Simvastatin Loaded Nano Hydroxyapatite in Bone Regeneration: A Study in the Rabbit Femoral Condyle

Author(s): Elna Paul Chalisserry, Seung Yun Nam*, Sukumaran Anil.

Journal Name: Current Drug Delivery

Volume 16 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Enhancement of the bone regenerative capacity of the bone substitutes could be achieved by incorporating bioactive agents such as proteins, and different drugs. Simvastatin, an inhibitor of cholesterol synthesis, stimulates bone formation by enhancing the expression of Bone Morphogenetic Protein-2 (BMP-2) in osteoblasts.

Objective: The objective of the study is to evaluate bone regeneration following simvastatin loaded nano-hydroxyapatite scaffold in the bone defect created on the femoral condyle of rabbits.

Methods: Twelve adult, New Zealand white rabbits were used in the study. Twenty-four defects of size 5x8 mm were created on the lateral aspect of the femoral condyle. The defects were filled with either Nano-Hydroxyapatite (nHA) particles alone or nHA with Simvastatin (SIM). The condyles were retrieved after 8 weeks and analyzed using micro CT and histology.

Results: The Bone Mineral Density (BMD) was significantly higher for the defects filled with SIM loaded nHA compared to the nHA site. Micro CT showed a significantly higher bone volume in the defects filled with Simvastatin loaded site compared to the control site. Quantitative analysis of the histologic sections also showed significantly higher bone volume in the defects filled with SIM loaded nHA (57.2±4.8) compared to nHA alone (50.1±5.5).

Conclusion: Based on the results, it can be concluded that local delivery of simvastatin enhanced the bone regeneration in rabbit femoral condyle. Simvastatin could be used as an activator to enhance bone regeneration in bone defects along with hydroxyapatite ceramics.

Keywords: Bone regeneration, simvastatin, drug delivery system, osteoconductivity, nano-hydroxyapatite, tissue engineering.

