Styrylquinoline – A Versatile Scaffold in Medicinal Chemistry

Author(s): Robert Musiol*.

Journal Name: Medicinal Chemistry

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Styrylquinolines are characteristic fully aromatic compounds with flat, rather lipophilic structures. The first reports on their synthesis and biological activity were published roughly a century ago. However, their low selectivity, unfavorable toxicity and problems with their mechanism of action significantly hampered their development. As a result, they have been abandoned for most of the time since they were discovered.

Objective: Their renaissance was observed by the antiretroviral activity of several styrylquinoline derivatives that have been reported to be HIV integrase inhibitors. Subsequently, other activities such as their antifungal and anticancer abilities have also been revisited.

Methods: In the present review, the spectrum of the activity of styrylquinolines and their use in drug design is presented and analyzed.

Results: New properties and applications that were reported recently have re-established styrylquinolines within medicinal and material chemistry. The considerable increase in the number of published papers regarding their activity spectrum will ensure further discoveries in the field.

Conclusion: Styrylquinolines have earned a much stronger position in medicinal chemistry due to the discovery of their new activities, profound mechanisms of action and as drug candidates in clinical trials.

Keywords: Anticancer, alzheimer disease, strylquinolines, quinoline, HIV integrase, p53.

[1]
Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther., 2013, 7, 1157-1178.
[http://dx.doi.org/10.2147/DDDT.S49763] [PMID: 24115839]
[2]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[3]
Oliveri, V.; Vecchio, G. 8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur. J. Med. Chem., 2016, 120, 252-274.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.007] [PMID: 27191619]
[4]
Musiol, R.; Malarz, K.; Mularski, J. Quinoline Alkaloids Against Neglected Tropical Diseases. Curr. Org. Chem., 2017, 21, 1-11.
[http://dx.doi.org/10.2174/1385272821666170207103634]
[5]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[6]
Polanski, J.; Kurczyk, A.; Bak, A.; Musiol, R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem., 2012, 19(13), 1921-1945.
[http://dx.doi.org/10.2174/092986712800167356] [PMID: 22376032]
[7]
Song, Y.; Xu, H.; Chen, W.; Zhan, P.; Liu, X. 8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential. MedChemComm, 2015, 6, 61-74.
[http://dx.doi.org/10.1039/C4MD00284A]
[8]
Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[9]
Gershon, H.; McNeil, M.W.; Parmegiani, R.; Godfrey, P.K. Secondary mechanisms of antifungal action of substituted 8-quinolinols. 3. 5,7,8-Substituted quinolines. J. Med. Chem., 1972, 15(1), 105-106.
[http://dx.doi.org/10.1021/jm00271a033] [PMID: 5007079]
[10]
Gershon, H.; Gershon, M. Intramolecular synergism, an explanation for the enhanced fungitoxicity of halo-8-quinolinols. Monatshefte für Chemie - Chem. Mon., 1995, 126, 1303-1309.
[http://dx.doi.org/10.1007/BF00807059]
[11]
Bareggi, S.R.; Cornelli, U. Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci. Ther., 2012, 18(1), 41-46.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00231.x] [PMID: 21199452]
[12]
Bush, A.I. Drug development based on the metals hypothesis of Alzheimer’s disease. J. Alzheimers Dis., 2008, 15(2), 223-240.
[http://dx.doi.org/10.3233/JAD-2008-15208] [PMID: 18953111]
[13]
Serda, M.; Kalinowski, D.S.; Rasko, N.; Potůčková, E.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Małecki, J.G.; Sajewicz, M.; Ratuszna, A.; Muchowicz, A.; Gołąb, J.; Simůnek, T.; Richardson, D.R.; Polanski, J. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One, 2014, 9(10)e110291
[http://dx.doi.org/10.1371/journal.pone.0110291] [PMID: 25329549]
[14]
Mrozek-Wilczkiewicz, A.; Serda, M.; Musiol, R.; Malecki, G.; Szurko, A.; Muchowicz, A.; Golab, J.; Ratuszna, A.; Polanski, J. Iron chelators in photodynamic therapy revisited: synergistic effect by novel highly active thiosemicarbazones. ACS Med. Chem. Lett., 2014, 5(4), 336-339.
[http://dx.doi.org/10.1021/ml400422a] [PMID: 24900837]
[15]
Serda, M.; Małecki, J.G.; Mrozek-Wilczkiewicz, A.; Musioł, R.; Polański, J. Microwave assisted synthesis, X-ray crystallography and DFT calculations of selected aromatic thiosemicarbazones. J. Mol. Struct., 2013, 1037, 63-72.
[http://dx.doi.org/10.1016/j.molstruc.2012.11.050]
[16]
Serda, M.; Kalinowski, D.S.; Mrozek-Wilczkiewicz, A.; Musiol, R.; Szurko, A.; Ratuszna, A.; Pantarat, N.; Kovacevic, Z.; Merlot, A.M.; Richardson, D.R.; Polanski, J. Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy. Bioorg. Med. Chem. Lett., 2012, 22(17), 5527-5531.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.030] [PMID: 22858101]
[17]
Mrozek-Wilczkiewicz, A.; Malarz, K.; Rams-Baron, M.; Serda, M.; Bauer, D.; Montforts, F-P.; Ratuszna, A.; Burley, T.; Polanski, J.; Musiol, R. Iron Chelators and Exogenic Photosensitizers. Synergy through Oxidative Stress Gene Expression. J. Cancer, 2017, 8(11), 1979-1987.
