Comparative Proteomic Analysis of the Hevea brasiliensis Latex under Ethylene and Calcium Stimulation

Author(s): Bingsun Wu, Le Gao, Yong Sun, Min Wu, Dan Wang, Jiashao Wei, Guihua Wang, Wenguan Wu, Junhan Xiao, Xuchu Wang*, Peng He*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Calcium ions usually act as a second messenger in the signal transmission process and a major element required by plants. In Hevea, calcium ion could alleviate the negative effects of long-term ethylene application to a certain extent. However, the molecular mechanisms remain unclear.

Methods: Two-dimensional electrophoresis was used to determine the pattern of protein changes in latex after treatments with calcium and/or ethylene. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression levels of some proteins and genes. STRING software was used to determine the protein-protein interaction network of the identified proteins.

Results: Comparative proteomics identified 145 differentially expressed proteins, which represented 103 unique proteins. The abundance change patterns of some proteins involved in signal transduction, rubber particle aggregation, and natural rubber biosynthesis were altered upon calcium stimulation. Quantitative real-time polymerase chain reaction analysis of 29 proteins showed that gene expression did not always maintain the same trend as protein expression. The increased enzyme activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase suggested that calcium can enhance the antistress ability of plants by increasing the activity of their antioxidant enzyme systems.

Conclusion: These results supplement the rubber latex proteome, and provide evidence for investigating the molecular mechanisms by which calcium alleviates the negative effects of ethylene stimulation.

Keywords: Hevea brasiliensis, ethylene, calcium, rubber latex, signal transduction, rubber particle aggregation.

[1]
Tian, W.M.; Yang, S.G.; Shi, M.J.; Zhang, S.X.; Wu, J.L. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates. J. Plant Physiol., 2015, 182, 95-103.
[http://dx.doi.org/10.1016/j.jplph.2015.04.010] [PMID: 26070085]
[2]
Chrestin, H.; Marin, B.; Jacob, J.C.; d’Auzac, J. Metabolic regulation and homeostasis in the laticiferous cell. In: Physiology of Rubber Tree Latex; CRC Press: Boca Raton, FL, United States, 1989, pp. 165-176.
[3]
Liu, L.; Xiao, W.; Li, L.; Li, D.M.; Gao, D.S.; Zhu, C.Y.; Fu, X.L. Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. Plant Physiol. Biochem., 2017, 115, 200-211.
[http://dx.doi.org/10.1016/j.plaphy.2017.03.015] [PMID: 28376412]
[4]
Coupé, M.; Chrestin, H. Physico-chemical and biochemical mechanisms of hormonal (ethylene) stimulation. In: Physiology of Rubber Tree Latex; CRC Press: Boca Raton, FL, United States, 1989, pp. 295-319.
[5]
Chua, S.E. Physiological changes in Hevea trees under intensive tapping. Journal of the Rubber Research Institute of Malaya, 1967, 20, 100-105.
[6]
Putranto, R.A.; Herlinawati, E.; Rio, M.; Leclercq, J.; Piyatrakul, P.; Gohet, E.; Sanier, C.; Oktavia, F.; Pirrello, J. Kuswanhadi; Montoro, P. Kuswanhadi, Montoro, P. Involvement of ethylene in the latex metabolism and tapping panel dryness of Hevea brasiliensis. Int. J. Mol. Sci., 2015, 16(8), 17885-17908.
[http://dx.doi.org/10.3390/ijms160817885] [PMID: 26247941]
[7]
Reddy, V.S.; Reddy, A.S. Proteomics of calcium-signaling components in plants. Phytochemistry, 2004, 65(12), 1745-1776.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.033] [PMID: 15276435]
[8]
Sanders, D.; Pelloux, J.; Brownlee, C.; Harper, J.F. Calcium at the crossroads of signaling. Plant Cell, 2002, 14(Suppl.), S401-S417.
[http://dx.doi.org/10.1105/tpc.002899] [PMID: 12045291]
[9]
Evans, N.H.; McAinsh, M.R.; Hetherington, A.M. Calcium oscillations in higher plants. Curr. Opin. Plant Biol., 2001, 4(5), 415-420.
[http://dx.doi.org/10.1016/S1369-5266(00)00194-1] [PMID: 11597499]
[10]
Klimecka, M.; Muszyńska, G. Structure and functions of plant calcium-dependent protein kinases. Acta Biochim. Pol., 2007, 54(2), 219-233.
