Comparison Among Five Eucalyptus Species Based on Their Leaf Contents of Some Primary and Secondary Metabolites

Author(s): Alyaa Nasr, Tehmina Saleem Khan, Shi-Ping Huang, Bin Wen, Jian-Wen Shao*, Guo-Ping Zhu*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Eucalyptus belongs to the Myrtaceae family. It is the most planted hardwood forest crop worldwide, representing a global renewable resource of fiber, pharmaceuticals and energy.

Objective: To compare the five species, E. maidenii, E. robusta, E. citriodora, E. tereticornis and E. camaldulensis, seeking for the richest source of nutrients and pharmaceuticals.

Methodology: Eucalyptus samples were subjected to some chemical determinations for both primary and secondary metabolites to verify their nutritional and pharmaceutical importance related to different extracts. GC-MS analysis was applied to detect the presence of some individual phenolic constituents in their leaves.

Results: E. robusta recorded the maximum contents of carbohydrates (40.07%) and protein (31.91%). While E. camaldulensis contained the highest contents of total phenolic compounds (46.56 mg/g), tannins (40.01 mg/g) and antioxidant activities assayed by the phosphomolybednum method (57.60 mg/g), followed by E. citridora. However, E. tereticornis exhibited the highest reducing power ability (151.23 mg/g). The GC-MS highlighted 20 phenolic constituents and antioxidants which varied in their abundance in Eucalyptus leaves, 8 individual phenolics (hydroquinone, hesperitin, pyrogallol, resorcinol, protocatechuic acid, naringenin, chlorogenic acid and catechin) were maximally recorded with E. camaldulensis and secondly, with E. citridora in case of at least 5 components. Nevertheless, gallic and quinic acids were more abundant in the leaves of E. tereticornis, which may explain its high corresponding reducing powers.

Conclusion: Acetone-water combination has enhanced phenolics extraction from Eucalyptus tissues. This is the first report aiming to compare between the aforementioned Eucalyptus species highlighting either their nutritional or medicinal importance.

Keywords: Eucalyptus, carbohydrates, protein, phenolic compounds, antioxidants, GC-MS.