[http://dx.doi.org/10.7150/jca.17959] [PMID: 28819397]
[18]
Malarz, K.; Mrozek-Wilczkiewicz, A.; Serda, M.; Rejmund, M.; Polanski, J.; Musiol, R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget, 2018, 9(25), 17689-17710.
[http://dx.doi.org/10.18632/oncotarget.24844] [PMID: 29707141]
[19]
Williams, J.L.R.; Adel, R.E.; Carlson, J.M.; Reynolds, G.A.; Borden, D.G.; Ford, J.A. A Comparison of Methods for the Preparation of 2- and 4-Styrylpyridines 1. J. Org. Chem., 1963, 28, 387-390.
[http://dx.doi.org/10.1021/jo01037a026]
[20]
Xu, L.; Shao, Z.; Wang, L.; Zhao, H.; Xiao, J. Catalyst-free synthesis of (E)-2-alkenylquinoline derivatives via C(sp3)-H functionalization of 2-methylquinolines. Tetrahedron Lett., 2014, 55, 6856-6860.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.079]
[21]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Nikcheh, M.S. A new and efficient one-pot procedure for the synthesis of 2-styrylquinolines. Tetrahedron Lett., 2008, 49, 5366-5368.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.054]
[22]
Musiol, R.; Podeszwa, B.; Finster, J.; Niedbala, H.; Polanski, J. An Efficient Microwave-Assisted Synthesis of Structurally Diverse Styrylquinolines. Monatsh. Chem., 2006, 137, 1211-1217.
[http://dx.doi.org/10.1007/s00706-006-0513-1]
[23]
Polański, J.; Niedbała, H.; Musioł, R.; Tabak, D.; Podeszwa, B.; Gieleciak, R.; Bak, A.; Pałka, A.; Magdziarz, T. Analogues of the styrylquinoline and styrylquinazoline HIV-1 integrase inhibitors: design and synthetic problems. Acta Pol. Pharm., 2004, 61(Suppl.), 3-4.
[PMID: 15909921]
[24]
Machura, B.; Wolff, M.; Cieślik, W.; Musioł, R. Novel oxorhenium(V) complexes of 8-hydroxyquinoline derivatives – Synthesis, spectroscopic characterization, X-ray crystal structures and DFT calculations. Polyhedron, 2013, 51, 263-274.
[http://dx.doi.org/10.1016/j.poly.2012.12.028]
[25]
Ulahannan, R.T.; Panicker, C.Y.; Varghese, H.T.; Musiol, R.; Jampilek, J.; Van Alsenoy, C.; War, J.A.; Manojkumar, T.K. Vibrational spectroscopic studies and molecular docking study of 2-[(E)-2-phenylethenyl]quinoline-5-carboxylic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 150, 190-199.
[http://dx.doi.org/10.1016/j.saa.2015.04.104] [PMID: 26046498]
[26]
Ulahannan, R.T.; Panicker, C.Y.; Varghese, H.T.; Musiol, R.; Jampilek, J.; Van Alsenoy, C.; War, J.A.; Srivastava, S.K. Molecular structure, FT-IR, FT-Raman, NBO, HOMO and LUMO, MEP, NLO and molecular docking study of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 184-197.
[http://dx.doi.org/10.1016/j.saa.2015.06.077] [PMID: 26142173]
[27]
Musiol, R.; Niedbala, H.; Majerz-Maniecka, K.; Oleksyn, B.J.; Polanski, J. Synthesis and structure of styrylquinolines. Ann. Polish Chem. Soc., 2005, 1, 118-122.
[28]
Katsumoto, T.; Honda, A. The preparation of cis-2-stilbazole and the activation energy of cis-trans isomerization. Nippon kagaku zassi, 1963, 84, 527-533.
[http://dx.doi.org/10.1246/nikkashi1948.84.6_527]]
[29]
Pérez-Melero, C.; Maya, A.B.S.; del Rey, B.; Peláez, R.; Caballero, E.; Medarde, M. A new family of quinoline and quinoxaline analogues of combretastatins. Bioorg. Med. Chem. Lett., 2004, 14(14), 3771-3774.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.098] [PMID: 15203159]
[30]
Yan, Y.; Xu, K.; Fang, Y.; Wang, Z. A catalyst-free benzylic C-H bond olefination of azaarenes for direct Mannich-like reactions. J. Org. Chem., 2011, 76(16), 6849-6855.
[http://dx.doi.org/10.1021/jo2008934] [PMID: 21755978]
[31]
Jin, J.J.; Wang, D.C.; Niu, H.Y.; Wu, S.; Qu, G.R.; Zhang, Z.B.; Guo, H.M. Brønsted acid catalyzed synthesis of 1,3-di(2-quinolyl)propane derivatives via tandem C(sp3)-H functionalization. Tetrahedron, 2013, 69, 6579-6584.