[PMID: 17446936]
[11]
Bush, D.S. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46, 95-122.
[http://dx.doi.org/10.1146/annurev.pp.46.060195.000523]
[12]
Bowler, C.; Fluhr, R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci., 2000, 5(6), 241-246.
[http://dx.doi.org/10.1016/S1360-1385(00)01628-9] [PMID: 10838614]
[13]
Cooke, A.; Cookson, A.; Ealnshaw, M.J. The mechanism of action of calciumin in the inhibition of high temperature-induced leakage of belacyanin from beet root discs. New Phytol., 1986, 102, 491-497.
[http://dx.doi.org/10.1111/j.1469-8137.1986.tb00825.x]
[14]
Arora, R.; Palta, J.P. In vivo perturbation of membrane-associated Calcium by freeze-thaw stress in Onion Bulb cells: simulation of this perturbation in extracellular KCl and alleviation by Calcium. Plant Physiol., 1988, 87(3), 622-628.
[http://dx.doi.org/10.1104/pp.87.3.622] [PMID: 16666196]
[15]
Melgar, A.; Pérez, J.F.; Laget, H.; Horillo, A. Thermochemical equilibrium modelling of a gasifying process. Energy Convers. Manage., 2007, 48, 59-67.
[http://dx.doi.org/10.1016/j.enconman.2006.05.004]
[16]
Kreimer, G.; Melkonian, M.; Holtum, J.A.; Latzko, E. Stromal free calcium concentration and light-mediated activation of chloroplast fructose-1,6-bisphosphatase. Plant Physiol., 1988, 86(2), 423-428.
[http://dx.doi.org/10.1104/pp.86.2.423] [PMID: 16665924]
[17]
Tan, W.; Meng, Qw.; Brestic, M.; Olsovska, K.; Yang, X. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J. Plant Physiol., 2011, 168(17), 2063-2071.
[http://dx.doi.org/10.1016/j.jplph.2011.06.009] [PMID: 21803445]
[18]
Liang, W.J.; Wang, M.L.; Ai, X.Z. The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Sci. Hortic. (Amsterdam), 2009, 123, 34-38.
[http://dx.doi.org/10.1016/j.scienta.2009.07.015]
[19]
Zhao, H.J.; Tan, J.F. Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetic, 2005, 43, 473-476.
[http://dx.doi.org/10.1007/s11099-005-0076-0]
[20]
Yang, S.; Wang, F.; Guo, F.; Meng, J.J.; Li, X.G.; Dong, S.T.; Wan, S.B. Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis hypogaea) leaves during heat stress under high irradiance. PLoS One, 2013, 8(8)e71214
[http://dx.doi.org/10.1371/journal.pone.0071214] [PMID: 23940721]
[21]
Wang, G.; Bi, A.; Amombo, E.; Li, H.; Zhang, L.; Cheng, C.; Hu, T.; Fu, J. Exogenous calcium enhances the photosystem II photochemistry response in salt stressed tall fescue. Front. Plant Sci., 2017, 8, 2032.
[http://dx.doi.org/10.3389/fpls.2017.02032] [PMID: 29250091]
[22]
Tzortzakis, N.G. Potassium and calcium enrichment alleviate salinity-induced stress in hydroponically grown endives. Hortic. Sci. (Prague), 2010, 37, 155-162.
[http://dx.doi.org/10.17221/1/2010-HORTSCI]
[23]
Yücel Candan, N.; Heybet Elif, H. Salicylic acid and calcium treatments improves Wheat Vigor, lipids and phenolics under high salinity. Acta Chim. Slov., 2016, 63(4), 738-746.
[http://dx.doi.org/10.17344/acsi.2016.2449] [PMID: 28004101]
[24]
Goutam, M.; Dhaliwal, H.S.; Mahajan, B.V. Effect of pre-harvest calcium sprays on post-harvest life of winter guava (Psidium guajava L.). J. Food Sci. Technol., 2010, 47(5), 501-506.
[http://dx.doi.org/10.1007/s13197-010-0085-2] [PMID: 23572678]
[25]
Lopez, M.V.; Satti, S.M. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci., 1996, 114, 19-27.
[http://dx.doi.org/10.1016/0168-9452(95)04300-4]
[26]
White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot., 2003, 92(4), 487-511.
[http://dx.doi.org/10.1093/aob/mcg164] [PMID: 12933363]
[27]
Jain, R.; Solomon, S.; Shrivastava, A.K.; Chandra, A. Effect of ethephon and calcium chloride on growth and biochemical attributes of sugarcane bud chips. Acta Physiol. Plant., 2011, 33, 905-910.