[1]
Disa, J.J.; Cordeiro, P.G. Mandible reconstruction with microvascular surgery. Semin. Surg. Oncol., 2000, 19(3), 226-234.
[http://dx.doi.org/10.1002/1098-2388(200010/11)19:3<226:AID-SSU4>3.0.CO;2-N] [PMID: 11135479]
[2]
Ji, W.; Wang, H.; van den Beucken, J.J.; Yang, F.; Walboomers, X.F.; Leeuwenburgh, S.; Jansen, J.A. Local delivery of small and large biomolecules in craniomaxillofacial bone. Adv. Drug Deliv. Rev., 2012, 64(12), 1152-1164.
[http://dx.doi.org/10.1016/j.addr.2012.03.003] [PMID: 22429663]
[3]
Tovar, N.; Jimbo, R.; Gangolli, R.; Perez, L.; Manne, L.; Yoo, D.; Lorenzoni, F.; Witek, L.; Coelho, P.G. Evaluation of bone response to various anorganic bovine bone xenografts: An experimental calvaria defect study. Int. J. Oral Maxillofac. Surg., 2014, 43(2), 251-260.
[http://dx.doi.org/10.1016/j.ijom.2013.07.005] [PMID: 23948358]
[4]
Manzano, M.; Vallet-Regí, M. Revisiting bioceramics: Bone regenerative and local drug delivery systems. Prog. Solid State Chem., 2012, 40, 17-30.
[http://dx.doi.org/10.1016/j.progsolidstchem.2012.05.001]
[5]
Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science, 2002, 295(5557), 1014-1017.
[http://dx.doi.org/10.1126/science.1067404] [PMID: 11834817]
[6]
Drosse, I.; Volkmer, E.; Capanna, R.; De Biase, P.; Mutschler, W.; Schieker, M. Tissue engineering for bone defect healing: An update on a multi-component approach. Injury, 2008, 39(Suppl. 2), S9-S20.
[http://dx.doi.org/10.1016/S0020-1383(08)70011-1] [PMID: 18804579]
[7]
Mouriño, V.; Cattalini, J.P.; Roether, J.A.; Dubey, P.; Roy, I.; Boccaccini, A.R. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin. Drug Deliv., 2013, 10(10), 1353-1365.
[http://dx.doi.org/10.1517/17425247.2013.808183] [PMID: 23777443]
[8]
Yaghi, S.; Elkind, M.S. Lipid control and beyond: Current and future indications for statin therapy in stroke. Curr. Treat. Options Cardiovasc. Med., 2016, 18(4), 27.
[http://dx.doi.org/10.1007/s11936-016-0448-8] [PMID: 26920158]
[9]
Ginter, E.; Simko, V. Statins: The drugs for the 21st century? Bratisl. Lek Listy, 2009, 110(10), 664-668.
[PMID: 20017462]
[10]
Walter, M.S.; Frank, M.J.; Rubert, M.; Monjo, M.; Lyngstadaas, S.P.; Haugen, H.J. Simvastatin-activated implant surface promotes osteoblast differentiation in vitro. J. Biomater. Appl., 2014, 28(6), 897-908.
[http://dx.doi.org/10.1177/0885328213486364] [PMID: 23640858]
[11]
Mundy, G.; Garrett, R.; Harris, S.; Chan, J.; Chen, D.; Rossini, G.; Boyce, B.; Zhao, M.; Gutierrez, G. Stimulation of bone formation in vitro and in rodents by statins. Science, 1999, 286(5446), 1946-1949.
[http://dx.doi.org/10.1126/science.286.5446.1946] [PMID: 10583956]
[12]
Yamashita, M.; Otsuka, F.; Mukai, T.; Otani, H.; Inagaki, K.; Miyoshi, T.; Goto, J.; Yamamura, M.; Makino, H. Simvastatin antagonizes tumor necrosis factor-alpha inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway. J. Endocrinol., 2008, 196(3), 601-613.
[http://dx.doi.org/10.1677/JOE-07-0532] [PMID: 18310456]
[13]
Shah, S.R.; Werlang, C.A.; Kasper, F.K.; Mikos, A.G. Novel applications of statins for bone regeneration. Natl. Sci. Rev., 2015, 2(1), 85-99.
[http://dx.doi.org/10.1093/nsr/nwu028] [PMID: 26543666]
[14]
Maeda, T.; Kawane, T.; Horiuchi, N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology, 2003, 144(2), 681-692.
[http://dx.doi.org/10.1210/en.2002-220682] [PMID: 12538631]
[15]
