Advances in Targeted Gene Delivery

Author(s): Anjuman A. Begum, Istvan Toth, Waleed M. Hussein, Peter M. Moyle*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.

Keywords: Gene therapy, gene delivery, targeted delivery, vectors, cell surface receptors, targeting moieties.

[1]
Giacca, M. Gene therapy; Springer: Dordrecht, New York, 2010, pp. 1-7.
[http://dx.doi.org/10.1007/978-88-470-1643-9]
[2]
Morishita, R.; Nakagami, H.; Future Medicine, L. Gene therapy: Technologies & applications; Future Medicine Ltd: London, England, 2012.
[3]
Cho, C-W.; Cho, Y-S.; Kang, B-T.; Hwang, J-S.; Park, S-N.; Yoon, D-Y. Improvement of gene transfer to cervical cancer cell lines using non-viral agents. Cancer Lett., 2001, 162(1), 75-85.
[http://dx.doi.org/10.1016/S0304-3835(00)00629-7] [PMID: 11121865]
[4]
Wang, W.; Li, W.; Ma, N.; Steinhoff, G. Non-viral gene delivery methods. Curr. Pharm. Biotechnol., 2013, 14(1), 46-60.
[PMID: 23437936]
[5]
Hughes, J.A.; Rao, G.A. Targeted polymers for gene delivery. Expert Opin. Drug Deliv., 2005, 2(1), 145-157.
[http://dx.doi.org/10.1517/17425247.2.1.145] [PMID: 16296741]
[6]
Kohn, D.B. Gene therapy for XSCID: the first success of gene therapy. Pediatr. Res., 2000, 48(5), 578-578.
[http://dx.doi.org/10.1203/00006450-200011000-00002] [PMID: 11044472]
[7]
Ginn, S.L.; Amaya, A.K.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med., 2018, 20(5)e3015
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[8]
Stein, C.A.; Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther., 2017, 25(5), 1069-1075.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.023] [PMID: 28366767]
[9]
Kay, M.A.; Glorioso, J.C.; Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med., 2001, 7(1), 33-40.
[http://dx.doi.org/10.1038/83324] [PMID: 11135613]
[10]
Al-Dosari, M.S.; Gao, X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J., 2009, 11(4), 671-681.
[http://dx.doi.org/10.1208/s12248-009-9143-y] [PMID: 19834816]
[11]
Vargas, J.E.; Chicaybam, L.; Stein, R.T.; Tanuri, A.; Delgado-Cañedo, A.; Bonamino, M.H. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J. Transl. Med., 2016, 14(1), 288.
[http://dx.doi.org/10.1186/s12967-016-1047-x] [PMID: 27729044]
[12]
Balicki, D.; Beutler, E. Histone H2A significantly enhances in vitro DNA transfection. Mol. Med., 1997, 3(11), 782-787.
[http://dx.doi.org/10.1007/BF03401715] [PMID: 9407553]
[13]
Park, Y.J.; Liang, J.F.; Ko, K.S.; Kim, S.W.; Yang, V.C. Low molecular weight protamine as an efficient and nontoxic gene carrier: In vitro study. J. Gene Med., 2003, 5(8), 700-711.
[http://dx.doi.org/10.1002/jgm.402] [PMID: 12898639]
[14]
McNaughton, B.R.; Cronican, J.J.; Thompson, D.B.; Liu, D.R. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc. Natl. Acad. Sci. USA, 2009, 106(15), 6111-6116.
[http://dx.doi.org/10.1073/pnas.0807883106] [PMID: 19307578]
[15]
Gao, X.; Kim, K-S.; Liu, D. Nonviral gene delivery: what we know and what is next. AAPS J., 2007, 9(1), E92-E104.
[http://dx.doi.org/10.1208/aapsj0901009] [PMID: 17408239]
[16]
Mintzer, M.A.; Simanek, E.E. Nonviral vectors for gene delivery. Chem. Rev., 2009, 109(2), 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[17]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Poly(ethylenimine) and its role in gene delivery. J. Control. Release, 1999, 60(2-3), 149-160.
[http://dx.doi.org/10.1016/S0168-3659(99)00090-5] [PMID: 10425321]
[18]
Ryu, N.; Kim, M.A.; Park, D.; Lee, B.; Kim, Y.R.; Kim, K.H.; Baek, J.I.; Kim, W.J.; Lee, K.Y.; Kim, U.K. Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomedicine (Lond.), 2018, 14(7), 2095-2102.
[http://dx.doi.org/10.1016/j.nano.2018.06.009] [PMID: 29969727]
[19]
Choi, Y.H.; Liu, F.; Kim, J.S.; Choi, Y.K.; Park, J.S.; Kim, S.W. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J. Control. Release, 1998, 54(1), 39-48.
[http://dx.doi.org/10.1016/S0168-3659(97)00174-0] [PMID: 9741902]
[20]
Zhu, Z.; Yu, J.; Niu, Y.; Sun, S.; Liu, Y.; Saxon, A.; Zhang, K.; Li, W. Enhanced prophylactic and therapeutic effects of polylysine-modified ara h 2 DNA vaccine in a mouse model of peanut allergy. Int. Arch. Allergy Immunol., 2016, 171(3-4), 241-250.
[http://dx.doi.org/10.1159/000453264] [PMID: 28049187]
[21]
Erbacher, P.; Zou, S.; Bettinger, T.; Steffan, A-M.; Remy, J-S. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm. Res., 1998, 15(9), 1332-1339.
[http://dx.doi.org/10.1023/A:1011981000671] [PMID: 9755882]
[22]
Lu, H.; Dai, Y.; Lv, L.; Zhao, H. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One, 2014, 9(1)e84703
[http://dx.doi.org/10.1371/journal.pone.0084703] [PMID: 24392152]
[23]
Liu, X.X.; Rocchi, P.; Qu, F.Q.; Zheng, S.Q.; Liang, Z.C.; Gleave, M.; Iovanna, J.; Peng, L. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem, 2009, 4(8), 1302-1310.