[http://dx.doi.org/10.1016/j.tet.2013.05.135]
[32]
Budyka, M.F.; Potashova, N.I.; Chashchikhin, O.V.; Gavrishova, T.N.; Lee, V.M. Photoisomerization of naphthylquinolylethylenes in neutral and protonated forms. High Energy Chem., 2011, 45, 492-496.
[http://dx.doi.org/10.1134/S0018143911050055]
[33]
Budyka, M.F.; Potashova, N.I.; Gavrishova, T.N.; Lee, V.M. Solvent-driven adiabatic trans-to-cis photoisomerization of 4-styrylquinoline. J. Photochem. Photobiol. Chem., 2009, 203, 100-104.
[http://dx.doi.org/10.1016/j.jphotochem.2008.12.027]
[34]
Musiol, R.; Jampilek, J.; Podeszwa, B.; Finster, J.; Tabak, D.; Dohnal, J.; Polanski, J. RP-HPLC determination of lipophilicity in series of quinoline derivatives. Cent. Eur. J. Chem., 2009, 7, 586-597.
[http://dx.doi.org/10.2478/s11532-009-0059-2]
[35]
Chan, J.C.; Gadebusch, H.H. Antiviral activity of some derivatives of 2-styrylquinoline. Experientia, 1969, 25(3), 329.
[http://dx.doi.org/10.1007/BF02034426] [PMID: 5781557]
[36]
BioAlliance shows styrylquinoline synergy with HIV drugs., Available at. https://www.in-pharmatechnologist.com/Article/2005/03/09/BioAlliance-shows-styrylquinoline-synergy-with-HIV-drugs?utm_ source=copyright&utm_medium=OnSite&utm_ campaign=copyright
[37]
Pommier, Y.; Neamati, N. Inhibitors of human immunodeficiency virus integrase. Adv. Virus Res., 1999, 52, 427-458.
[http://dx.doi.org/10.1016/S0065-3527(08)60310-3] [PMID: 10384246]
[38]
Serrao, E.; Odde, S.; Ramkumar, K.; Neamati, N. Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology, 2009, 6, 25.
[http://dx.doi.org/10.1186/1742-4690-6-25] [PMID: 19265512]
[39]
Lewinski, M.K.; Bushman, F.D. Retroviral DNA integration--mechanism and consequences. Adv. Genet., 2005, 55, 147-181.
[http://dx.doi.org/10.1016/S0065-2660(05)55005-3] [PMID: 16291214]
[40]
Métifiot, M.; Johnson, B.C.; Kiselev, E.; Marler, L.; Zhao, X.Z.; Burke, T.R., Jr; Marchand, C.; Hughes, S.H.; Pommier, Y. Selectivity for strand-transfer over 3′-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme-DNA interactions in the active site. Nucleic Acids Res., 2016, 44(14), 6896-6906.
[http://dx.doi.org/10.1093/nar/gkw592] [PMID: 27369381]
[41]
Hazuda, D.J.; Hastings, J.C.; Wolfe, A.L.; Emini, E.A. A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic Acids Res., 1994, 22(6), 1121-1122.
[http://dx.doi.org/10.1093/nar/22.6.1121] [PMID: 8152918]
[42]
Bujacz, G.; Jaskólski, M.; Alexandratos, J.; Wlodawer, A.; Merkel, G.; Katz, R.A.; Skalka, A.M. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Structure, 1996, 4(1), 89-96.
[http://dx.doi.org/10.1016/S0969-2126(96)00012-3] [PMID: 8805516]
[43]
Mekouar, K.; Mouscadet, J.F.; Desmaële, D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d’Angelo, J. Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J. Med. Chem., 1998, 41(15), 2846-2857.
[http://dx.doi.org/10.1021/jm980043e] [PMID: 9667973]
[44]
Zouhiri, F.; Mouscadet, J.F.; Mekouar, K.; Desmaële, D.; Savouré, D.; Leh, H.; Subra, F.; Le Bret, M.; Auclair, C.; d’Angelo, J. Structure-activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. J. Med. Chem., 2000, 43(8), 1533-1540.
[http://dx.doi.org/10.1021/jm990467o] [PMID: 10780910]
[45]
Polanski, J.; Zouhiri, F.; Jeanson, L.; Desmaële, D.; d’Angelo, J.; Mouscadet, J-F.; Gieleciak, R.; Gasteiger, J.; Le Bret, M. Use of the Kohonen neural network for rapid screening of ex vivo anti-HIV activity of styrylquinolines. J. Med. Chem., 2002, 45(21), 4647-4654.
[http://dx.doi.org/10.1021/jm020845g] [PMID: 12361391]
[46]
Niedbala, H.; Polanski, J.; Gieleciak, R.; Musiol, R.; Tabak, D.; Podeszwa, B.; Bak, A.; Palka, A.; Mouscadet, J-F.; Gasteiger, J.; Le Bret, M. Comparative molecular surface analysis (CoMSA) for virtual combinatorial library screening of styrylquinoline HIV-1 blocking agents. Comb. Chem. High Throughput Screen., 2006, 9, 753-770.