Sallam, M.M. The influence of oral administration of simvastatin on delayed non-union facial fractures-clinical study. J. Am. Sci., 2011, 7, 812-818.
[16]
Liu, C.; Wu, Z.; Sun, H.C. The effect of simvastatin on mRNA expression of transforming growth factor-beta1, bone morphogenetic protein-2 and vascular endothelial growth factor in tooth extraction socket. Int. J. Oral Sci., 2009, 1(2), 90-98.
[http://dx.doi.org/10.4248/ijos.08011] [PMID: 20687301]
[17]
Lin, S.K.; Kok, S.H.; Lee, Y.L.; Hou, K.L.; Lin, Y.T.; Chen, M.H.; Wang, C.C.; Hong, C.Y. Simvastatin as a novel strategy to alleviate periapical lesions. J. Endod., 2009, 35(5), 657-662.
[http://dx.doi.org/10.1016/j.joen.2009.02.004] [PMID: 19410078]
[18]
Pradeep, A.R.; Priyanka, N.; Kalra, N.; Naik, S.B.; Singh, S.P.; Martande, S. Clinical efficacy of subgingivally delivered 1.2-mg simvastatin in the treatment of individuals with Class II furcation defects: A randomized controlled clinical trial. J. Periodontol., 2012, 83(12), 1472-1479.
[http://dx.doi.org/10.1902/jop.2012.110716] [PMID: 22348696]
[19]
Wu, Z.; Liu, C.; Zang, G.; Sun, H. The effect of simvastatin on remodelling of the alveolar bone following tooth extraction. Int. J. Oral Maxillofac. Surg., 2008, 37(2), 170-176.
[http://dx.doi.org/10.1016/j.ijom.2007.06.018] [PMID: 17804200]
[20]
Namazi, H. Effects of simvastatin on osseointegration in a canine total hip arthroplasty model an experimental study: A novel molecular mechanism. J. Arthroplasty, 2012, 27(1), 162-163.
[http://dx.doi.org/10.1016/j.arth.2011.09.002] [PMID: 22019326]
[21]
Stadlinger, B.; Korn, P.; Tödtmann, N.; Eckelt, U.; Range, U.; Bürki, A.; Ferguson, S.J.; Kramer, I.; Kautz, A.; Schnabelrauch, M.; Kneissel, M.; Schlottig, F. Osseointegration of biochemically modified implants in an osteoporosis rodent model. Eur. Cell. Mater., 2013, 25, 326-340.
[http://dx.doi.org/10.22203/eCM.v025a23] [PMID: 23832686]
[22]
Yin, H.; Li, J.; Yu, X.; Fu, Z. Effects of simvastatin on osseointegration in a canine total hip arthroplasty model: An experimental study. J. Arthroplasty, 2011, 26(8), 1534-1539.
[http://dx.doi.org/10.1016/j.arth.2010.10.008] [PMID: 21256697]
[23]
Nyan, M.; Sato, D.; Oda, M.; Machida, T.; Kobayashi, H.; Nakamura, T.; Kasugai, S. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. J. Pharmacol. Sci., 2007, 104(4), 384-386.
[http://dx.doi.org/10.1254/jphs.SC0070184] [PMID: 17721043]
[24]
Fang, W.; Zhao, S.; He, F.; Liu, L.; Yang, G. Influence of simvastatin-loaded implants on osseointegration in an ovariectomized animal model. BioMed Res. Int., 2015, •••, 2015831504.
[http://dx.doi.org/10.1155/2015/831504] [PMID: 25893198]
[25]
Lee, Y.; Schmid, M.J.; Marx, D.B.; Beatty, M.W.; Cullen, D.M.; Collins, M.E.; Reinhardt, R.A. The effect of local simvastatin delivery strategies on mandibular bone formation in vivo. Biomaterials, 2008, 29(12), 1940-1949.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.045] [PMID: 18255137]
[26]
Calixto, J.C.; Lima, C.E.; Frederico, L.; Lima, R.P.; Anbinder, A.L. The influence of local administration of simvastatin in calvarial bone healing in rats. J. Craniomaxillofac. Surg., 2011, 39(3), 215-220.
[http://dx.doi.org/10.1016/j.jcms.2010.03.009] [PMID: 20456964]
[27]
Yun, P.Y.; Kim, Y.K.; Jeong, K.I.; Park, J.C.; Choi, Y.J. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: Two pilot studies in animal bony defect model. J. Craniomaxillofac. Surg., 2014, 42(8), 1909-1917.
[http://dx.doi.org/10.1016/j.jcms.2014.07.011] [PMID: 25443868]