[http://dx.doi.org/10.1002/cmdc.200900076] [PMID: 19533723]
[24]
Daneshvar, N.; Abdullah, R.; Shamsabadi, F.T.; How, C.W.; Mh, M.A.; Mehrbod, P. PAMAM dendrimer roles in gene delivery methods and stem cell research. Cell Biol. Int., 2013, 37(5), 415-419.
[http://dx.doi.org/10.1002/cbin.10051] [PMID: 23504853]
[25]
Schatzlein, A.G.; Zinselmeyer, B.H.; Elouzi, A.; Dufes, C.; Chim, Y.T.A.; Roberts, C.J.; Davies, M.C.; Munro, A.; Gray, A.I.; Uchegbu, I.F. Preferential liver gene expression with polypropylenimine dendrimers. J. Control. Release, 2005, 101(1-3), 247-258.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.024] [PMID: 15588909]
[26]
Jones, C.H.; Chen, C-K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B.A. Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharm., 2013, 10(11), 4082-4098.
[http://dx.doi.org/10.1021/mp400467x] [PMID: 24093932]
[27]
Balazs, D.A.; Godbey, W. Liposomes for use in gene delivery. J. Drug Deliv., 2011.2011326497
[http://dx.doi.org/10.1155/2011/326497] [PMID: 21490748]
[28]
Wang, T.; Larcher, L.M.; Ma, L.; Veedu, R.N. Systematic screening of commonly used commercial transfection rea-gents towards efficient transfection of single-stranded oligo-nucleotides. Molecules, 2018, 23(10), 2564.
[http://dx.doi.org/10.3390/molecules23102564]
[29]
Teagle, A.R.; Birchall, J.C.; Hargest, R. Gene therapy for pyoderma gangrenosum: Optimal transfection conditions and effect of drugs on gene delivery in the HaCaT cell line using cationic liposomes. Skin Pharmacol. Physiol., 2016, 29(3), 119-129.
[http://dx.doi.org/10.1159/000444859] [PMID: 27159975]
[30]
Raad, Md.; Teunissen, E.A.; Mastrobattista, E. Peptide vectors for gene delivery: from single peptides to multifunctional peptide nanocarriers. Nanomedicine (Lond.), 2014, 9(14), 2217-2232.
[http://dx.doi.org/10.2217/nnm.14.90] [PMID: 25405798]
[31]
Jung, H.J.; Lim, J.S.; Choi, H.J.; Lee, M.S.; Kim, J.H.; Kim, S.Y.; Kim, S.; Kim, E.; Kwon, T.H. Vasopressin V2R-targeting peptide carrier mediates siRNA delivery into collecting duct cells. PLoS One, 2012, 7(6)e40010
[http://dx.doi.org/10.1371/journal.pone.0040010] [PMID: 22761946]
[32]
Kamaruzaman, K.A.; Moyle, P.M.; Toth, I. Peptide-based multicomponent oligonucleotide delivery systems: Optimisa-tion of poly-l-lysine dendrons for plasmid DNA delivery. Int. J. Pept. Res. Ther., 2017, 23(1), 119-134.
[http://dx.doi.org/10.1007/s10989-016-9545-5]
[33]
Li, Q.; Hao, X.F.; Zaidi, S.S.A.; Guo, J.T.; Ren, X.K.; Shi, C.C.; Zhang, W.C.; Feng, Y.K. Oligohistidine and targeting peptide functionalized TAT-NLS for enhancing cellular up-take and promoting angiogenesis in vivo. J. Nanobiotechnology, 2018, 16.
[34]
Liu, L.; Dong, X.; Zhu, D.; Song, L.; Zhang, H.; Leng, X.G. TAT-LHRH conjugated low molecular weight chitosan as a gene carrier specific for hepatocellular carcinoma cells. Int. J. Nanomedicine, 2014, 9, 2879-2889.
[http://dx.doi.org/10.2147/IJN.S61392] [PMID: 24959076]
[35]
Kong, L.; Alves, C.S.; Hou, W.; Qiu, J.; Möhwald, H.; Tomás, H.; Shi, X. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl. Mater. Interfaces, 2015, 7(8), 4833-4843.
[http://dx.doi.org/10.1021/am508760w] [PMID: 25658033]
[36]
Wan, Y.; Dai, W.; Nevagi, R.J.; Toth, I.; Moyle, P.M. Multifunctional peptide-lipid nanocomplexes for efficient targeted delivery of DNA and siRNA into breast cancer cells. Acta Biomater., 2017, 59, 257-268.
[http://dx.doi.org/10.1016/j.actbio.2017.06.032] [PMID: 28655658]
[37]
Bogacheva, M.; Egorova, A.; Slita, A.; Maretina, M.; Baranov, V.; Kiselev, A. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery. Bioorg. Med. Chem. Lett., 2017, 27(21), 4781-4785.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.001] [PMID: 29017784]
[38]
Wan, Y.; Moyle, P.M.; Christie, M.P.; Toth, I. Nanosized, peptide-based multicomponent DNA delivery systems: optimization of endosome escape activity. Nanomedicine (Lond.), 2016, 11(8), 907-919.
[http://dx.doi.org/10.2217/nnm.16.27] [PMID: 26979574]
[39]
Mali, S. Delivery systems for gene therapy. Indian J. Hum. Genet., 2013, 19(1), 3-8.
[http://dx.doi.org/10.4103/0971-6866.112870] [PMID: 23901186]
[40]
McCrudden, C.M.; McCarthy, H.O. Cancer gene therapy - key biological concepts in the design of multifunctional non-viral delivery systems; Intech, 2013, pp. 213-248.
[41]
Niemietz, C.; Chandhok, G.; Schmidt, H. Therapeutic oligonucleotides targeting liver disease: Ttr amyloidosis. In: Molecules, 2015, 20 p., 17944-17975.
[42]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov., 2009, 8(2), 129-138.
[http://dx.doi.org/10.1038/nrd2742] [PMID: 19180106]
[43]
Guo, S.; Huang, L. Nanoparticles escaping res and endo-some: Challenges for sirna delivery for cancer therapy. J. Nanomater., 2011, 2011, 1-12.