[47]
Ouali, M.; Laboulais, C.; Leh, H.; Gill, D.; Xhuvani, E.; Zouhiri, F.; Desmaële, D.; d’Angelo, J.; Auclair, C.; Mouscadet, J.F.; Le Bret, M. Tautomers of styrylquinoline derivatives containing a methoxy substituent: computation of their population in aqueous solution and their interaction with RSV integrase catalytic core. Acta Biochim. Pol., 2000, 47(1), 11-22.
[PMID: 10961674]
[48]
Hazuda, D.J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J.A.; Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M.D. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 2000, 287(5453), 646-650.
[http://dx.doi.org/10.1126/science.287.5453.646] [PMID: 10649997]
[49]
Beare, K.D.; Coster, M.J.; Rutledge, P.J. Diketoacid inhibitors of HIV-1 integrase: from L-708,906 to raltegravir and beyond. Curr. Med. Chem., 2012, 19(8), 1177-1192.
[http://dx.doi.org/10.2174/092986712799320565] [PMID: 22214459]
[50]
Huang, M.; Grant, G.H.; Richards, W.G. Binding modes of diketo-acid inhibitors of HIV-1 integrase: a comparative molecular dynamics simulation study. J. Mol. Graph. Model., 2011, 29(7), 956-964.
[http://dx.doi.org/10.1016/j.jmgm.2011.04.002] [PMID: 21531158]
[51]
Musiol, R. Quinoline-based HIV integrase inhibitors. Curr. Pharm. Des., 2013, 19(10), 1835-1849.
[http://dx.doi.org/10.2174/1381612811319100008] [PMID: 23092281]
[52]
Lee, J.Y.; Park, J.H.; Lee, S.J.; Park, H.; Lee, Y.S. Styrylquinazoline derivatives as HIV-1 integrase inhibitors. Arch. Pharm. (Weinheim), 2002, 335(6), 277-282.
[http://dx.doi.org/10.1002/1521-4184(200208)335:6<277:AID-ARDP277>3.0.CO;2-A] [PMID: 12210770]
[53]
Deprez, E.; Barbe, S.; Kolaski, M.; Leh, H.; Zouhiri, F.; Auclair, C.; Brochon, J-C.; Le Bret, M.; Mouscadet, J-F. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Mol. Pharmacol., 2004, 65(1), 85-98.
[http://dx.doi.org/10.1124/mol.65.1.85] [PMID: 14722240]
[54]
Bonnenfant, S.; Thomas, C.M.; Vita, C.; Subra, F.; Deprez, E.; Zouhiri, F.; Desmaële, D.; D’Angelo, J.; Mouscadet, J.F.; Leh, H. Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents. J. Virol., 2004, 78(11), 5728-5736.
[http://dx.doi.org/10.1128/JVI.78.11.5728-5736.2004] [PMID: 15140970]
[55]
Mouscadet, J-F.; Desmaële, D. Chemistry and structure-activity relationship of the styrylquinoline-type HIV integrase inhibitors. Molecules, 2010, 15(5), 3048-3078.
[http://dx.doi.org/10.3390/molecules15053048] [PMID: 20657464]
[56]
Zouhiri, F.; Danet, M.; Bénard, C.; Normand-Bayle, M.; Mouscadet, J-F.; Leh, H.; Marie Thomas, C.; Mbemba, G.; D’Angelo, J.; Desmaële, D. HIV-1 replication inhibitors of the styrylquinoline class: introduction of an additional carboxyl group at the C-5 position of the quinoline. Tetrahedron Lett., 2005, 46, 2201-2205.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.033]
[57]
Normand-Bayle, M.; Bénard, C.; Zouhiri, F.; Mouscadet, J-F.; Leh, H.; Thomas, C-M.; Mbemba, G.; Desmaële, D.; d’Angelo, J. New HIV-1 replication inhibitors of the styryquinoline class bearing aroyl/acyl groups at the C-7 position: synthesis and biological activity. Bioorg. Med. Chem. Lett., 2005, 15(18), 4019-4022.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.036] [PMID: 16002283]
[58]
Bénard, C.; Zouhiri, F.; Normand-Bayle, M.; Danet, M.; Desmaële, D.; Leh, H.; Mouscadet, J.F.; Mbemba, G.; Thomas, C.M.; Bonnenfant, S.; Le Bret, M.; d’Angelo, J. Linker-modified quinoline derivatives targeting HIV-1 integrase: synthesis and biological activity. Bioorg. Med. Chem. Lett., 2004, 14(10), 2473-2476.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.005] [PMID: 15109635]
[59]
Polanski, J.; Niedbala, H.; Musiol, R.; Podeszwa, B.; Tabak, D.; Palka, A.; Mencel, A.; Mouscadet, J-F.; Le Bret, M. Fragment Based Approach for the Investigation of HIV-1 Integrase Inhibition. Lett. Drug Des. Discov., 2007, 4, 99-105.
[http://dx.doi.org/10.2174/157018007779422532]
[60]
Jiao, Z-G.; He, H-Q.; Zeng, C-C.; Tan, J-J.; Hu, L-M.; Wang, C-X. Design, synthesis and anti-HIV integrase evaluation of N-(5-chloro-8-hydroxy-2-styrylquinolin-7-yl)benzenesulfonamide derivatives. Molecules, 2010, 15(3), 1903-1917.