[http://dx.doi.org/10.1007/s11738-010-0617-4]
[28]
Hepler, P.K. Calcium: a central regulator of plant growth and development. Plant Cell, 2005, 17(8), 2142-2155.
[http://dx.doi.org/10.1105/tpc.105.032508] [PMID: 16061961]
[29]
Doungmusik, A.; Sdoodee, S. Enhancing the latex productivity of Hevea brasiliensis clone RRIM 600 using ethylene stimulation. Agric. Technol. Thail., 2012, 8, 2033-2042.
[30]
Wang, X.; Shi, M.; Lu, X.; Ma, R.; Wu, C.; Guo, A.; Peng, M.; Tian, W. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS. Proteome Sci., 2010, 8, 35-44.
[http://dx.doi.org/10.1186/1477-5956-8-35] [PMID: 20565811]
[31]
Wang, X.; Shi, M.; Wang, D.; Chen, Y.; Cai, F.; Zhang, S.; Wang, L.; Tong, Z.; Tian, W.M. Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis. J. Proteome Res., 2013, 12(11), 5146-5159.
[http://dx.doi.org/10.1021/pr400378c] [PMID: 23991906]
[32]
Wang, X.; Wang, D.; Sun, Y.; Yang, Q.; Chang, L.; Wang, L.; Meng, X.; Huang, Q.; Jin, X.; Tong, Z. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production. Sci. Rep., 2015, 5, 13778.
[http://dx.doi.org/10.1038/srep13778] [PMID: 26348427]
[33]
Tang, C.; Yang, M.; Fang, Y.; Luo, Y.; Gao, S.; Xiao, X.; An, Z.; Zhou, B.; Zhang, B.; Tan, X.; Yeang, H.Y.; Qin, Y.; Yang, J.; Lin, Q.; Mei, H.; Montoro, P.; Long, X.; Qi, J.; Hua, Y.; He, Z.; Sun, M.; Li, W.; Zeng, X.; Cheng, H.; Liu, Y.; Yang, J.; Tian, W.; Zhuang, N.; Zeng, R.; Li, D.; He, P.; Li, Z.; Zou, Z.; Li, S.; Li, C.; Wang, J.; Wei, D.; Lai, C.Q.; Luo, W.; Yu, J.; Hu, S.; Huang, H. The rubber tree genome reveals new insights into rubber production and species adaptation. Nat. Plants, 2016, 2(6), 16073.
[http://dx.doi.org/10.1038/nplants.2016.73] [PMID: 27255837]
[34]
Tang, C.; Huang, D.; Yang, J.; Liu, S.; Sakr, S.; Li, H.; Zhou, Y.; Qin, Y. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell Environ., 2010, 33(10), 1708-1720.
[http://dx.doi.org/10.1111/j.1365-3040.2010.02175.x] [PMID: 20492551]
[35]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[36]
Gao, L.; Sun, Y.; Wu, M.; Wang, D.; Wei, J.; Wu, B.; Wang, G.; Wu, W.; Jin, X.; Wang, X.; He, P. Physiological and proteomic analyses of molybdenum- and ethylene-responsive mechanisms in rubber latex. Front. Plant Sci., 2018, 9, 621.
[http://dx.doi.org/10.3389/fpls.2018.00621] [PMID: 29868077]
[37]
Yu, J.; Chen, S.; Zhao, Q.; Wang, T.; Yang, C.; Diaz, C.; Sun, G.; Dai, S. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J. Proteome Res., 2011, 10(9), 3852-3870.
[http://dx.doi.org/10.1021/pr101102p] [PMID: 21732589]
[38]
Long, X.; He, B.; Gao, X.; Qin, Y.; Yang, J.; Fang, Y.; Qi, J.; Tang, C. Validation of reference genes for quantitative real-time PCR during latex regeneration in rubber tree. Gene, 2015, 563(2), 190-195.
[http://dx.doi.org/10.1016/j.gene.2015.03.026] [PMID: 25791491]
[39]
Chao, J.; Chen, Y.; Wu, S.; Tian, W.M. Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow. BMC Plant Biol., 2015, 15, 104-115.
