes both pharmacokinetics and toxicokinetics of nanomedicine. Physicochemical parameters of nanomaterials have extensive influence on bioavailability, biotransformation and biokinetics of nanomedicine.

Methods: We carried out a structured peer-reviewed research literature survey and analysis using bibliographic databases.

Results: Eighty papers were included in the review. Papers dealing with bioavailability, biotransformation and biokinetics of nanomedicine are found and reviewed. Bioavailability and biotransformation along with biokinetics are three major factors that determine the biological fate of nanomedicine. Extensive research work has been done for drugs of micron size but studies on nanomedicine are scarce. Therefore, more emphasis in this review is given on the bioavailability and biotransformation of nanomedicine along with biokinetics.

Conclusion: Bioavailability results based on various nanomedicine are summarized in the present work. Biotransformation of nanodrugs as well as nanoformulations is also the focus of this article. Both in vitro and in vivo biotransformation studies on nanodrugs and its excipients are necessary to know the effect of metabolites formed. Biokinetics of nanomedicine is captured in details that are complimentary to bioavailability and biotransformation. Nanomedicine has the potential to be developed as a personalized medicine once its physicochemical properties and its effect on biological system are well understood.

Keywords: Nanomedicine, metabolism, bioavailability, biotransformation, biokinetics, drug discovery.

[1]
Ravindran, S.; Suthar, J.K.; Rokade, R.; Deshpande, P.; Singh, P.; Pratinidhi, A.; Khambadkhar, R.; Utekar, S. Pharmacokinetics, metabolism, distribution and permeability of nanomedicine. Curr. Drug Metab., 2018, 19(4), 327-334.
[http://dx.doi.org/10.2174/1389200219666180305154119] [PMID: 29512450]
[2]
Simmermacher, J.; Sinz, M. Evaluation of farnesoid X receptor target gene induction in human hepatocytes: Amino acid conjugation. Drug Metab. Lett., 2017, 11(2), 138-143.
[PMID: 29283075]
[3]
Schadt, S.; Bister, B.; Chowdhury, S.K.; Funk, C.; Hop, C.E.C.A.; Humphreys, W.G.; Igarashi, F.; James, A.D.; Kagan, M.; Khojasteh, S.C.; Nedderman, A.N.R.; Prakash, C.; Runge, F.; Scheible, H.; Spracklin, D.K.; Swart, P.; Tse, S.; Yuan, J.; Obach, R.S. A Decade in the MIST: Learnings from investigations of drug metabolites in drug development under the “metabolites in safety testing” regulatory guidance. Drug Metab. Dispos., 2018, 46(6), 865-878.
[http://dx.doi.org/10.1124/dmd.117.079848] [PMID: 29487142]
[4]
Zhang, Y.; Han, Y.H.; Putluru, S.P.; Matta, M.; Kole, P.; Mandlekar, S.; Furlong, M.T.; Liu, T.; Iyer, R.A.; Marathe, P.; Yang, Z. Diclofenac and its acyl glucuronide: Determination of in vivo exposure in human subjects and characterization as human drug transporter substrated in vitro. Drug Metab. Dispos., 2016, 44(3), 320-328.
[http://dx.doi.org/dx.doi: 10.1124/dmd.115.066944] [PMID: 26714763]
[5]
Mosure, K.W.; Knipe, J.O.; Browning, M.; Arora, V.; Shu, Y.Z.; Phillip, T.; Mcphee, F.; Scola, P.; Balakrishnan, A.; Soars, M.G.; Santone, K.; Sinz, M. mcphee, P.; Scola, P.; Balakrishnan, A.; Soars, M.G.; Santone, K.; Sinz, M. Preclinical pharmacokinetics and in vitro metabolism of asunaprevir (BMS-650032), a potent hepatitis C virus NS3 protease inhibitor. J. Pharm. Sci., 2015, 104(9), 2813-2823.
[http://dx.doi.org/10.1002/jps.24356] [PMID: 25631585]
[6]
Ravindran, S.; Jadhav, A.; Surve, P.; Lonsane, G.; Honrao, P.; Nanda, B. Technologies and strategies to characterize and quantitate metabolites in drug discovery and development. Biomed. Chromatogr., 2014, 28(11), 1547-1553.