[1]
Leicach, S.R.; Grass, M.A.Y.; Chludil, H.D.; Garau, A.M.; Guarnaschelli, A.B.; Fernandez, P.C. 2012, Chemical Defenses in Eucalyptus Species: A Sustainable Strategy Based on Antique Knowledge to Diminish Agrochemical Dependency, New Advances and Contributions to Forestry Research, Dr. Dr. Andrew A. OtengAmoako (Ed.), ISBN: 978-953-51-0529-9. InTech,, 2012, 14, 225- 256.
[2]
Ohra-aho, T.; Gomes, F.J.B.; Colodette, J.L.; Tamminen, T. Carbohydrate composition in Eucalyptus wood and pulps – comparison between Py-GC/MS and acid hydrolysis. J. Anal. Appl. Pyrolysis, 2018, 129, 215-220. [http://dx.doi.org/10.1016/j.jaap.2017.11.010].
[3]
Khattab, H.; Khattab, I. Responses of eucalypt trees to the insect feeding (Gall-Forming Psyllid). Int. J. Agric. Biol., 2005, 7, 979-984.
[4]
Boulekbache-Makhlouf, L.; Meudec, E.; Mazauric, J.P.; Madani, K.; Cheynier, V. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry. Phytochem. Anal., 2013, 24(2), 162-170. [http://dx.doi.org/10.1002/pca.2396]. [PMID: 22930658].
[5]
Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 2013, 72, 1-20. [http://dx.doi.org/10.1016/j.plaphy.2013.05.009]. [PMID: 23774057].
[6]
Gharekhani, M.; Ghorbani, M.; Rasoulnejad, N. Microwave-assistedextraction of phenolic and flavonoid compounds from Eucalyptus camaldulensis Dehn leaves as compared with ultrasound-assisted extraction. Lat. Am. Appl. Res., 2012, 42, 305-310.
[7]
Gutmann, A.; Bungaruang, L.; Weber, H.; Leypold, M.; Breinbauer, R.; Nidetzky, B. Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase catalysed cascade reactions. Green Chem., 2014, 16, 4417-4425. [http://dx.doi.org/10.1039/C4GC00960F].
[8]
Takahashi, T.; Kokubo, R.; Sakaino, M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett. Appl. Microbiol., 2004, 39(1), 60-64. [http://dx.doi.org/10.1111/j.1472-765X.2004.01538.x]. [PMID: 15189289].
[9]
Pengelly, A. Eucalyptus-herbal medicine and essential oil: Non-volatile constituents. Aroma Ther. Today, 2018, 71, 8-11.
[10]
Miguel, M.G.; Gago, C.; Antunes, M.D.; Lagoas, S.; Faleiro, M.L.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Figueiredo, A.C. Antibacterial, antioxidant, and antiproliferative activities of Corymbia citriodora and the essential oils of eight Eucalyptus species. Medicines (Basel), 2018, 5(3), E61. [http://dx.doi.org/10.3390/medicines5030061]. [PMID: 29933560].
[11]
Ammer, M.R.; Zaman, S.; Khalid, M.; Bilal, M.; Erum, S.; Huang, D.; Che, S. Optimization of antibacterial activity of Eucalyptus tereticornis leaf extracts against Escherichia coli through response surface methodology. J. Rad. Res. App. Sci., 2016, 9, 376-385. [http://dx.doi.org/10.1016/j.jrras.2016.05.001].
[12]
Sastya, S.; Kumar, R.R.; Vatsya, S. In vitro and in-vivo efficacy of Eucalyptus citriodora Leaf in gastrointestinal nematodes of goats. J. Entomol. Zool. Stud., 2018, 6(5), 25-30.
[13]
Bencha, S.; Abdelkrim, M.H.H. Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chem. Biod., 2018, 15(8), e1800202. [http://dx.doi.org/10.1002/cbdv.201800202].
[14]
Muhammed, D.; Dada, E.O.; Alo, A.A. Antibacterial property of ethanolic leaf extract of Eucalyptus citriodora Hook on clinical and typed isolates of Escherichia coli. South Asian J. Res. Microbiol., 2018, 2(1), 1-8.
[15]
Üstüner, T.; Kordali, S.; Bozhüyük, A.U.; Kesdek, M. Investigation of pesticidal activities of essential oil of Eucalyptus camaldulensis Dehnh. Rec. Nat. Prod., 2018, 12(6), 557-568. [http://dx.doi.org/10.25135/rnp.64.18.02.088].
[16]
Nogueira, M.C.J.A.; De Araujo, V.A.; Vasconcelos, J.S.; Da Cruz, J.N.; Vasconcelos, J.C.S.; Prataviera, F.; Christoforo, A.L.; Lahr, F.A.R. Characterization of Eucalyptus maidenii timber for structural application: Physical and mechanical properties at two moisture conditions. South-east Eur. Forum, 2018, 9(2)Doi.org/10.15177/seefor.18-10