[http://dx.doi.org/10.3390/molecules15031903] [PMID: 20336021]
[61]
Sewell, P.; Hawking, F. Chemotherapy of experimental filariasis. Br. J. Pharmacol. Chemother., 1950, 5(2), 239-260.
[http://dx.doi.org/10.1111/j.1476-5381.1950.tb01011.x] [PMID: 15426727]
[62]
Browning, C.H.; Cohen, J.B.; Ellingworth, S.; Gulbransen, R. The Trypanocidal Action of Some Derivatives of Anil and Styryl Quinoline. Proc. R. Soc. Lond., B, 1929, 105, 99-111.
[http://dx.doi.org/10.1098/rspb.1929.0031]
[63]
Rubtsov, M.V.; Pershin, G.N.; Yanbuktin, N.A.; Pelenitsina, L.A.; Gurevich, T.J.; Novitskaya, N.A.; Milovanova, S.N.; Vichkanova, S.A. Derivatives of 2-styrylquinoline. J. Med. Pharm. Chem., 1960, 2, 113-131.
[http://dx.doi.org/10.1021/jm50009a001] [PMID: 14439929]
[64]
Roberts, B.F.; Zheng, Y.; Cleaveleand, J.; Lee, S.; Lee, E.; Ayong, L.; Yuan, Y.; Chakrabarti, D. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 120-129.
[http://dx.doi.org/10.1016/j.ijpddr.2017.02.002] [PMID: 28285258]
[65]
García, P.; Genes, C.; Molano, P.; Torres, O.; Saez, J.; Triana, O. Evaluation of the trypanocidal, cytotoxic and genotoxic activity of styrylquinoline analogs. J. Chemother., 2010, 22(3), 169-174.
[http://dx.doi.org/10.1179/joc.2010.22.3.169] [PMID: 20566421]
[66]
Musiol, R.; Magdziarz, T.; Kurczyk, A. Quinoline scaffold as a privileged substructure in antimicrobial drugs. Science against microbial pathogens: communicating current research and technological advances, Mendez-Vilas, A., Ed.; Formatex: Badajoz, Spain. 2011, pp. 72-83.
[67]
Gryzło, B.; Kulig, K. Quinoline--a promising fragment in the search for new antimalarials. Mini Rev. Med. Chem., 2014, 14(4), 332-344.
[http://dx.doi.org/10.2174/1389557514666140220123226] [PMID: 24552268]
[68]
Reynolds, K.A.; Loughlin, W.A.; Young, D.J. Quinolines as chemotherapeutic agents for leishmaniasis. Mini Rev. Med. Chem., 2013, 13(5), 730-743.
[http://dx.doi.org/10.2174/1389557511313050010] [PMID: 23469781]
[69]
Loiseau, P.M.; Gupta, S.; Verma, A.; Srivastava, S.; Puri, S.K.; Sliman, F.; Normand-Bayle, M.; Desmaele, D. In vitro activities of new 2-substituted quinolines against Leishmania donovani. Antimicrob. Agents Chemother., 2011, 55(4), 1777-1780.
[http://dx.doi.org/10.1128/AAC.01299-10] [PMID: 21220526]
[70]
Cieslik, W.; Spaczynska, E.; Malarz, K.; Tabak, D.; Nevin, E.; O’Mahony, J.; Coffey, A.; Mrozek-Wilczkiewicz, A.; Jampilek, J.; Musiol, R. Investigation of the antimycobacterial activity of 8-hydroxyquinolines. Med. Chem., 2015, 11(8), 771-779.
[http://dx.doi.org/10.2174/1573406410666150807111703] [PMID: 26256587]
[71]
Kamal, A.; Rahim, A.; Riyaz, S.; Poornachandra, Y.; Balakrishna, M.; Kumar, C.G.; Hussaini, S.M.A.; Sridhar, B.; Machiraju, P.K. Regioselective synthesis, antimicrobial evaluation and theoretical studies of 2-styryl quinolines. Org. Biomol. Chem., 2015, 13(5), 1347-1357.
[http://dx.doi.org/10.1039/C4OB02277G] [PMID: 25465871]
[72]
Cieslik, W.; Musiol, R.; Nycz, J.E.; Jampilek, J.; Vejsova, M.; Wolff, M.; Machura, B.; Polanski, J. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem., 2012, 20(24), 6960-6968.
[http://dx.doi.org/10.1016/j.bmc.2012.10.027] [PMID: 23159041]
[73]
Dubrovin, A.N.; Mikhalev, A.I.; Ukhov, S.V.; Goldshtein, A.G.; Novikova, V.V.; Odegova, T.F.; Makhmudov, R.R. Synthesis, Properties, and Biological Activities of 2-Methyl- and 2-Styrylquinoline-4-Carboxylic Acids. Pharm. Chem. J., 2015, 49, 309-312.
[http://dx.doi.org/10.1007/s11094-015-1275-z]
[74]
Musiol, R.; Jampilek, J.; Nycz, J.E.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O’Mahony, J.; Coffey, A.; Mrozek, A.; Polanski, J. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules, 2010, 15(1), 288-304.