[http://dx.doi.org/10.1155/2011/987530]
[44]
Lim, Y.B.; Lee, E.; Yoon, Y.R.; Lee, M.S.; Lee, M. Filamentous artificial virus from a self-assembled discrete nanoribbon. Angew. Chem. Int. Ed. Engl., 2008, 47(24), 4525-4528.
[http://dx.doi.org/10.1002/anie.200800266] [PMID: 18464240]
[45]
Grijalvo, S.; Aviñó, A.; Eritja, R. Oligonucleotide delivery: a patent review (2010 - 2013). Expert Opin. Ther. Pat., 2014, 24(7), 801-819.
[http://dx.doi.org/10.1517/13543776.2014.915944] [PMID: 24798406]
[46]
Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1, 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[47]
Pérez-Martínez, F.C.; Guerra, J.; Posadas, I.; Ceña, V. Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm. Res., 2011, 28(8), 1843-1858.
[http://dx.doi.org/10.1007/s11095-010-0364-7] [PMID: 21225319]
[48]
Wang, T.; Upponi, J.R.; Torchilin, V.P. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int. J. Pharm., 2012, 427(1), 3-20.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.013] [PMID: 21798324]
[49]
Panyam, J.; Zhou, W.Z.; Prabha, S.; Sahoo, S.K.; Labhasetwar, V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J., 2002, 16(10), 1217-1226.
[http://dx.doi.org/10.1096/fj.02-0088com] [PMID: 12153989]
[50]
Pouton, C.W.; Wagstaff, K.M.; Roth, D.M.; Moseley, G.W.; Jans, D.A. Targeted delivery to the nucleus. Adv. Drug Deliv. Rev., 2007, 59(8), 698-717.
[http://dx.doi.org/10.1016/j.addr.2007.06.010] [PMID: 17681634]
[51]
Tarashima, N.; Ando, H.; Kojima, T.; Kinjo, N.; Hashimoto, Y.; Furukawa, K.; Ishida, T.; Minakawa, N. Gene silencing using 4′-thiodna as an artificial template to synthesize short hairpin rna without inducing a detectable innate immune re-sponse. Mol. Ther. Nucleic Acids, 2016, 5(1)e274
[http://dx.doi.org/10.1038/mtna.2015.48] [PMID: 26730811]
[52]
Kukuła, K.; Chojnowska, L.; Dąbrowski, M.; Witkowski, A.; Chmielak, Z.; Skwarek, M.; Kądziela, J.; Teresińska, A.; Małecki, M.; Janik, P.; Lewandowski, Z.; Kłopotowski, M.; Wnuk, J.; Rużyłło, W. Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am. Heart J., 2011, 161(3), 581-589.
[http://dx.doi.org/10.1016/j.ahj.2010.11.023] [PMID: 21392615]
[53]
Moyle, P.M. Progress in Vaccine Development. Current Protocols in Microbiology;, John Wiley & Sons, Inc. 2005, 36 p. 18.1.1-18.126.
[54]
Wahren, B.; Liu, M.A.; Vaccines, D.N.A. Recent Developments and the Future, 2014, 2, 785-796.
[55]
Schubert, S.; Gül, D.C.; Grunert, H-P.; Zeichhardt, H.; Erdmann, V.A.; Kurreck, J. RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res., 2003, 31(20), 5982-5992.
[http://dx.doi.org/10.1093/nar/gkg791] [PMID: 14530446]
[56]
Liao, W.H.; Yang, L.F.; Liu, X.Y.; Zhou, G.F.; Jiang, W.Z.; Hou, B.L.; Sun, L.Q.; Cao, Y.; Wang, X.Y. DCE-MRI assessment of the effect of Epstein-Barr virus-encoded latent membrane protein-1 targeted DNAzyme on tumor vasculature in patients with nasopharyngeal carcinomas. BMC Cancer, 2014, 14, 835.
[http://dx.doi.org/10.1186/1471-2407-14-835] [PMID: 25407966]
[57]
Mitsuyasu, R.T.; Merigan, T.C.; Carr, A.; Zack, J.A.; Winters, M.A.; Workman, C.; Bloch, M.; Lalezari, J.; Becker, S.; Thornton, L.; Akil, B.; Khanlou, H.; Finlayson, R.; McFarlane, R.; Smith, D.E.; Garsia, R.; Ma, D.; Law, M.; Murray, J.M.; von Kalle, C.; Ely, J.A.; Patino, S.M.; Knop, A.E.; Wong, P.; Todd, A.V.; Haughton, M.; Fuery, C.; Macpherson, J.L.; Symonds, G.P.; Evans, L.A.; Pond, S.M.; Cooper, D.A. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat. Med., 2009, 15(3), 285-292.
[http://dx.doi.org/10.1038/nm.1932] [PMID: 19219022]
[58]
Dausse, E.; Da Rocha Gomes, S.; Toulmé, J.J. Aptamers: a new class of oligonucleotides in the drug discovery pipeline? Curr. Opin. Pharmacol., 2009, 9(5), 602-607.
[http://dx.doi.org/10.1016/j.coph.2009.07.006] [PMID: 19717337]
[59]
Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov., 2010, 9(7), 537-550.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[60]
Ni, X.; Castanares, M.; Mukherjee, A.; Lupold, S.E. Nucleic acid aptamers: clinical applications and promising new horizons. Curr. Med. Chem., 2011, 18(27), 4206-4214.
[http://dx.doi.org/10.2174/092986711797189600] [PMID: 21838685]
[61]
Templeton, N.S. Gene and Cell Therapy: Therapeutic Mechanisms and Strategies 3rd ed ed.; Boca Raton : CRC Press: Boca Raton. , 2008.
[62]
Ng, E.W.M.; Shima, D.T.; Calias, P.; Cunningham, E.T., Jr; Guyer, D.R.; Adamis, A.P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov., 2006, 5(2), 123-132.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[63]
Dias, N.; Stein, C.A. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther., 2002, 1(5), 347-355.
[PMID: 12489851]
[64]
Watts, J.K.; Corey, D.R. Gene silencing by siRNAs and antisense oligonucleotides in the laboratory and the clinic. J. Pathol., 2012, 226(2), 365-379.