[http://dx.doi.org/10.1002/bmc.3309] [PMID: 25175001]
[7]
Surve, P.; Ravindran, S.; Acharjee, A.; Rastogi, H.; Basu, S.; Honrao, P. Metabolite characterization of anti-cancer agent gefitinib in human hepatocytes. Drug Metab. Lett., 2014, 7(2), 126-136.
[http://dx.doi.org/10.2174/1872312808666140317154110] [PMID: 24628403]
[8]
Geiser, M.; Kreyling, W.G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol., 2010, 7(2), 2-17.
[http://dx.doi.org/10.1186/1743-8977-7-2] [PMID: 20205860]
[9]
Di Martino, P.; Censi, R.; Gigliobianco, M.R.; Zerrillo, L.; Magnoni, F.; Agas, D.; Quaglia, W.; Lupidi, G. Nano-medicine improving the bioavailability of small molecules for the prevention of neurodegenerative diseases. Curr. Pharm. Des., 2017, 23(13), 1897-1908.
[http://dx.doi.org/10.2174/1381612822666161227154447] [PMID: 28025942]
[10]
Liu, L.; Ye, Q.; Lu, M.; Chen, S-T.; Tseng, H-W.; Lo, Y-C.; Ho, C. A new approach to deliver anti cancer nanodrugs with reduced off-target toxicities and improved efficiency by temporarily blunting the reticuloendothelial system with intralipid. Sci. Rep., 2017, 7(1), 16106.
[http://dx.doi.org/10.1038/s41598-017-16293-6] [PMID: 29170482]
[11]
Muller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals - special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78, 1-9.
[http://dx.doi.org/dx.doi: 10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[12]
Sietsema, W.K. The absolute oral bioavailability of selected drugs. Int. J. Clin. Pharmacol. Ther. Toxicol., 1989, 27(4), 179-211.
[PMID: 2654032]
[13]
FDA. Guidance for Industry: Bioavailability and Bioequivalence Studies for Orally Administered Drug Products – General Considerations. Center for Drug Evaluation and Research, Food and Drug Admininstration, US Department of Health and Human Services http://www.fda.gov/downloads/Drugs/.../Guidances/ucm070124.pdf (accessed 11.03.13)
[14]
Gao, L.; Zhang, D.; Chen, M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanopart. Res., 2008, 10, 845-862.
[15]
Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm., 2006, 312, 179-186.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.008]
[16]
Moschwitzer, J.; Muller, R.H. Drug nanocrystals the universal formulation approach for poorly soluble drugs., 2007, 5, 71-88.
[http://dx.doi.org/10.1201/9781420008449.ch5]
[17]
Buckton, G.; Beezer, A.E. The relationship between particle size and solubility. Int. J. Pharm., 1992, 82, R7-R10.
[http://dx.doi.org/10.1016/0378-5173(92)90184-4]
[18]
Mauludin, R. Development of an oral rutin nanocrystal formulation. Int. J. Pharm., 2009, 370, 202-209.
[http://dx.doi.org/dx.doi: 10.1016/j.ijpharm.2008.11.029] [PMID: 19114097]
[19]
Dolenc, A.; Kristl, J.; Baumgartner, S. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int. J. Pharm., 2009, 376, 204-212.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.038]
[20]
Moschwitzer, J.; Achleitner, G.; Pomper, H. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur. J. Pharm. Biopharm., 2004, 58(3), 615-619.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.022]
[21]
Merisko-Liversidge, E; Wei, L Stabilization of chemical compounds using nanoparticulate formulations. US 2001; 952032 20010914. CAN 138:243327, US 2003054042 A1, 2003.
[22]
Teeranachaideekul, V.; Junyaprasert, V.B.; Souto, E.B. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int. J. Pharm., 2008, 354, 227-234.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.062]
[23]
Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of poorly water soluble drugs. Asian J. Pharm. Sci., 2015, 10, 13-23.