[28]
Preethanath, R.S.; Rajesh, P.; Varma, H.; Anil, S.; Jansen, J.A.; van den Beucken, J.J. Combined treatment effects using bioactive-coated implants and ceramic granulate in a rabbit Femoral Condyle Model. Clin. Implant Dent. Relat. Res., 2016, 18(4), 666-677.
[http://dx.doi.org/10.1111/cid.12358] [PMID: 26115085]
[29]
Venkatesan, J.; Kim, S.K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review. J. Biomed. Nanotechnol., 2014, 10(10), 3124-3140.
[http://dx.doi.org/10.1166/jbn.2014.1893] [PMID: 25992432]
[30]
Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res., 2002, 62(4), 600-612.
[http://dx.doi.org/10.1002/jbm.10280] [PMID: 12221709]
[31]
Rojbani, H.; Nyan, M.; Ohya, K.; Kasugai, S. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J. Biomed. Mater. Res. A, 2011, 98(4), 488-498.
[http://dx.doi.org/10.1002/jbm.a.33117] [PMID: 21681941]
[32]
Nyan, M.; Sato, D.; Kihara, H.; Machida, T.; Ohya, K.; Kasugai, S. Effects of the combination with alpha-tricalcium phosphate and simvastatin on bone regeneration. Clin. Oral Implants Res., 2009, 20(3), 280-287.
[http://dx.doi.org/10.1111/j.1600-0501.2008.01639.x] [PMID: 19397639]
[33]
Ezirganlı, Ş.; Kazancıoğlu, H.O.; Mihmanlı, A.; Aydın, M.S.; Sharifov, R.; Alkan, A. The effect of local simvastatin application on critical size defects in the diabetic rats. Clin. Oral Implants Res., 2014, 25(8), 969-976.
[http://dx.doi.org/10.1111/clr.12177] [PMID: 23600677]
[34]
Naito, Y.; Terukina, T.; Galli, S.; Kozai, Y.; Vandeweghe, S.; Tagami, T.; Ozeki, T.; Ichikawa, T.; Coelho, P.G.; Jimbo, R. The effect of simvastatin-loaded polymeric microspheres in a critical size bone defect in the rabbit calvaria. Int. J. Pharm., 2014, 461(1-2), 157-162.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.046] [PMID: 24296045]
[35]
Mestres, G.; Kugiejko, K.; Pastorino, D.; Unosson, J.; Öhman, C.; Karlsson Ott, M.; Ginebra, M.P.; Persson, C. Changes in the drug release pattern of fresh and set simvastatin-loaded brushite cement. Mater. Sci. Eng. C, 2016, 58, 88-96.
[http://dx.doi.org/10.1016/j.msec.2015.08.016] [PMID: 26478290]
[36]
Papadimitriou, K.; Karkavelas, G.; Vouros, I.; Kessopoulou, E.; Konstantinidis, A. Effects of local application of simvastatin on bone regeneration in femoral bone defects in rabbit. J. Craniomaxillofac. Surg., 2015, 43(2), 232-237.
[http://dx.doi.org/10.1016/j.jcms.2014.11.011] [PMID: 25534041]
[37]
Stein, D.; Lee, Y.; Schmid, M.J.; Killpack, B.; Genrich, M.A.; Narayana, N.; Marx, D.B.; Cullen, D.M.; Reinhardt, R.A. Local simvastatin effects on mandibular bone growth and inflammation. J. Periodontol., 2005, 76(11), 1861-1870.
[http://dx.doi.org/10.1902/jop.2005.76.11.1861] [PMID: 16274305]
[38]
AlFarraj, A.A.; Sukumaran, A.; Al Amri, M.D.; Van Oirschot, A.B.; Jansen, J.A. A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles. Odontology, 2018, 106(1), 37-44.
[http://dx.doi.org/10.1007/s10266-017-0296-3] [PMID: 28194543]
[39]
Huey, D.J.; Hu, J.C.; Athanasiou, K.A. Unlike bone, cartilage regeneration remains elusive. Science, 2012, 338(6109), 917-921.
[http://dx.doi.org/10.1126/science.1222454] [PMID: 23161992]
[40]
Hench, L.L.; Jones, J.R. Bioactive glasses: Frontiers and challenges. Front. Bioeng. Biotechnol., 2015, 3, 194.
[http://dx.doi.org/10.3389/fbioe.2015.00194] [PMID: 26649290]
[41]
Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater., 2011, 7(7), 2769-2781.