[http://dx.doi.org/10.1002/path.2993] [PMID: 22069063]
[65]
Sapna, P.; Aditi, K.; Harmeet, K.; Jasbir, S. A review of anti-sense therapeutic interventions for molecular biological tar-gets in various diseases. Int. J. Pharmacol., 2011, 7(3), 294-315.
[http://dx.doi.org/10.3923/ijp.2011.294.315]
[66]
Tse, M.T. Regulatory watch: Antisense approval provides boost to the field. Nat. Rev. Drug Discov., 2013, 12(3), 179-179.
[http://dx.doi.org/10.1038/nrd3963] [PMID: 23411721]
[67]
Ward, A.J.; Norrbom, M.; Chun, S.; Bennett, C.F.; Rigo, F. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res., 2014, 42(9), 5871-5879.
[http://dx.doi.org/10.1093/nar/gku184] [PMID: 24589581]
[68]
Sharma, V.K.; Sharma, R.K.; Singh, S.K. Antisense oligo-nucleotides: modifications and clinical trials. MedChemComm, 2014, 5(10), 1454-1471.
[http://dx.doi.org/10.1039/C4MD00184B]
[69]
Paulasova, P.; Pellestor, F. The peptide nucleic acids (PNAs): a new generation of probes for genetic and cytogenetic analyses. Ann. Genet., 2004, 47(4), 349-358.
[http://dx.doi.org/10.1016/j.anngen.2004.07.001] [PMID: 15581832]
[70]
Good, L.; Nielsen, P.E. Peptide nucleic acid (PNA) antisense effects in Escherichia coli. Curr. Issues Mol. Biol., 1999, 1(1-2), 111-116.
[PMID: 11475695]
[71]
Sardone, V.; Zhou, H.; Muntoni, F.; Ferlini, A.; Falzarano, M.S. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules, 2017, 22(4)E563
[http://dx.doi.org/10.3390/molecules22040563] [PMID: 28379182]
[72]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[73]
Gavrilov, K.; Saltzman, W.M. Therapeutic siRNA: principles, challenges, and strategies. Yale J. Biol. Med., 2012, 85(2), 187-200.
[PMID: 22737048]
[74]
Kim, S.S.; Subramanya, S.; Peer, D.; Shimaoka, M.; Shankar, P. Antibody-mediated delivery of siRNAs for anti-HIV therapy. Methods Mol. Biol., 2011, 721, 339-353.
[http://dx.doi.org/10.1007/978-1-61779-037-9_21] [PMID: 21431696]
[75]
Jiang, K.; Li, J.; Yin, J.; Ma, Q.; Yan, B.; Zhang, X.; Wang, L.; Wang, L.; Liu, T.; Zhang, Y.; Fan, Q.; Yang, A.; Qiu, X.; Ma, B. Targeted delivery of CXCR4-siRNA by scFv for HER2(+) breast cancer therapy. Biomaterials, 2015, 59, 77-87.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.030] [PMID: 25956853]
[76]
Smolic, R.; Volarevic, M.; Wu, C.H.; Wu, G.Y. Potential applications of siRNA in hepatitis C virus therapy. Curr. Opin. Investig. Drugs, 2006, 7(2), 142-146.
[PMID: 16499284]
[77]
Dorn, G.; Patel, S.; Wotherspoon, G.; Hemmings-Mieszczak, M.; Barclay, J.; Natt, F.J.C.; Martin, P.; Bevan, S.; Fox, A.; Ganju, P.; Wishart, W.; Hall, J. siRNA relieves chronic neuropathic pain. Nucleic Acids Res., 2004, 32(5)e49
[http://dx.doi.org/10.1093/nar/gnh044] [PMID: 15026538]
[78]
Wahid, F.; Shehzad, A.; Khan, T.; Kim, Y.Y. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta, 2010, 1803(11), 1231-1243.
[http://dx.doi.org/10.1016/j.bbamcr.2010.06.013] [PMID: 20619301]
[79]
Cannell, I.G.; Kong, Y.W.; Bushell, M. How do microRNAs regulate gene expression? Biochem. Soc. Trans., 2008, 36(Pt 6), 1224-1231.
[http://dx.doi.org/10.1042/BST0361224] [PMID: 19021530]
[80]
Chen, Q.G.; Zhou, W.; Han, T.; Du, S.Q.; Li, Z.H.; Zhang, Z.; Shan, G.Y.; Kong, C.Z. MiR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol., 2016, 37(2), 2095-2103.
[http://dx.doi.org/10.1007/s13277-015-3996-8] [PMID: 26346167]
[81]
Kent, O.A.; Mendell, J.T. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene, 2006, 25(46), 6188-6196.
[http://dx.doi.org/10.1038/sj.onc.1209913] [PMID: 17028598]
[82]
Bader, A. G.; Lammers, P. The therapeutic potential of micrornas. Innovation in pharmaceutical thechnology 2011, 52-55.
[83]
Paddison, P.J.; Caudy, A.A.; Bernstein, E.; Hannon, G.J.; Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev., 2002, 16(8), 948-958.
[http://dx.doi.org/10.1101/gad.981002] [PMID: 11959843]
[84]
Wang, S-L.; Yao, H-H.; Qin, Z-H. Strategies for short hairpin RNA delivery in cancer gene therapy. Expert Opin. Biol. Ther., 2009, 9(11), 1357-1368.
[http://dx.doi.org/10.1517/14712590903236843] [PMID: 19761417]
[85]
Rao, D.D.; Senzer, N.; Cleary, M.A.; Nemunaitis, J. Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther., 2009, 16(11), 807-809.
[http://dx.doi.org/10.1038/cgt.2009.53] [PMID: 19713999]
[86]
Xing, J.; Jia, C-R.; Wang, Y.; Guo, J.; Cai, Y. Effect of shRNA targeting survivin on ovarian cancer. J. Cancer Res. Clin. Oncol., 2012, 138(7), 1221-1229.