[http://dx.doi.org/10.1016/j.ajps.2014.08.005]
[24]
Kanwal, U.; Irfan Bukhari, N.; Ovais, M.; Abass, N.; Hussain, K.; Raza, A. Advances in nano-delivery systems for doxorubicin: An updated insight. J. Drug Target., 2018, 26(4), 296-310.
[http://dx.doi.org/10.1080/1061186X.2017.1380655] [PMID: 28906159]
[25]
Shegokar, R.; Müller, R.H. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm., 2010, 399(1-2), 129-139.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[26]
Gora, S.; Mustafa, G.; Sahni, J.K.; Ali, J.; Baboota, S. Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: pharmacokinetics and pharmacodyanamic study. Drug Deliv., 2016, 23(3), 940-950.
[http://dx.doi.org/10.3109/10717544.2014.923066] [PMID: 24937379]
[27]
Desgouilles, S.; Vauthier, C.; Bazile, D.; Vacus, J.; Grossiord, J.L.; Veillard, M.; Couvreur, P. The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir, 2003, 19(22), 9504-9510.
[http://dx.doi.org/10.1021/la034999q]
[28]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci., 2003, 18(2), 113-120.
[http://dx.doi.org/10.1016/S0928-0987(02)00251-8] [PMID: 12594003]
[29]
Zahr, A.S.; de Villiers, M.; Pishko, M.V. Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. Langmuir, 2005, 21(1), 403-410.
[http://dx.doi.org/10.1021/la0478595] [PMID: 15620331]
[30]
Baba, K.; Pudavar, H.E.; Roy, I.; Ohulchanskyy, T.Y.; Chen, Y.; Pandey, R.K.; Prasad, P.N. New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Mol. Pharm., 2007, 4(2), 289-297.
[http://dx.doi.org/10.1021/mp060117f] [PMID: 17266331]
[31]
Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O.C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett., 2008, 8(9), 2906-2912.
[http://dx.doi.org/10.1021/nl801736q] [PMID: 18656990]
[32]
Zhang, J.; Li, Y.; An, F.F.; Zhang, X.; Chen, X.; Lee, C.S. Preparation and size control of sub-100 nm pure nanodrugs. Nano Lett., 2015, 15(1), 313-318.
[http://dx.doi.org/10.1021/nl503598u] [PMID: 25514014]
[33]
Ahmad, A.; Othman, I.; Zaini, A.; Chowdhury, E.H. Oral insulin theraphy: Current progress on nanoparticles-based devices for intestinal epithelium targeted insulin delivery. J. Nanomed. Nanotechnol, 2012, S4, 007.
[http://dx.doi.org/10.4172/2157-7439.S4-007]
[34]
Cárdenas-Bailón, F.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review. J. Microencapsul., 2013, 30(5), 409-424.
[http://dx.doi.org/10.3109/02652048.2012.742159] [PMID: 23234361]
[35]
Damgé, C.; Socha, M.; Ubrich, N.; Maincent, P. Poly(epsilon-caprolactone)/eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J. Pharm. Sci., 2010, 99(2), 879-889.
[http://dx.doi.org/10.1002/jps.21874] [PMID: 19691099]
[36]
Kaklotar, D.; Agrawal, P.; Abdulla, A.; Singh, R.P.; Mehata, A.K.; Singh, S.; Mishra, B.; Pandey, B.L.; Trigunayat, A.; Muthu, M.S. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. Nanomedicine (Lond.), 2016, 11(11), 1465-1486.
[http://dx.doi.org/10.2217/nnm.16.43] [PMID: 27171572]
[37]
Shuhendler, A.J.; Prasad, P.; Leung, M.; Rauth, A.M.; Dacosta, R.S.; Wu, X.Y. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv. Healthc. Mater., 2012, 1(5), 600-608.
[http://dx.doi.org/10.1002/adhm.201200006] [PMID: 23184795]
[38]
Sarmento, B.; Martins, S.; Ferreira, D. Oral insulin delivery by means of solid lipid nanoparticles; Int. J. Nanomed, 2007, pp. 743-749.
[39]
Liu, X.; Liu, C.; Zhang, W.; Xie, C.; Wei, G.; Lu, W. Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin. Int. J. Pharm., 2013, 448(1), 159-167.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.033] [PMID: 23538098]
[40]
Zhang, Z.H.; Zhang, Y.L.; Zhou, J.P.; Lv, H.X. Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin. Int. J. Nanomedicine, 2012, 7, 3333-3339.