[http://dx.doi.org/10.1016/j.actbio.2011.03.019] [PMID: 21440094]
[42]
Poh, C.K.; Ng, S.; Lim, T.Y.; Tan, H.C.; Loo, J.; Wang, W. In vitro characterizations of mesoporous hydroxyapatite as a controlled release delivery device for VEGF in orthopedic applications. J. Biomed. Mater. Res. A, 2012, 100(11), 3143-3150.
[http://dx.doi.org/10.1002/jbm.a.34252] [PMID: 22826183]
[43]
Langer, R. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Acc. Chem. Res., 2000, 33(2), 94-101.
[http://dx.doi.org/10.1021/ar9800993] [PMID: 10673317]
[44]
Rahim, I.; Salt, S.; Heliotis, M. Successful long-term mandibular reconstruction and rehabilitation using non-vascularised autologous bone graft and recombinant human BMP-7 with subsequent endosseous implant in a patient with bisphosphonate-related osteonecrosis of the jaw. Br. J. Oral Maxillofac. Surg., 2015, 53(9), 870-874.
[http://dx.doi.org/10.1016/j.bjoms.2015.08.006] [PMID: 26392134]
[45]
Zhang, Y.; Jing, D.; Buser, D.; Sculean, A.; Chandad, F.; Miron, R.J. Bone grafting material in combination with Osteogain for bone repair: A rat histomorphometric study. Clin. Oral Investig., 2016, 20(3), 589-595.
[http://dx.doi.org/10.1007/s00784-015-1532-2] [PMID: 26174082]
[46]
Baek, K.H.; Lee, W.Y.; Oh, K.W.; Tae, H.J.; Lee, J.M.; Lee, E.J.; Han, J.H.; Kang, M.I.; Cha, B.Y.; Lee, K.W.; Son, H.Y.; Kang, S.K. The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells. J. Korean Med. Sci., 2005, 20(3), 438-444.
[http://dx.doi.org/10.3346/jkms.2005.20.3.438] [PMID: 15953866]
[47]
Izumo, N.; Fujita, T.; Nakamuta, H.; Koida, M. Lipophilic statins can be osteogenic by promoting osteoblastic calcification in a Cbfa1- and BMP-2-independent manner. Methods Find. Exp. Clin. Pharmacol., 2001, 23(7), 389-394.
[http://dx.doi.org/10.1358/mf.2001.23.7.662123] [PMID: 11771853]
[48]
Schnettler, R.; Alt, V.; Dingeldein, E.; Pfefferle, H.J.; Kilian, O.; Meyer, C.; Heiss, C.; Wenisch, S. Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Biomaterials, 2003, 24(25), 4603-4608.
[http://dx.doi.org/10.1016/S0142-9612(03)00354-5] [PMID: 12951003]
[49]
Maeda, T.; Matsunuma, A.; Kawane, T.; Horiuchi, N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem. Biophys. Res. Commun., 2001, 280(3), 874-877.
[http://dx.doi.org/10.1006/bbrc.2000.4232] [PMID: 11162604]
[50]
Montagnani, A.; Gonnelli, S.; Cepollaro, C.; Pacini, S.; Campagna, M.S.; Franci, M.B.; Lucani, B.; Gennari, C. Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women: A 1-year longitudinal study. Bone, 2003, 32(4), 427-433.
[http://dx.doi.org/10.1016/S8756-3282(03)00034-6] [PMID: 12689687]
[51]
Meier, C.R.; Schlienger, R.G.; Kraenzlin, M.E.; Schlegel, B.; Jick, H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA, 2000, 283(24), 3205-3210.
[http://dx.doi.org/10.1001/jama.283.24.3205] [PMID: 10866867]
[52]
Chan, K.A.; Andrade, S.E.; Boles, M.; Buist, D.S.; Chase, G.A.; Donahue, J.G.; Goodman, M.J.; Gurwitz, J.H.; LaCroix, A.Z.; Platt, R. Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet, 2000, 355(9222), 2185-2188.
[http://dx.doi.org/10.1016/S0140-6736(00)02400-4] [PMID: 10881890]
[53]
Benoit, D.S.; Nuttelman, C.R.; Collins, S.D.; Anseth, K.S. Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration. Biomaterials, 2006, 27(36), 6102-6110.
[http://dx.doi.org/10.1016/j.biomaterials.2006.06.031] [PMID: 16860387]
[54]