[http://dx.doi.org/10.1007/s00432-012-1196-0] [PMID: 22426961]
[87]
Kobayashi, H.; Eckhardt, S.G.; Lockridge, J.A.; Rothenberg, M.L.; Sandler, A.B.; O’Bryant, C.L.; Cooper, W.; Holden, S.N.; Aitchison, R.D.; Usman, N.; Wolin, M.; Basche, M.L. Safety and pharmacokinetic study of RPI.4610 (ANGIOZYME), an anti-VEGFR-1 ribozyme, in combination with carboplatin and paclitaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2005, 56(4), 329-336.
[http://dx.doi.org/10.1007/s00280-004-0968-x] [PMID: 15906031]
[88]
Rosenberg, J.E.; Bambury, R.M.; Van Allen, E.M.; Drabkin, H.A.; Lara, P.N., Jr; Harzstark, A.L.; Wagle, N.; Figlin, R.A.; Smith, G.W.; Garraway, L.A.; Choueiri, T.; Erlandsson, F.; Laber, D.A. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest. New Drugs, 2014, 32(1), 178-187.
[http://dx.doi.org/10.1007/s10637-013-0045-6] [PMID: 24242861]
[89]
Povsic, T.J.; Vavalle, J.P.; Alexander, J.H.; Aberle, L.H.; Zelenkofske, S.L.; Becker, R.C.; Buller, C.E.; Cohen, M.G.; Cornel, J.H.; Kasprzak, J.D.; Montalescot, G.; Fail, P.S.; Sarembock, I.J.; Mehran, R. RADAR Investigators. Use of the REG1 anticoagulation system in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the phase II RADAR-PCI study. EuroIntervention, 2014, 10(4), 431-438.
[http://dx.doi.org/10.4244/EIJY14M06_01] [PMID: 24929350]
[90]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[91]
Torchilin, V.; Torchilin, V.P. Multifunctional pharmaceutical nanocarrires New York; Springer, 2008, p. 40.
[http://dx.doi.org/10.1007/978-0-387-76554-9]
[92]
Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2013, 4(1), 81-89.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[93]
Noguchi, Y.; Wu, J.; Duncan, R.; Strohalm, J.; Ulbrich, K.; Akaike, T.; Maeda, H. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res., 1998, 89(3), 307-314.
[http://dx.doi.org/10.1111/j.1349-7006.1998.tb00563.x] [PMID: 9600125]
[94]
Kapoor, M.; Burgess, D.J. Targeted Delivery of Nucleic Acid Therapeutics via Nonviral Vectors.Targeted Drug Delivery: Concepts and Design; Devarajan, P.V; Jain, S., Ed.; Springer International Publishing: Cham, 2015, pp. 271-312.
[http://dx.doi.org/10.1007/978-3-319-11355-5_8]
[95]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31(13), 3657-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[96]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Na-noparticle Size, Shape, and Surface Chemistry on Biological Systems. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[97]
Sakurai, Y.; Hatakeyama, H.; Sato, Y.; Hyodo, M.; Akita, H.; Harashima, H. Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system. Mol. Ther., 2013, 21(6), 1195-1203.
[http://dx.doi.org/10.1038/mt.2013.57] [PMID: 23568259]
[98]
Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J. Control. Release, 2006, 116(2), 123-129.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.023] [PMID: 16831481]
[99]
Uchida, S.; Itaka, K.; Chen, Q.; Osada, K.; Ishii, T.; Shibata, M.A.; Harada-Shiba, M.; Kataoka, K. PEGylated polyplex with optimized PEG shielding enhances gene introduction in lungs by minimizing inflammatory responses. Mol. Ther., 2012, 20(6), 1196-1203.
[http://dx.doi.org/10.1038/mt.2012.20] [PMID: 22334020]
[100]
Richardson, P.F. Chapter Sixteen - Nanotechnology Thera-peutics in Oncology—Recent Developments and Future Out-look.Annual Reports in Medicinal Chemistry; Desai, M.C., Ed.; Academic Press, 2012, Vol. 47, pp. 239-252.
[101]
Yang, H.; Cai, H.; Wan, L.; Liu, S.; Li, S.; Cheng, J.; Lu, X. Bombesin analogue-mediated delivery preferentially enhances the cytotoxicity of a mitochondria-disrupting peptide in tumor cells. PLoS One, 2013, 8(2)e57358
[http://dx.doi.org/10.1371/journal.pone.0057358] [PMID: 23451211]
[102]
Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548.
[http://dx.doi.org/10.1093/nar/gkw236] [PMID: 27084936]
[103]
Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013, 48(3), 416-427.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[104]
Tanaka, J.; Gleinich, A.S.; Zhang, Q.; Whitfield, R.; Kempe, K.; Haddleton, D.M.; Davis, T.P.; Perrier, S.; Mitchell, D.A.; Wilson, P. Specific and Differential Binding of N-Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules, 2017, 18(5), 1624-1633.
[http://dx.doi.org/10.1021/acs.biomac.7b00228] [PMID: 28418238]
[105]
Li, Y.; Huang, G.; Diakur, J.; Wiebe, L.I. Targeted delivery of macromolecular drugs: asialoglycoprotein receptor (ASGPR) expression by selected hepatoma cell lines used in antiviral drug development. Curr. Drug Deliv., 2008, 5(4), 299-302.
[http://dx.doi.org/10.2174/156720108785915069] [PMID: 18855599]
[106]
Stankovics, J.; Crane, A.M.; Andrews, E.; Wu, C.H.; Wu, G.Y.; Ledley, F.D. Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polylysine/DNA complexes. Hum. Gene Ther., 1994, 5(9), 1095-1104.
[http://dx.doi.org/10.1089/hum.1994.5.9-1095] [PMID: 7833369]
[107]
Arangoa, M.A.; Düzgüneş, N.; Tros de Ilarduya, C. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene Ther., 2003, 10(1), 5-14.