[http://dx.doi.org/10.3390/molecules15010288] [PMID: 20110891]
[75]
Vargas, M.L.Y.; Castelli, M.V.; Kouznetsov, V.V.; Urbina, G.J.M.; López, S.N.; Sortino, M.; Enriz, R.D.; Ribas, J.C.; Zacchino, S. In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg. Med. Chem., 2003, 11(7), 1531-1550.
[http://dx.doi.org/10.1016/S0968-0896(02)00605-3] [PMID: 12628677]
[76]
Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[http://dx.doi.org/10.1016/j.bmc.2006.01.016] [PMID: 16458522]
[77]
Jampilek, J.; Musiol, R.; Pesko, M.; Kralova, K.; Vejsova, M.; Carroll, J.; Coffey, A.; Finster, J.; Tabak, D.; Niedbala, H.; Kozik, V.; Polanski, J.; Csollei, J.; Dohnal, J. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: preparation and biological activity. Molecules, 2009, 14(3), 1145-1159.
[http://dx.doi.org/10.3390/molecules14031145] [PMID: 19305366]
[78]
Jampilek, J.; Musiol, R.; Finster, J.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O’Mahony, J.; Coffey, A.; Dohnal, J.; Polanski, J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules, 2009, 14(10), 4246-4265.
[http://dx.doi.org/10.3390/molecules14104246] [PMID: 19924061]
[79]
Dolab, J.G.; Lima, B.; Spaczynska, E.; Kos, J.; Cano, N.H.; Feresin, G.; Tapia, A.; Garibotto, F.; Petenatti, E.; Olivella, M.; Musiol, R.; Jampilek, J.; Enriz, R.D. The antimicrobial activity of Annona emarginata (Schltdl.) H. Rainer and Most active isolated compounds against clinically important bacteria. Molecules, 2018, 23(5), 1187.
[http://dx.doi.org/10.3390/molecules23051187] [PMID: 29772647]
[80]
Denning, D.W.; Baily, G.G.; Hood, S.V. Azole resistance in Candida. Eur. J. Clin. Microbiol. Infect. Dis., 1997, 16(4), 261-280.
[http://dx.doi.org/10.1007/BF01695630] [PMID: 9177959]
[81]
Rex, J.H.; Rinaldi, M.G.; Pfaller, M.A. Resistance of Candida species to fluconazole. Antimicrob. Agents Chemother., 1995, 39(1), 1-8.
[http://dx.doi.org/10.1128/AAC.39.1.1] [PMID: 7695288]
[82]
Musiol, R.; Kowalczyk, W. Azole antimycotics--a highway to new drugs or a dead end? Curr. Med. Chem., 2012, 19(9), 1378-1388.
[http://dx.doi.org/10.2174/092986712799462621] [PMID: 22257053]
[83]
Perczel, A.; Atanasov, A.G.; Sklenář, V.; Nováček, J.; Papoušková, V.; Kadeřávek, P.; Žídek, L.; Kozłowski, H.; Wątły, J.; Hecel, A.; Kołkowska, P.; Koča, J.; Svobodová-Vařeková, R.; Pravda, L.; Sehnal, D.; Horský, V.; Geidl, S.; Enriz, R.D.; Matějka, P.; Jeništová, A.; Dendisová, M.; Kokaislová, A.; Weissig, V.; Olsen, M.; Coffey, A.; Ajuebor, J.; Keary, R.; Sanz-Gaitero, M.; van Raaij, M.J.; McAuliffe, O.; Waltenberger, B.; Mocan, A.; Šmejkal, K.; Heiss, E.H.; Diederich, M.; Musioł, R.; Košmrlj, J.; Polański, J.; Jampílek, J. The eighth central european conference “chemistry towards biology”: Snapshot. Molecules, 2016, 21(10), 1381.
[http://dx.doi.org/10.3390/molecules21101381] [PMID: 27763518]
[84]
Cieslik, W.; Musiol, R.; Korzec, M. Synthesis of Alkyne-substituted Quinolines as Analogues of Allylamines. Int. Bull. Pharm. Sci., 2012, 1, 3-9.
[85]
Nowosielski, M.; Hoffmann, M.; Wyrwicz, L.S.; Stepniak, P.; Plewczynski, D.M.; Lazniewski, M.; Ginalski, K.; Rychlewski, L. Detailed mechanism of squalene epoxidase inhibition by terbinafine. J. Chem. Inf. Model., 2011, 51(2), 455-462.
[http://dx.doi.org/10.1021/ci100403b] [PMID: 21229992]
[86]
Szczepaniak, J.; Cieślik, W.; Romanowicz, A.; Musioł, R.; Krasowska, A. Blocking and dislocation of Candida albicans Cdr1p transporter by styrylquinolines. Int. J. Antimicrob. Agents, 2017, 50(2), 171-176.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.01.044] [PMID: 28602766]
[87]
Bahner, C.T. Effect of compounds related to 4-(p-dimethylaminostyryl) quinoline methiodide on lymphoma 8. Cancer Res., 1955, 15(9), 588-592.