Thylin, M.R.; McConnell, J.C.; Schmid, M.J.; Reckling, R.R.; Ojha, J.; Bhattacharyya, I.; Marx, D.B.; Reinhardt, R.A. Effects of simvastatin gels on murine calvarial bone. J. Periodontol., 2002, 73(10), 1141-1148.
[http://dx.doi.org/10.1902/jop.2002.73.10.1141] [PMID: 12416771]
[55]
Sato, D.; Nishimura, K.; Ishioka, T.; Kondo, H.; Kuroda, S.; Kasugai, S. Local application of simvastatin to rat iincisor socket: Carrier-dependent effect on bone augmentation. J. Oral Tissue Eng., 2005, 2, 81-85.
[http://dx.doi.org/10.11223/jarde.2.81]
[56]
Yin, H.; Li, Y.G.; Si, M.; Li, J.M. Simvastatin-loaded macroporous calcium phosphate cement: Preparation, in vitro characterization, and evaluation of in vivo performance. J. Biomed. Mater. Res. A, 2012, 100(11), 2991-3000.
[http://dx.doi.org/10.1002/jbm.a.34228] [PMID: 22700467]
[57]
Chou, J.; Ito, T.; Bishop, D.; Otsuka, M.; Ben-Nissan, B.; Milthorpe, B. Controlled release of simvastatin from biomimetic β-TCP drug delivery system. PLoS One, 2013, 8(1), e54676.
[http://dx.doi.org/10.1371/journal.pone.0054676] [PMID: 23349949]
[58]
Webster, T.J.; Ergun, C.; Doremus, R.H.; Siegel, R.W.; Bizios, R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials, 2001, 22(11), 1327-1333.
[http://dx.doi.org/10.1016/S0142-9612(00)00285-4] [PMID: 11336305]
[59]
Murugan, R.; Ramakrishna, S. Aqueous mediated synthesis of bioresorbable nanocrystalline hydroxyapatite. J. Cryst. Growth, 2005, 274, 209-213.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.09.069]
[60]
Kwon, Y.D.; Yang, D.H.; Lee, D.W. A titanium surface-modified with nano-sized hydroxyapatite and simvastatin enhances bone formation and osseintegration. J. Biomed. Nanotechnol., 2015, 11(6), 1007-1015.
[http://dx.doi.org/10.1166/jbn.2015.2039] [PMID: 26353590]
[61]
Mansour, G.; Al Ashwah, A.; Koura, A. Evaluation of simvastatin grafting around immediate dental implants in dogs. Implant Dent., 2014, 23(2), 195-199.
[http://dx.doi.org/10.1097/ID.0000000000000051] [PMID: 24637528]
[62]
Masaeli, R.; Jafarzadeh Kashi, T.S.; Dinarvand, R.; Rakhshan, V.; Shahoon, H.; Hooshmand, B.; Mashhadi Abbas, F.; Raz, M.; Rajabnejad, A.; Eslami, H.; Khoshroo, K.; Tahriri, M.; Tayebi, L. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced Calcium Phosphate Cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Mater. Sci. Eng. C, 2016, 69, 171-183.
[http://dx.doi.org/10.1016/j.msec.2016.06.033] [PMID: 27612702]
[63]
Tao, Z.S.; Zhou, W.S.; Tu, K.K.; Huang, Z.L.; Zhou, Q.; Sun, T.; Lv, Y.X.; Cui, W.; Yang, L. The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on osseous integration of hydroxyapatite-coated titanium implants in the femur of ovariectomized rats. Injury, 2015, 46(11), 2164-2169.
[http://dx.doi.org/10.1016/j.injury.2015.08.034] [PMID: 26404665]
[64]
Canal, C.; Khurana, K.; Gallinetti, S.; Bhatt, S.; Pulpytel, J.; Arefi-Khonsari, F.; Ginebra, M-P. Design of calcium phosphate scaffolds with controlled simvastatin release by plasma polymerisation. Polymer (Guildf.), 2016, 92, 170-178.
[http://dx.doi.org/10.1016/j.polymer.2016.03.069]
[65]
Ziegler, J.; Mayr-Wohlfart, U.; Kessler, S.; Breitig, D.; Günther, K.P. Adsorption and release properties of growth factors from biodegradable implants. J. Biomed. Mater. Res., 2002, 59(3), 422-428.
[http://dx.doi.org/10.1002/jbm.1258] [PMID: 11774299]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2019
Page: [530 - 537]
Pages: 8
DOI: 10.2174/1567201816666190610164303

Article Metrics

PDF: 34
HTML: 4
EPUB: 2
PRC: 2