[http://dx.doi.org/10.1038/sj.gt.3301840] [PMID: 12525832]
[108]
Farinha, D.; Pedroso de Lima, M.C.; Faneca, H. Specific and efficient gene delivery mediated by an asialofetuin-associated nanosystem. Int. J. Pharm., 2014, 473(1-2), 366-374.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.019] [PMID: 25051113]
[109]
Liu, L.; Zong, Z-M.; Liu, Q.; Jiang, S-S.; Zhang, Q.; Cen, L-Q.; Gao, J.; Gao, X-G.; Huang, J-D.; Liu, Y.; Yao, H. A novel galactose-PEG-conjugated biodegradable copolymer is an efficient gene delivery vector for immunotherapy of hepatocellular carcinoma. Biomaterials, 2018, 184, 20-30.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.064] [PMID: 30195802]
[110]
Ponka, P.; Lok, C.N. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell Biol., 1999, 31(10), 1111-1137.
[http://dx.doi.org/10.1016/S1357-2725(99)00070-9] [PMID: 10582342]
[111]
Li, H.; Qian, Z.M. Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev., 2002, 22(3), 225-250.
[http://dx.doi.org/10.1002/med.10008] [PMID: 11933019]
[112]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[113]
Somani, S.; Blatchford, D.R.; Millington, O.; Stevenson, M.L.; Dufès, C. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J. Control. Release, 2014, 188, 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.006] [PMID: 24933602]
[114]
Youn, P.; Chen, Y.; Furgeson, D.Y. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol. Pharm., 2014, 11(2), 486-495.
[http://dx.doi.org/10.1021/mp400446v] [PMID: 24387132]
[115]
Sudimack, J.; Lee, R.J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev., 2000, 41(2), 147-162.
[http://dx.doi.org/10.1016/S0169-409X(99)00062-9] [PMID: 10699311]
[116]
Ward, C.M. Folate-targeted non-viral DNA vectors for cancer gene therapy. Curr. Opin. Mol. Ther., 2000, 2(2), 182-187.
[PMID: 11249640]
[117]
Lu, Y.; Low, P.S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev., 2002, 54(5), 675-693.
[http://dx.doi.org/10.1016/S0169-409X(02)00042-X] [PMID: 12204598]
[118]
Zhao, X.B.; Lee, R.J. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv. Drug Deliv. Rev., 2004, 56(8), 1193-1204.
[http://dx.doi.org/10.1016/j.addr.2004.01.005] [PMID: 15094215]
[119]
Luo, M.; Liang, X.; Luo, S.T.; Wei, X.W.; Liu, T.; Ren, J.; Ma, C.C.; Yang, Y.H.; Wang, B.L.; Liu, L.; Song, X.R.; He, Z.Y.; Wei, Y.Q. Folate-modified lipoplexes delivering the interleukin-12 gene for targeting colon cancer immunogene therapy. J. Biomed. Nanotechnol., 2015, 11(11), 2011-2023.
[http://dx.doi.org/10.1166/jbn.2015.2136] [PMID: 26554159]
[120]
Klein, P.M.; Kern, S.; Lee, D-J.; Schmaus, J.; Höhn, M.; Gorges, J.; Kazmaier, U.; Wagner, E. Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo. Biomaterials, 2018, 178, 630-642.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.031] [PMID: 29580727]
[121]
Witsch, E.; Sela, M.; Yarden, Y. Roles for growth factors in cancer progression. Physiology (Bethesda), 2010, 25(2), 85-101.
[http://dx.doi.org/10.1152/physiol.00045.2009] [PMID: 20430953]
[122]
Siwak, D.R.; Carey, M.; Hennessy, B.T.; Nguyen, C.T.; McGahren Murray, M.J.; Nolden, L.; Mills, G.B. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J. Oncol., 2010.2010568938
[http://dx.doi.org/10.1155/2010/568938] [PMID: 20037743]
[123]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2)(Suppl.), 21-26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[124]
Xu, J.; Amiji, M. Therapeutic gene delivery and transfection in human pancreatic cancer cells using epidermal growth factor receptor-targeted gelatin nanoparticles. J. Vis. Exp., 2012, (59)e3612
[PMID: 22231028]
[125]
Klutz, K.; Schaffert, D.; Willhauck, M.J.; Grünwald, G.K.; Haase, R.; Wunderlich, N.; Zach, C.; Gildehaus, F.J.; Senekowitsch-Schmidtke, R.; Göke, B.; Wagner, E.; Ogris, M.; Spitzweg, C. Epidermal growth factor receptor-targeted (131)I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol. Ther., 2011, 19(4), 676-685.
[http://dx.doi.org/10.1038/mt.2010.296] [PMID: 21245850]
[126]
Frederiksen, K.S.; Abrahamsen, N.; Cristiano, R.J.; Damstrup, L.; Poulsen, H.S. Gene delivery by an epidermal growth factor/DNA polyplex to small cell lung cancer cell lines expressing low levels of epidermal growth factor receptor. Cancer Gene Ther., 2000, 7(2), 262-268.
[http://dx.doi.org/10.1038/sj.cgt.7700098] [PMID: 10770635]
[127]
Cho, H.J.; Chong, S.; Chung, S.J.; Shim, C.K.; Kim, D.D. Poly-L-arginine and dextran sulfate-based nanocomplex for epidermal growth factor receptor (EGFR) siRNA delivery: its application for head and neck cancer treatment. Pharm. Res., 2012, 29(4), 1007-1019.
[http://dx.doi.org/10.1007/s11095-011-0642-z] [PMID: 22169985]
[128]
Zhang, Y.; Zhang, Y-F.; Bryant, J.; Charles, A.; Boado, R.J.; Pardridge, W.M. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res., 2004, 10(11), 3667-3677.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0740] [PMID: 15173073]
[129]
Lee, Y.K.; Lee, T.S.; Song, I.H.; Jeong, H.Y.; Kang, S.J.; Kim, M.W.; Ryu, S.H.; Jung, I.H.; Kim, J.S.; Park, Y.S. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs. Cancer Gene Ther., 2015, 22(7), 335-343.
[http://dx.doi.org/10.1038/cgt.2015.18] [PMID: 25857361]
[130]
Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 1999, 13(1), 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[131]
Li, J.M.; Han, J.S.; Huang, Y.; Tain, P.K.; Qu, S.M.; Yao, M.; Jiang, H.Q.; Wan, D.F.; Luo, J.C.; Gu, C.X.; Gu, J.R. A novel gene delivery system targeting cells expressing VEGF receptors. Cell Res., 1999, 9(1), 11-25.