[PMID: 22848162]
[41]
Niu, M.; Lu, Y.; Hovgaard, L.; Wu, W. Liposomes containing glycocholate as potential oral insulin delivery systems: Preparation, in vitro characterization, and improved protection against enzymatic degradation. Int. J. Nanomedicine, 2011, 6, 1155-1166.
[PMID: 21822379]
[42]
Wen, C.J.; Sung, C.T.; Aljuffali, I.A.; Huang, Y.J.; Fang, J.Y. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes. Nanotechnology, 2013, 24(32), 325101.
[http://dx.doi.org/10.1088/0957-4484/24/32/325101] [PMID: 23867977]
[43]
Niu, M.; Lu, Y.; Hovgaard, L.; Guan, P.; Tan, Y.; Lian, R.; Qi, J.; Wu, W. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur. J. Pharm. Biopharm., 2012, 81(2), 265-272.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.009] [PMID: 22369880]
[44]
Dwivedi, N.; Arunagirinathan, M.A.; Sharma, S. Silica coated liposomes for insulin delivery. J. Nanomater., 2010, 652048, 8.
[http://dx.doi.org/10.1155/2010/652048]
[45]
Feng, S.S. New-concept chemotherapy by nanoparticles of biodegradable polymers: Where are we now? Nanomedicine (Lond.), 2006, 1(3), 297-309.
[http://dx.doi.org/10.2217/17435889.1.3.297] [PMID: 17716160]
[46]
Pan, Y.; Li, Y.J.; Zhao, H.Y.; Zheng, J.M.; Xu, H.; Wei, G.; Hao, J.S.; Cui, F.D. Bioadhesive polysaccharide in protein delivery system: Chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm., 2002, 249(1-2), 139-147.
[http://dx.doi.org/10.1016/S0378-5173(02)00486-6] [PMID: 12433442]
[47]
Rawat, M.; Singh, D.; Saraf, S.; Saraf, S. Nanocarriers: promising vehicle for bioactive drugs. Biol. Pharm. Bull., 2006, 29(9), 1790-1798.
[http://dx.doi.org/10.1248/bpb.29.1790] [PMID: 16946487]
[48]
Hu, C.; Cun, X.; Ruan, S.; Liu, R.; Xiao, W.; Yang, X.; Yang, Y.; Yang, C.; Gao, H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.046] [PMID: 29626787]
[49]
Hu, C.; Yang, X.; Liu, R.; Ruan, S.; Zhou, Y.; Xiao, W.; Yu, W.; Yang, C.; Gao, H. Coadministration of iRGD with multistage responsive nanoparticles enhanced tumor targeting and penetration abilities for breast cancer theraphy. ACS Appl. Mater. Interfaces, 2018, 10(26), 22571-22579.
[http://dx.doi.org/10.1021/acsami.8b04847] [PMID: 29878758]
[50]
Choi, Y.H.; Han, H-K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig., 2018, 48(1), 43-60.
[http://dx.doi.org/10.1007/s40005-017-0370-4] [PMID: 30546919]
[51]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H-S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[52]
Grewal, A.S.; Lather, V.; Sharma, N.; Singh, S.; Narang, R.S.; Narang, J.K.; Pandita, D. Recent updates on nanomedicine based products: Current scenario and future opportunities. Appl. Clin. Res. Clin. Trials Regul. Aff., 2018, 5, 132-144.
[http://dx.doi.org/10.2174/2213476X05666180611115135]
[53]
Ravindran, S.; Rokade, R.; Suthar, J.; Singh, P.; Deshpande, P.; Khambadkar, R.; Utekar, S. In vitro biotransformation in drug discovery.In:Concepts to Market: Drug Discovery; Bobbarala, V., Ed.; Intech Open: London, 2018, pp. 1-13.