[PMID: 13261079]
[88]
Bahner, C.T.; Pace, E.S.; Prevost, R. Quaternary Salts of Styryl Pyridines and Quinolines. J. Am. Chem. Soc., 1951, 73, 3407-3408.
[http://dx.doi.org/10.1021/ja01151a120]
[89]
Emmelot, P.; Boss, C.J.; Visser, B.J.; Bahner, C.T. Investigations on growth-inhibitory styrylquinoline compounds and analogues-II. Biochem. Pharmacol., 1958, 1, 111-114.
[http://dx.doi.org/10.1016/0006-2952(58)90018-2]
[90]
Fain, J.N. Reversal of mitochondrial inhibition of glycolysis by styrylquinolines. Biochem. Pharmacol., 1962, 11, 391-393.
[http://dx.doi.org/10.1016/0006-2952(62)90062-X] [PMID: 13891335]
[91]
Podeszwa, B.; Niedbala, H.; Polanski, J.; Musiol, R.; Tabak, D.; Finster, J.; Serafin, K.; Milczarek, M.; Wietrzyk, J.; Boryczka, S.; Mol, W.; Jampilek, J.; Dohnal, J.; Kalinowski, D.S.; Richardson, D.R. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorg. Med. Chem. Lett., 2007, 17(22), 6138-6141.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.040] [PMID: 17904844]
[92]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018] [PMID: 20303320]
[93]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[94]
Mugnaini, C.; Pasquini, S.; Corelli, F. The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr. Med. Chem., 2009, 16(14), 1746-1767.
[http://dx.doi.org/10.2174/092986709788186156] [PMID: 19442143]
[95]
El-Sayed, M.A.A.; El-Husseiny, W.M.; Abdel-Aziz, N.I.; El-Azab, A.S.; Abuelizz, H.A.; Abdel-Aziz, A.A.M. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: molecular docking study. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 199-209.
[http://dx.doi.org/10.1080/14756366.2017.1407926] [PMID: 29251017]
[96]
Chang, F.S.; Chen, W.; Wang, C.; Tzeng, C.C.; Chen, Y.L. Synthesis and antiproliferative evaluations of certain 2-phenylvinyl-quinoline (2-styrylquinoline) and 2-furanylvinylquinoline derivatives. Bioorg. Med. Chem., 2010, 18(1), 124-133.
[http://dx.doi.org/10.1016/j.bmc.2009.11.012] [PMID: 19944612]
[97]
Tseng, C.H.; Tzeng, C.C.; Chiu, C.C.; Hsu, C.Y.; Chou, C.K.; Chen, Y.L. Discovery of 2-[2-(5-nitrofuran-2-yl)vinyl]quinoline derivatives as a novel type of antimetastatic agents. Bioorg. Med. Chem., 2015, 23(1), 141-148.
[http://dx.doi.org/10.1016/j.bmc.2014.11.015] [PMID: 25467291]
[98]
Marzaro, G.; Guiotto, A.; Chilin, A. Quinazoline derivatives as potential anticancer agents: a patent review (2007 - 2010). Expert Opin. Ther. Pat., 2012, 22, 223-252.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.057.]
[99]
Conconi, M.T.; Marzaro, G.; Urbani, L.; Zanusso, I.; Di Liddo, R.; Castagliuolo, I.; Brun, P.; Tonus, F.; Ferrarese, A.; Guiotto, A.; Chilin, A. Quinazoline-based multi-tyrosine kinase inhibitors: synthesis, modeling, antitumor and antiangiogenic properties. Eur. J. Med. Chem., 2013, 67, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.057] [PMID: 23900004]
[100]
Mrozek-Wilczkiewicz, A.; Kalinowski, D.S.; Musiol, R.; Finster, J.; Szurko, A.; Serafin, K.; Knas, M.; Kamalapuram, S.K.; Kovacevic, Z.; Jampilek, J.; Ratuszna, A.; Rzeszowska-Wolny, J.; Richardson, D.R.; Polanski, J. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem., 2010, 18(7), 2664-2671.
[http://dx.doi.org/10.1016/j.bmc.2010.02.025] [PMID: 20303768]
[101]
Mularski, J.; Malarz, K.; Pacholczyk, M.; Musiol, R. The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. Eur. J. Med. Chem., 2019, 163, 610-625.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.012] [PMID: 30562697]
[102]
Mrozek-Wilczkiewicz, A.; Spaczynska, E.; Malarz, K.; Cieslik, W.; Rams-Baron, M.; Kryštof, V.; Musiol, R. Design, synthesis and in vitro activity of anticancer styrylquinolines. The p53 Independent Mechanism of Action. PLoS One, 2015, 10(11)e0142678
[http://dx.doi.org/10.1371/journal.pone.0142678] [PMID: 26599982]
[103]
Mucaji, P.; Atanasov, A.G.; Bak, A.; Kozik, V.; Sieron, K.; Olsen, M.; Pan, W.; Liu, Y.; Hu, S.; Lan, J.; Haider, N.; Musiol, R.; Vanco, J.; Diederich, M.; Ji, S.; Zitko, J.; Wang, D.; Agbaba, D.; Nikolic, K.; Oljacic, S.; Vucicevic, J.; Jezova, D.; Tsantili-Kakoulidou, A.; Tsopelas, F.; Giaginis, C.; Kowalska, T.; Sajewicz, M.; Silberring, J.; Mielczarek, P.; Smoluch, M.; Jendrzejewska, I.; Polanski, J.; Jampilek, J. The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot . Molecules, 2017, 22(11), 1848.