[http://dx.doi.org/10.1038/sj.cr.7290002] [PMID: 10321685]
[132]
Kroeze, W.K.; Sheffler, D.J.; Roth, B.L. G-protein-coupled receptors at a glance. J. Cell Sci., 2003, 116(Pt 24), 4867-4869.
[http://dx.doi.org/10.1242/jcs.00902] [PMID: 14625380]
[133]
Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer, 2007, 7(2), 79-94.
[http://dx.doi.org/10.1038/nrc2069] [PMID: 17251915]
[134]
Mansi, R.; Fleischmann, A.; Mäcke, H.R.; Reubi, J.C. Targeting GRPR in urological cancers--from basic research to clinical application. Nat. Rev. Urol., 2013, 10(4), 235-244.
[http://dx.doi.org/10.1038/nrurol.2013.42] [PMID: 23507930]
[135]
Ma, L.; Yu, P.; Veerendra, B.; Rold, T.L.; Retzloff, L.; Prasanphanich, A.; Sieckman, G.; Hoffman, T.J.; Volkert, W.A.; Smith, C.J. In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor. Mol. Imaging, 2007, 6(3), 171-180.
[http://dx.doi.org/10.2310/7290.2007.00013] [PMID: 17532883]
[136]
Abd-Elgaliel, W.R.; Gallazzi, F.; Garrison, J.C.; Rold, T.L.; Sieckman, G.L.; Figueroa, S.D.; Hoffman, T.J.; Lever, S.Z. Design, synthesis, and biological evaluation of an antagonist-bombesin analogue as targeting vector. Bioconjug. Chem., 2008, 19(10), 2040-2048.
[http://dx.doi.org/10.1021/bc800290c] [PMID: 18808168]
[137]
Ming, X.; Alam, M.R.; Fisher, M.; Yan, Y.; Chen, X.; Juliano, R.L. Intracellular delivery of an antisense oligonucleotide via endocytosis of a G protein-coupled receptor. Nucleic Acids Res., 2010, 38(19), 6567-6576.
[http://dx.doi.org/10.1093/nar/gkq534] [PMID: 20551131]
[138]
Wang, X.L.; Xu, R.; Lu, Z.R. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery. J. Control. Release, 2009, 134(3), 207-213.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.010] [PMID: 19135104]
[139]
Martinez-Pomares, L. The mannose receptor. J. Leukoc. Biol., 2012, 92(6), 1177-1186.
[http://dx.doi.org/10.1189/jlb.0512231] [PMID: 22966131]
[140]
Szolnoky, G.; Bata-Csörgö, Z.; Kenderessy, A.S.; Kiss, M.; Pivarcsi, A.; Novák, Z.; Nagy Newman, K.; Michel, G.; Ruzicka, T.; Maródi, L.; Dobozy, A.; Kemény, L. A mannose-binding receptor is expressed on human keratinocytes and mediates killing of Candida albicans. J. Invest. Dermatol., 2001, 117(2), 205-213.
[http://dx.doi.org/10.1046/j.1523-1747.2001.14071.x] [PMID: 11511295]
[141]
Chen, C.W.; Lu, D.W.; Yeh, M.K.; Shiau, C.Y.; Chiang, C.H. Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int. J. Nanomedicine, 2011, 6, 2567-2580.
[http://dx.doi.org/10.2147/IJN.S24447] [PMID: 22128247]
[142]
Jiang, H.L.; Kim, Y.K.; Arote, R.; Jere, D.; Quan, J.S.; Yu, J.H.; Choi, Y.J.; Nah, J.W.; Cho, M.H.; Cho, C.S. Mannosylated chitosan-graft-polyethylenimine as a gene carrier for Raw 264.7 cell targeting. Int. J. Pharm., 2009, 375(1-2), 133-139.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.033] [PMID: 19481699]
[143]
Park, I.Y.; Kim, I.Y.; Yoo, M.K.; Choi, Y.J.; Cho, M-H.; Cho, C.S. Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int. J. Pharm., 2008, 359(1-2), 280-287.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.010] [PMID: 18490119]
[144]
Nakamura, K.; Kuramoto, Y.; Mukai, H.; Kawakami, S.; Higuchi, Y.; Hashida, M. Enhanced gene transfection in macrophages by histidine-conjugated mannosylated cationic liposomes. Biol. Pharm. Bull., 2009, 32(9), 1628-1631.
[http://dx.doi.org/10.1248/bpb.32.1628] [PMID: 19721246]
[145]
Sun, X.; Chen, S.; Han, J.; Zhang, Z. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells. Int. J. Nanomedicine, 2012, 7, 2929-2942.
[http://dx.doi.org/10.2147/IJN.S31760] [PMID: 22745554]
[146]
He, C.; Yin, L.; Song, Y.; Tang, C.; Yin, C. Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomater., 2015, 17, 98-106.
[http://dx.doi.org/10.1016/j.actbio.2015.01.041] [PMID: 25662912]
[147]
Hong, S.; Zhang, X.; Chen, J.; Zhou, J.; Zheng, Y.; Xu, C. Targeted gene silencing using a follicle-stimulating hormone peptide-conjugated nanoparticle system improves its specificity and efficacy in ovarian clear cell carcinoma in vitro. J. Ovarian Res., 2013, 6(1), 80.
[http://dx.doi.org/10.1186/1757-2215-6-80] [PMID: 24252539]
[148]
Kim, J.; Kim, S.W.; Kim, W.J. PEI-g-PEG-RGD/small interference RNA polyplex-mediated silencing of vascular endothelial growth factor receptor and its potential as an anti-angiogenic tumor therapeutic strategy. Oligonucleotides, 2011, 21(2), 101-107.
[http://dx.doi.org/10.1089/oli.2011.0278] [PMID: 21375397]
[149]
Liu, L.; Dong, X.; Zhu, D.; Song, L.; Zhang, H.; Leng, X.G. TAT-LHRH conjugated low molecular weight chitosan as a gene carrier specific for hepatocellular carcinoma cells. Int. J. Nanomedicine, 2014, 9(1), 2879-2889.