[http://dx.doi.org/10.5772/intechopen.73173]
[54]
Vangala, S.; Pinjari, J.; Patole, P.; Ravindran, S.; Gangal, R.; Wangikar, P.; Basu, S.; Ahmed, T.; Rastogi, H. Translational drug discovery research: Integration of medicinal chemistry, computational modeling, pharmacology, ADME and toxicology.In:Encyclopedia of Drug Metabolism and Interactions; John Wiley & Sons, Inc.: New Jersey, 2012, pp. 1-54.
[http://dx.doi.org/[https://doi.org/10.1002/9780470921920.edm038].]
[55]
Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci., 2007, 32, 762-798.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[56]
Mehvar, R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J. Control. Release, 2000, 69(1), 1-25.
[http://dx.doi.org/10.1016/S0168-3659(00)00302-3] [PMID: 11018543]
[57]
Knorr, V.; Ogris, M.; Wagner, E. An acid sensitive ketal-based polyethylene glycol-oligoethylenimine copolymer mediates improved transfection efficiency at reduced toxicity. Pharm. Res., 2008, 25(12), 2937-2945.
[http://dx.doi.org/10.1007/s11095-008-9700-6] [PMID: 18751876]
[58]
Markovsky, E.; Baabur-Cohen, H.; Eldar-Boock, A.; Omer, L.; Tiram, G.; Ferber, S.; Ofek, P.; Polyak, D.; Scomparin, A.; Satchi-Fainaro, R. Administration, distribution, metabolism and elimination of polymer therapeutics. J. Control. Release, 2012, 161(2), 446-460.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.021] [PMID: 22286005]
[59]
Webster, R.; Didier, E.; Harris, P.; Siegel, N.; Stadler, J.; Tilbury, L.; Smith, D. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab. Dispos., 2007, 35(1), 9-16.
[http://dx.doi.org/10.1124/dmd.106.012419] [PMID: 17020954]
[60]
Allen, B.L.; Kichambare, P.D.; Gou, P.; Vlasova, I.I.; Kapralov, A.A.; Konduru, N.; Kagan, V.E.; Star, A. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett., 2008, 8(11), 3899-3903.
[http://dx.doi.org/10.1021/nl802315h] [PMID: 18954125]
[61]
Kagan, V.E.; Konduru, N.V.; Feng, W.; Allen, B.L.; Conroy, J.; Volkov, Y.; Vlasova, I.I.; Belikova, N.A.; Yanamala, N.; Kapralov, A.; Tyurina, Y.Y.; Shi, J.; Kisin, E.R.; Murray, A.R.; Franks, J.; Stolz, D.; Gou, P.; Klein-Seetharaman, J.; Fadeel, B.; Star, A.; Shvedova, A.A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol., 2010, 5(5), 354-359.
[http://dx.doi.org/10.1038/nnano.2010.44] [PMID: 20364135]
[62]
Yang, S-T.; Wang, H.; Meziani, M.J.; Liu, Y.; Wang, X.; Sun, Y.P. Biodefunctionalization of functionalized single-walled carbon nanotubes in mice. Biomacromolecules, 2009, 10(7), 2009-2012.
[http://dx.doi.org/10.1021/bm900263z] [PMID: 19425548]
[63]
Yang, S.T.; Luo, J.; Zhou, Q.; Wang, H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics, 2012, 2(3), 271-282.
[http://dx.doi.org/10.7150/thno.3618] [PMID: 22509195]
[64]
Yang, S-T.; Wang, H.; Meziani, M.J.; Liu, Y.; Wang, X.; Sun, Y.P. Biodefunctionalization of functionalized single-walled carbon nanotubes in mice. Biomacromolecules, 2009, 10(7), 2009-2012.
[http://dx.doi.org/10.1021/bm900263z] [PMID: 19425548]
[65]
Tsai, Y.M.; Chien, C.F.; Lin, L.C.; Tsai, T.H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood-brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[66]
Mach, C.M.; Chen, J.H.; Mosley, S.A.; Kurzrock, R.; Smith, J.A. Evaluation of liposomal curcumin cytochrome p450 metabolism. Anticancer Res., 2010, 30(3), 811-814.