[http://dx.doi.org/10.3390/molecules22111848] [PMID: 29143778]
[104]
Shan, Y.; Zhang, J.; Liu, Z.; Wang, M.; Dong, Y. Developments of combretastatin A-4 derivatives as anticancer agents. Curr. Med. Chem., 2011, 18(4), 523-538.
[http://dx.doi.org/10.2174/092986711794480221] [PMID: 21143124]
[105]
Musiol, R.; Jampilek, J.; Kralova, K.; Richardson, D.R.; Kalinowski, D.; Podeszwa, B.; Finster, J.; Niedbala, H.; Palka, A.; Polanski, J. Investigating biological activity spectrum for novel quinoline analogues. Bioorg. Med. Chem., 2007, 15(3), 1280-1288.
[http://dx.doi.org/10.1016/j.bmc.2006.11.020] [PMID: 17142046]
[106]
Benachenhou, F.; Mimouni, N.; Mederbel, Y.; Slimane, R.K. Hydrolysis study: Synthesis of novel styrenic Schiff bases derived from benzothiazole. Arab. J. Chem., 2012, 5, 245-250.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.022]
[107]
Majerz-Maniecka, K.; Musiol, R.; Nitek, W.; Oleksyn, B.J.; Mouscadet, J-F.; Le Bret, M.; Polanski, J. Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(4), 1005-1009.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.083] [PMID: 16289813]
[108]
Staderini, M.; Aulić, S.; Bartolini, M.; Tran, H.N.A.; González-Ruiz, V.; Pérez, D.I.; Cabezas, N.; Martínez, A.; Martín, M.A.; Andrisano, V.; Legname, G.; Menéndez, J.C.; Bolognesi, M.L. A Fluorescent Styrylquinoline with combined therapeutic and diagnostic activities against alzheimer’s and prion diseases. ACS Med. Chem. Lett., 2012, 4(2), 225-229.
[http://dx.doi.org/10.1021/ml3003605] [PMID: 24900645]
[109]
Yang, Y.; Jia, H.M.; Liu, B.L. (E)-5-styryl-1H-indole and (E)-6-styrylquinoline derivatives serve as probes for β-amyloid plaques. Molecules, 2012, 17(4), 4252-4265.
[http://dx.doi.org/10.3390/molecules17044252] [PMID: 22491675]
[110]
Czaplinska, B.; Spaczynska, E.; Musiol, R. Quinoline Fluorescent Probes for Zinc - from Diagnostic to Therapeutic Molecules in Treating Neurodegenerative Diseases. Med. Chem., 2018, 14(1), 19-33.
[http://dx.doi.org/10.2174/1573406413666171002121817] [PMID: 28969572]
[111]
Rams-Baron, M.; Dulski, M.; Mrozek-Wilczkiewicz, A.; Korzec, M.; Cieslik, W.; Spaczyńska, E.; Bartczak, P.; Ratuszna, A.; Polanski, J.; Musiol, R. Synthesis of new styrylquinoline cellular dyes, fluorescent properties, cellular localization and cytotoxic behavior. PLoS One, 2015, 10(6)e0131210
[http://dx.doi.org/10.1371/journal.pone.0131210] [PMID: 26114446]
[112]
Li, Q.; Lee, J.S.; Ha, C.; Park, C.B.; Yang, G.; Gan, W.B.; Chang, Y.T. Solid-phase synthesis of styryl dyes and their application as amyloid sensors. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6331-6335.
[http://dx.doi.org/10.1002/anie.200461600] [PMID: 15558663]
[113]
Li, Q.; Min, J.; Ahn, Y-H.; Namm, J.; Kim, E.M.; Lui, R.; Kim, H.Y.; Ji, Y.; Wu, H.; Wisniewski, T.; Chang, Y-T. Styryl-based compounds as potential in vivo imaging agents for beta-amyloid plaques. ChemBioChem, 2007, 8(14), 1679-1687.
[http://dx.doi.org/10.1002/cbic.200700154] [PMID: 17705341]
[114]
Shiraishi, Y.; Ichimura, C.; Sumiya, S.; Hirai, T. Multicolor fluorescence of a styrylquinoline dye tuned by metal cations. Chemistry, 2011, 17(30), 8324-8332.
[http://dx.doi.org/10.1002/chem.201101048] [PMID: 21710680]
[115]
Kharchenko, O.; Smokal, V.; Krupka, A.; Kolendo, A. Design, synthesis, and photochemistry of styrylquinoline -containing polymers. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2016, 640, 71-77.
[http://dx.doi.org/10.1080/15421406.2016.1255516]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [141 - 154]
Pages: 14
DOI: 10.2174/1573406415666190603103012
Price: $65

Article Metrics

PDF: 12
HTML: 2