[http://dx.doi.org/10.1186/s12870-015-0488-3] [PMID: 25928745]
[40]
Tian, W.M.; Zhang, H.; Yang, S.G.; Shi, M.J.; Wang, X.C.; Dai, L.J.; Chen, Y.Y. Molecular and biochemical characterization of a cyanogenic β-glucosidase in the inner bark tissues of rubber tree (Hevea brasiliensis Muell. Arg.). J. Plant Physiol., 2013, 170(8), 723-730.
[http://dx.doi.org/10.1016/j.jplph.2012.12.019] [PMID: 23510639]
[41]
d’Auzac, J.; Jacob, J.L.; Prevot, J.C.; Clement, A.; Gallois, R. The regulation of cis-polyisoprene production (nature rubber) from Hevea brasiliensis. Rec. Res. Develop. Plant Physiol., 1997, 1, 273-332.
[42]
Gerke, V.; Creutz, C.E.; Moss, S.E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol., 2005, 6(6), 449-461.
[http://dx.doi.org/10.1038/nrm1661] [PMID: 15928709]
[43]
van Genderen, H.O.; Kenis, H.; Hofstra, L.; Narula, J.; Reutelingsperger, C.P. Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim. Biophys. Acta, 2008, 1783(6), 953-963.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.030] [PMID: 18334229]
[44]
Ijaz, R.; Ejaz, J.; Gao, S.; Liu, T.; Imtiaz, M.; Ye, Z.; Wang, T. Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Sci. Rep., 2017, 7(1), 12087.
[http://dx.doi.org/10.1038/s41598-017-11168-2] [PMID: 28935951]
[45]
Jami, S.K.; Clark, G.B.; Turlapati, S.A.; Handley, C.; Roux, S.J.; Kirti, P.B. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol. Biochem., 2008, 46(12), 1019-1030.
[http://dx.doi.org/10.1016/j.plaphy.2008.07.006] [PMID: 18768323]
[46]
Zhang, F.; Li, S.; Yang, S.; Wang, L.; Guo, W. Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol. Biol., 2015, 87(1-2), 47-67.
[http://dx.doi.org/10.1007/s11103-014-0260-3] [PMID: 25330941]
[47]
Konopka-Postupolska, D.; Clark, G.; Goch, G.; Debski, J.; Floras, K.; Cantero, A.; Fijolek, B.; Roux, S.; Hennig, J. The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol., 2009, 150(3), 1394-1410.
[http://dx.doi.org/10.1104/pp.109.135228] [PMID: 19482919]
[48]
Hansen, S.B. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. Biochim. Biophys. Acta, 2015, 1851(5), 620-628.
[http://dx.doi.org/10.1016/j.bbalip.2015.01.011] [PMID: 25633344]
[49]
Rhee, S.G.; Choi, K.D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J. Biol. Chem., 1992, 267(18), 12393-12396.
[PMID: 1319994]
[50]
Scholz, S.S.; Reichelt, M.; Vadassery, J.; Mithöfer, A. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis. Plant Signal. Behav., 2015, 10(6)e1011951
[http://dx.doi.org/10.1080/15592324.2015.1011951] [PMID: 26176898]
[51]
Bender, K.W.; Dobney, S.; Ogunrinde, A.; Chiasson, D.; Mullen, R.T.; Teresinski, H.J.; Singh, P.; Munro, K.; Smith, S.P.; Snedden, W.A. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2+ sensor in Arabidopsis. Biochem. J., 2014, 457(1), 127-136.
[http://dx.doi.org/10.1042/BJ20131080] [PMID: 24102643]
[52]
Camoni, L.; Visconti, S.; Aducci, P.; Marra, M. 14-3-3 proteins in plant hormone signaling: doing several things at once. Front. Plant Sci., 2018, 9, 297.
[http://dx.doi.org/10.3389/fpls.2018.00297] [PMID: 29593761]
[53]
Gampala, S.S.; Kim, T.W.; He, J.X.; Tang, W.; Deng, Z.; Bai, M.Y.; Guan, S.; Lalonde, S.; Sun, Y.; Gendron, J.M.; Chen, H.; Shibagaki, N.; Ferl, R.J.; Ehrhardt, D.; Chong, K.; Burlingame, A.L.; Wang, Z.Y. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev. Cell, 2007, 13(2), 177-189.
[http://dx.doi.org/10.1016/j.devcel.2007.06.009] [PMID: 17681130]
[54]
Bai, M.Y.; Zhang, L.Y.; Gampala, S.S.; Zhu, S.W.; Song, W.Y.; Chong, K.; Wang, Z.Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13839-13844.