[17]
Vuong, Q.V.; Hirun, S.; Chuen, T.L.K.; Goldsmith, C.D.; Munro, B.; Bowyer, M.C.; Chalmers, A.C.; Sakoff, J.A.; Phillips, P.A.; Scarlett, C.J. Physicochemical, antioxidant and anti-cancer activity of a Eucalyptus robusta (Sm.) leaf aqueous extract. Ind. Crops Prod., 2015, 64, 167-174. [http://dx.doi.org/10.1016/j.indcrop.2014.10.061].
[18]
Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 2010, 15(12), 8602-8617. [http://dx.doi.org/10.3390/molecules15128602]. [PMID: 21116229].
[19]
Vuong, Q.V.; Chalmers, A.C.; Jyoti, B.D.; Bowyer, M.C.; Scarlett, C.J. Botanical, phytochemical, and anticancer properties of the Eucalyptus species, a review. Chem. Biodivers., 2015, 12(6), 907-924. [http://dx.doi.org/10.1002/cbdv.201400327]. [PMID: 26080737].
[20]
Ashraf, A.; Sarfraz, R.A.; Anwar, F.; Shahid, S.A.; Alkharfy, K.M. Chemical composition and biological activities of leaves of Ziziphus mauritiana L. native to Pakistan. Pak. J. Bot., 2015, 47, 367-376.
[21]
Bhuyan, D.J.; Vuong, Q.V.; Bond, D.R.; Chalmers, A.C.; Bowyer, M.C.; Scarlett, C.J. Eucalyptus microcorys leaf extract derived HPLC-fraction reduces the viability of MIA PaCa-2 cells by inducing apoptosis and arresting cell cycle. Biomed. Pharmacother., 2018, 105, 449-460. [http://dx.doi.org/10.1016/j.biopha.2018.05.150]. [PMID: 29879629].
[22]
Pengkumsri, N.; Chaiyasut, C.; Sivamaruthi, B.S.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Sirisattha, P.S.; Chaiyasut, K.; Kesika, P. The influence of extraction methods on composition and antioxidant properties of rice bran oil. Food Sci. Technol. (Campinas), 2015, 35(3), 493-501. [http://dx.doi.org/10.1590/1678-457X.6730].
[23]
Sadasivam, S.; Manickam, A. Biochemical Methods for Agricultural Sciences; Wiley Eastern Limited: New Delhi, 1992.
[24]
Rausch, T. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia, 1981, 78, 237-251. [http://dx.doi.org/10.1007/BF00008520].
[25]
Hartree, E.F. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 1972, 48(2), 422-427. [http://dx.doi.org/10.1016/0003-2697(72)90094-2]. [PMID: 4115981].
[26]
Jindal, K.K.; Singh, R.N. Phenolic content in male and female Carica papaya: a possible physiological marker for sex identification of vegetable seedlings. Physiol. Plant., 1975, 33, 104-107. [http://dx.doi.org/10.1111/j.1399-3054.1975.tb03774.x].
[27]
Tambe, V.D.; Bhambar, S.R. Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus tiliaceus Linn. wood extracts. Res. Rev.: J. Pharm. Phyto., 2014, 2(4), 2332-2347.
[28]
Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food Drug. Anal., 2002, 10(3), 178-182.
[29]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341. [http://dx.doi.org/10.1006/abio.1999.4019]. [PMID: 10222007].
[30]
Oyaizu, M. Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucosamine. J. Nutr., 1986, 44, 307-315.
[31]
Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed; Wiley & Sons, 2009. [http://dx.doi.org/10.1002/9780470742761]
[32]
El-Moein, N.M.; Mahmoud, E.A.; Shalaby, E.A. Antioxidant mechanism of active ingredients separated from Eucalyptus globulus. Organic Chem. Curr. Res, 2012, 106
[33]
Coutinho, P.M.; Stam, M.; Blanc, E.; Henrissat, B. Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci., 2003, 8(12), 563-565. [http://dx.doi.org/10.1016/j.tplants.2003.10.002]. [PMID: 14659702].
[34]
Pinard, D.; Mizrachi, E.; Hefer, C.A.; Kersting, A.R.; Joubert, F.; Douglas, C.J.; Mansfield, S.D.; Myburg, A.A. Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis. BMC Genomics, 2015, 16(1), 402. [http://dx.doi.org/10.1186/s12864-015-1571-8]. [PMID: 25994181].