[PMID: 20393001]
[67]
Appiah-Opong, R.; De Esch, I.; Commandeur, J.N.; Andarini, M.; Vermeulen, N.P. Structure-activity relationships for the inhibition of recombinant human cytochromes P450 by curcumin analogues. Eur. J. Med. Chem., 2008, 43(8), 1621-1631.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.034] [PMID: 18249473]
[68]
Appiah-Opong, R.; Commandeur, J.N.; Van Vugt-Lussenburg, B.; Vermeulen, N.P. Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products. Toxicology, 2007, 235(1-2), 83-91.
[http://dx.doi.org/10.1016/j.tox.2007.03.007] [PMID: 17433521]
[69]
Siddalingappa, B.; Benson, H.A.E.; Brown, D.H.; Batty, K.T.; Chen, Y. Stabilization of resveratrol in blood circulation by conjugation to mPEG and mPEG-PLA polymers: Investigation of conjugate linker and polymer composition on stability, metabolism, antioxidant activity and pharmacokinetic profile. PLoS One, 2015, 10(3), e0118824.
[http://dx.doi.org/10.1371/journal.pone.0118824] [PMID: 25799413]
[70]
Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Release, 2018, 278, 127-139.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.005] [PMID: 29630985]
[71]
Choi, S.J.; Choy, J.H. Biokinetics of zinc oxide nanoparticles: Toxicokinetics, biological fates, and protein interaction. Int. J. Nanomedicine, 2014, 9(Suppl. 2), 261-269.
[PMID: 25565844]
[72]
Baek, M.; Chung, H.E.; Yu, J.; Lee, J.A.; Kim, T.H.; Oh, J.M.; Lee, W.J.; Paek, S.M.; Lee, J.K.; Jeong, J.; Choy, J.H.; Choi, S.J. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int. J. Nanomedicine, 2012, 7, 3081-3097.
[PMID: 22811602]
[73]
Wang, L.; Wang, L.; Ding, W.; Zhang, F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol., 2010, 10(12), 8617-8624.
[http://dx.doi.org/10.1166/jnn.2010.2483] [PMID: 21121374]
[74]
Paek, H.J.; Lee, Y.J.; Chung, H.E.; Yoo, N.H.; Lee, J.A.; Kim, M.K.; Lee, J.K.; Jeong, J.; Choi, S.J. Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale, 2013, 5(23), 11416-11427.
[http://dx.doi.org/10.1039/c3nr02140h] [PMID: 23912904]
[75]
Kovár, M.; Strohalm, J.; Etrych, T.; Ulbrich, K.; Ríhová, B. Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug. Chem., 2002, 13(2), 206-215.
[http://dx.doi.org/10.1021/bc010063m] [PMID: 11906257]
[76]
Webster, R.; Elliott, V.; Park, B.K.; Walker, D.; Hankin, M.; Taupin, P. PEG and PEG conjugates toxicity: Towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals.In:PEGylated Protein Drugs: Basic Science and Clinical Applications; F.M., Veronese, Ed.; Springer: New York City, 2009, pp. 127-146.
[http://dx.doi.org/10.1007/978-3-7643-8679-5_8]
[77]
Xiao, W.; Gao, H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int. J. Pharm., 2018, 552(1-2), 328-339.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.011] [PMID: 30308270]
[78]
Xiao, W.; Xiong, J.; Zhang, S.; Xiong, Y.; Zhang, H.; Gao, H. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int. J. Pharm., 2018, 538(1-2), 105-111.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.011] [PMID: 29341915]
[79]
Zhang, H.; Wu, T.; Yu, W.; Ruan, S.; He, Q.; Gao, H. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona. ACS Appl. Mater. Interfaces, 2018, 10(10), 9094-9103.
[http://dx.doi.org/10.1021/acsami.7b16096] [PMID: 29473734]
[80]
Khambadkar, R.; Ravindran, S.; Chahar, D.S.; Utekar, S.; Tambe, A. Qualitative and quantitative analysis of resveratrol and oxyresveratrol by liquid chromatography. Curr. Metabolomics, 2019.
[http://dx.doi.org/10.2174/2213235X07666190328222836]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 7
Year: 2019
Page: [542 - 555]
Pages: 14
DOI: 10.2174/1389200220666190614150708
Price: $58

Article Metrics

PDF: 26
HTML: 4