[http://dx.doi.org/10.1073/pnas.0706386104] [PMID: 17699623]
[55]
Yu, J.; Jin, X.; Sun, X.; Gao, T.; Chen, X.; She, Y.; Jiang, T.; Chen, S.; Dai, S. Hydrogen peroxide response in leaves of Poplar (Populus simonii × Populus nigra) revealed from physiological and proteomic analyses. Int. J. Mol. Sci., 2017, 18(10)E2085
[http://dx.doi.org/10.3390/ijms18102085] [PMID: 28974034]
[56]
Guo, D.; Yang, Z.P.; Li, H.L.; Wang, Y.; Zhu, J.H.; Peng, S.Q. The 14-3-3 protein HbGF14a interacts with a RING zinc finger protein to regulate expression of the rubber transferase gene in Hevea brasiliensis. J. Exp. Bot., 2018, 69(8), 1903-1912.
[http://dx.doi.org/10.1093/jxb/ery049] [PMID: 29432591]
[57]
Yang, Z.P.; Li, H.L.; Guo, D.; Tang, X.; Peng, S.Q. Identification and characterization of the 14-3-3 gene family in Hevea brasiliensis. Plant Physiol. Biochem., 2014, 80, 121-127.
[http://dx.doi.org/10.1016/j.plaphy.2014.03.034] [PMID: 24751399]
[58]
Suo, J.; Zhao, Q.; Zhang, Z.; Chen, S.; Cao, J.; Liu, G.; Wei, X.; Wang, T.; Yang, C.; Dai, S. Cytological and proteomic analyses of Osmunda cinnamomea germinating spores reveal characteristics of fern spore germination and rhizoid tip-growth. Mol. Cell. Proteomics, 2015, 14(9), 2510-2534.
[http://dx.doi.org/10.1074/mcp.M114.047225] [PMID: 26091698]
[59]
Wu, S.; Hu, C.; Tan, Q.; Nie, Z.; Sun, X. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress. Plant Physiol. Biochem., 2014, 83, 365-374.
[http://dx.doi.org/10.1016/j.plaphy.2014.08.022] [PMID: 25221925]
[60]
Soedjanaatmadja, U.M.; Subroto, T.; Beintema, J.J. Processed products of the hevein precursor in the latex of the rubber tree (Hevea brasiliensis). FEBS Lett., 1995, 363(3), 211-213.
[http://dx.doi.org/10.1016/0014-5793(95)00309-W] [PMID: 7737403]
[61]
Gidrol, X.; Chrestin, H.; Tan, H.L.; Kush, A. Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J. Biol. Chem., 1994, 269(12), 9278-9283.
[PMID: 8132664]
[62]
Wititsuwannakul, R.; Pasitkul, P.; Kanokwiroon, K.; Wititsuwannakul, D. A role for a Hevea latex lectin-like protein in mediating rubber particle aggregation and latex coagulation. Phytochemistry, 2008, 69(2), 339-347.
[http://dx.doi.org/10.1016/j.phytochem.2007.08.019] [PMID: 17897690]
[63]
Wititsuwannakul, R.; Rukseree, K.; Kanokwiroon, K.; Wititsuwannakul, D. A rubber particle protein specific for Hevea latex lectin binding involved in latex coagulation. Phytochemistry, 2008, 69(5), 1111-1118.
[http://dx.doi.org/10.1016/j.phytochem.2007.12.007] [PMID: 18226821]
[64]
Wititsuwannakul, R.; Pasitkul, P.; Jewtragoon, P.; Wititsuwannakul, D. Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation. Phytochemistry, 2008, 69(3), 656-662.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.021] [PMID: 17983633]
[65]
Sando, T.; Takaoka, C.; Mukai, Y.; Yamashita, A.; Hattori, M.; Ogasawara, N.; Fukusaki, E.; Kobayashi, A. Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis. Biosci. Biotechnol. Biochem., 2008, 72(8), 2049-2060.
[http://dx.doi.org/10.1271/bbb.80165] [PMID: 18685207]
[66]
Dai, L.; Kang, G.; Nie, Z.; Li, Y.; Zeng, R. Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. J. Proteomics, 2016, 132, 167-175.
[http://dx.doi.org/10.1016/j.jprot.2015.11.012] [PMID: 26581641]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 11
Year: 2019
Page: [834 - 847]
Pages: 14
DOI: 10.2174/0929866526666190614105856
Price: $65

Article Metrics

PDF: 14
HTML: 1