[35]
Wu, H.; McAlpine, C.A.; Seabrook, L.M. The dietary preferences of koalas, Phascolarctos cinereus, in southwest Queensland, Australia. Zoo Biol., 2012, 36(1), 52-58.
[36]
Wallis, I.R.; Nicolle, D.; Foley, W.J. Available and not total nitrogen in leaves explains key chemical differences between the eucalypt subgenera. For. Ecol. Manage., 2010, 260(5), 814-821. [http://dx.doi.org/10.1016/j.foreco.2010.05.040].
[37]
Jaroszyńska, J. The influence of solvent choice on the recovery of phytogenic phenolic compounds extracted from plant material. Pol. J. Environ. Stud., 2003, 12(4), 481-484.
[38]
Tugizimana, F.; Piater, L. Dubery, I. Plant metabolomics: A new frontier in phytochemical analysis. S. Afr. J. Sci., 2013, 109(5/6), 1-11. [http://dx.doi.org/10.1590/sajs.2013/20120005].
[39]
Koudoro, Y.A.; Dossa, C.P.A.; Yèhouénou, B.B.; Tchobo, F.P.; Alitonou, G.A.; Avlessi, F.; Sohounhloué, D.C.K. Phytochemistry, antimicrobial and antiradical activities evaluation of essential oils, ethanolic and hydroethanolic extracts of the leaves of Eucalyptus citriodora HOOK from Benin. Sci.Study Res, 2014, 15 1), 059- 073.
[40]
Ashraf, A.; Sarfraz, R.A.; Mahmood, A.; Dina, M. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind. Crops Prod., 2015, 74, 241-248. [http://dx.doi.org/10.1016/j.indcrop.2015.04.059].
[41]
Malik, B.; Sharma, N.R.; Soni, G. Influence of agro-climatic conditions on antioxidant potential of Mentha species. J. Pharm. Res., 2013, 7, 427-432. [http://dx.doi.org/10.1016/j.jopr.2013.05.014].
[42]
Proestos, C.; Komaitis, M. Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC coupled to diode array detector (DAD) and GC-MS after silylation. Foods, 2013, 2(1), 90-99. [http://dx.doi.org/10.3390/foods2010090]. [PMID: 28239100].
[43]
Maestri, D.M.; Nepote, V.; Lamarque, A.L.; Zygadlo, J.A. Natural products as antioxidants. Phytochemistry. Adv. Res., 2006, 105-135.
[44]
Kilulya, K.F.; Msagati, T.A.M.; Mamba, B.B.; Ngila, J.C.; Bush, T. Effect of site, species and tree size on the quantitative variation of lipophilic extractives in Eucalyptus woods used for pulping in South Africa. Ind. Crops Prod., 2014, 56, 166-174. [http://dx.doi.org/10.1016/j.indcrop.2014.02.017].
[45]
Kołodziejczyk, K.; Sójka, M.; Abadias, M.; Vióas, I.; Guyot, S.; Baron, A. Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind. Crops Prod., 2013, 51, 279-288. [http://dx.doi.org/10.1016/j.indcrop.2013.09.030].
[46]
Nasr, A.; Zhou, X.; Huang, S.P.; Wang, Y.; Li, X.; Zhu, G.P. Comparative effects of some extraction solvents on the antimicrobial activity of Eucalyptus camaldulensis leaf, bud, capsule and seed crude extracts. Nat. Prod. Res., 2018, 1-6. [http://dx.doi.org/10.1080/14786419.2018.1455049]. [PMID: 29577746].
[47]
Ghasemian, M.E. Camaldulensis extract as a preventive to the vibriosis in western white shrimp (Litopenaeus vannamei) in Bushehr Province. J Fisheries Livest Prod., 2018, 6, 268. [http://dx.doi.org/10.4172/2332-2608.1000268].
[48]
Vázquez, G.; Santos, J.; Freire, M.S.; Antorrena, G.; González-Álvarez, J. Extraction of antioxidants from eucalyptus (Eucalyptus globulus) bark. Wood Sci. Technol., 2012, 46, 443-457. [http://dx.doi.org/10.1007/s00226-011-0418-y].
[49]
Jadhav, V.; Deshmukh, S.; Mahadkar, S. Evaluation of antioxidant potential of Clitoria ternatea L. Int. J. Pharma Sci., 2013, 5, 595-599.
[50]
Santos, S.A.O.; Vilela, C.; Domingues, R.M.A.; Oliveira, C.S.D.; Villaverde, J.J.; Freire, C.S.R.; Neto, C.P.; Silvestre, A.J.D. Secondary metabolites from Eucalyptus grandis wood cultivated in Portugal, Brazil and South Africa. Ind. Crops Prod., 2017, 95, 357-364. [http://dx.doi.org/10.1016/j.indcrop.2016.10.044].
[51]
Singab, A.N.; Ayoub, N.; Al-Sayed, E.; Martiskainen, O.; Sinkkonen, J.; Pihlaja, K. Phenolic constituents of Eucalyptus camaldulensis Dehnh, with potential antioxidant and cytotoxic activities. Rec. Nat. Prod., 2011, 5(4), 271-280.
[52]
Lee, S.W.; Hung, W.J.; Chen, Z.T. A new flavonol from the kino of Eucalyptus citriodora. Nat. Prod. Res., 2017, 31(1), 37-42. [http://dx.doi.org/10.1080/14786419.2016.1209667]. [PMID: 27426624].
[53]
Hung, W.J.; Chen, Z.T.; Lee, S.W. Antioxidant and lipoxygenase inhibitory activity of the kino of Eucalyptus citriodora. Indian J. Pharm. Sci., 2018, 80(5), 955-959. [http://dx.doi.org/10.4172/pharmaceutical-sciences.1000444].
[54]
Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Neto, C.P.; Silvestre, A.J.D. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 938, 65-74. [http://dx.doi.org/10.1016/j.jchromb.2013.08.034]. [PMID: 24055752].
[55]
Boulekbache-Makhlouf, L.; Meudec, E.; Chibane, M.; Mazauric, J.P.; Cheynier, V.; Slimani, S.; Henry, M.; Madani, K. Analysis of phenolic compounds in fruit of Eucalyptus globulus cultivated in Algeria by high performance liquid chromatography-diode array detection mass spectrometry. J. Agric. Food Chem., 2010, 58, 12615-1262. [http://dx.doi.org/10.1021/jf1029509]. [PMID: 21121679].
[56]
Pero, R.W.; Lund, H.; Leanderson, T. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother. Res., 2009, 23(3), 335-346. [http://dx.doi.org/10.1002/ptr.2628]. [PMID: 18844285].
[57]
Inbathamizh, L.; Padmini, E. Quinic acid as a potent drug candidate for prostate cancer-a comparative pharmacokinetic approach. Asian J. Pharm. Clin. Res., 2013, 6(4), 106-112.
[58]
Robinson, W.E.; Jr, H. IV Integrase: the next target? Infect. Med., 1998, 15, 129-137.
[59]
Marsh, K.B.; Boldingh, H.L.; Shilton, R.S.; Laing, W.A. Changes in quinic acid metabolism during fruit development in three kiwifruit species. Funct. Plant Biol., 2009, 36, 463-470. [http://dx.doi.org/10.1071/FP08240].
[60]
Makena, P.S.; Pierce, S.C.; Chung, K.T.; Sinclair, S.E. Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA. Environ. Mol. Mutagen., 2009, 50(6), 451-459. [http://dx.doi.org/10.1002/em.20487]. [PMID: 19326464].
[61]
Luo, H.; Jiang, B.H.; King, S.M.; Chen, Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer, 2008, 60(6), 800-809. [http://dx.doi.org/10.1080/01635580802100851]. [PMID: 19005980].
[62]
Hsu, Y.L.; Uen, Y.H.; Chen, Y.; Liang, H.L.; Kuo, P.L. Tricetin, a dietary flavonoid, inhibits proliferation of human breast adenocarcinoma mcf-7 cells by blocking cell cycle progression and inducing apoptosis. J. Agric. Food Chem., 2009, 57(18), 8688-8695. [http://dx.doi.org/10.1021/jf901053x]. [PMID: 19705844].
[63]
Puig, C.G.; Reigosa, M.J.; Valentão, P.; Andrade, P.B.; Pedro, N. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: biochemistry and effects of its aqueous extract. Plos One,, 2018, Doi.org/10.1371/journal.pone.0192872. [http://dx.doi.org/10.1371/journal.pone.0192872].
[64]
Ramkissoon, J.S.; Mahomoodally, M.F.; Ahmed, N.; Subratty, A.H. Relationship between total phenolic content, antioxidant potential, and antiglycation abilities of common culinary herbs and spices. J. Med. Food, 2012, 15(12), 1116-1123. [http://dx.doi.org/10.1089/jmf.2012.0113]. [PMID: 23134460].
[65]
Gomes, F.; Martins, N.; Barros, L.; Rodrigues, M.E.; Oliveira, M.B.P.P.; Henriques, M.; Ferreira, I.C.F.R. Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Ind. Crops Prod., 2018, 112, 515-520. [http://dx.doi.org/10.1016/j.indcrop.2017.12.027].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 7
Year: 2019
Page: [573 - 587]
Pages: 15
DOI: 10.2174/1389201020666190610100122
Price: $65

Article Metrics

PDF: 25
HTML: 2

Special-new-year-discount