[http://dx.doi.org/10.2147/IJN.S61392] [PMID: 24959076]
[150]
Tang, Q.; Cao, B.; Wu, H.; Cheng, G. Selective gene delivery to cancer cells using an integrated cationic amphiphilic peptide. Langmuir, 2012, 28(46), 16126-16132.
[http://dx.doi.org/10.1021/la303299s] [PMID: 23088373]
[151]
Egorova, A.; Bogacheva, M.; Shubina, A.; Baranov, V.; Kiselev, A. Development of a receptor-targeted gene delivery system using CXCR4 ligand-conjugated cross-linking peptides. J. Gene Med., 2014, 16(11-12), 336-351.
[http://dx.doi.org/10.1002/jgm.2811] [PMID: 25382058]
[152]
Kumar, P.; Wu, H.; McBride, J.L.; Jung, K.E.; Kim, M.H.; Davidson, B.L.; Lee, S.K.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering RNA to the central nervous system. Nature, 2007, 448(7149), 39-43.
[http://dx.doi.org/10.1038/nature05901] [PMID: 17572664]
[153]
Kim, S-S.; Ye, C.; Kumar, P.; Chiu, I.; Subramanya, S.; Wu, H.; Shankar, P.; Manjunath, N. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol. Ther., 2010, 18(5), 993-1001.
[http://dx.doi.org/10.1038/mt.2010.27] [PMID: 20216529]
[154]
Ikeda, Y.; Taira, K. Ligand-targeted delivery of therapeutic siRNA. Pharm. Res., 2006, 23(8), 1631-1640.
[http://dx.doi.org/10.1007/s11095-006-9001-x] [PMID: 16850274]
[155]
Chiu, S.J.; Ueno, N.T.; Lee, R.J. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin) conjugated polyethylenimine. J. Control. Release, 2004, 97(2), 357-369.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.019] [PMID: 15196762]
[156]
Bäumer, S.; Bäumer, N.; Appel, N.; Terheyden, L.; Fremerey, J.; Schelhaas, S.; Wardelmann, E.; Buchholz, F.; Berdel, W.E.; Müller-Tidow, C. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin. Cancer Res., 2015, 21(6), 1383-1394.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2017] [PMID: 25589625]
[157]
Sugo, T.; Terada, M.; Oikawa, T.; Miyata, K.; Nishimura, S.; Kenjo, E.; Ogasawara-Shimizu, M.; Makita, Y.; Imaichi, S.; Murata, S.; Otake, K.; Kikuchi, K.; Teratani, M.; Masuda, Y.; Kamei, T.; Takagahara, S.; Ikeda, S.; Ohtaki, T.; Matsumoto, H. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J. Control. Release, 2016, 237, 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.036] [PMID: 27369865]
[158]
Gustav, R.; Mats, G.; James, M.V.A. Antibody fragments and their purification by protein l affinity chromatography. Antibodies (Basel), 2015, 4(3), 259-277.
[http://dx.doi.org/10.3390/antib4030259]
[159]
Monnier, P.; Vigouroux, R.; Tassew, N. In Vivo Applications of Single Chain Fv (Variable Domain) (scFv) Fragments. MDPI AG: Basel, 2013, 2, 193-208.
[http://dx.doi.org/10.3390/antib2020193]
[160]
Kelly, M.P.; Lee, F.T.; Tahtis, K.; Power, B.E.; Smyth, F.E.; Brechbiel, M.W.; Hudson, P.J.; Scott, A.M. Tumor targeting by a multivalent single-chain Fv (scFv) anti-Lewis Y antibody construct. Cancer Biother. Radiopharm., 2008, 23(4), 411-423.
[http://dx.doi.org/10.1089/cbr.2007.0450] [PMID: 18771345]
[161]
Tietze, S.; Schau, I.; Michen, S.; Ennen, F.; Janke, A.; Schackert, G.; Aigner, A.; Appelhans, D.; Temme, A. A poly(propyleneimine) dendrimer-based polyplex-system for single-chain antibody-mediated targeted delivery and cellular uptake of sirna. Small, 2017, 13(27)
[http://dx.doi.org/10.1002/smll.201700072] [PMID: 28544767]
[162]
Wahlberg, E.; Lendel, C.; Helgstrand, M.; Allard, P.; Dincbas-Renqvist, V.; Hedqvist, A.; Berglund, H.; Nygren, P.A.; Härd, T. An affibody in complex with a target protein: structure and coupled folding. Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3185-3190.
[http://dx.doi.org/10.1073/pnas.0436086100] [PMID: 12594333]
[163]
Löfblom, J.; Feldwisch, J.; Tolmachev, V.; Carlsson, J.; Ståhl, S.; Frejd, F.Y. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett., 2010, 584(12), 2670-2680.
[http://dx.doi.org/10.1016/j.febslet.2010.04.014] [PMID: 20388508]
[164]
Feldwisch, J.; Tolmachev, V.; Lendel, C.; Herne, N.; Sjöberg, A.; Larsson, B.; Rosik, D.; Lindqvist, E.; Fant, G.; Höidén-Guthenberg, I.; Galli, J.; Jonasson, P.; Abrahmsén, L. Design of an optimized scaffold for affibody molecules. J. Mol. Biol., 2010, 398(2), 232-247.
[http://dx.doi.org/10.1016/j.jmb.2010.03.002] [PMID: 20226194]
[165]
Govindarajan, S.; Sivakumar, J.; Garimidi, P.; Rangaraj, N.; Kumar, J.M.; Rao, N.M.; Gopal, V. Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide-affibody bioconjugate. Biomaterials, 2012, 33(8), 2570-2582.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.003] [PMID: 22192536]
[166]
Zhang, Y.; Satterlee, A.; Huang, L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol. Ther., 2012, 20(7), 1298-1304.
[http://dx.doi.org/10.1038/mt.2012.79] [PMID: 22525514]
[167]
Kim, M.Y.; Jeong, S. In vitro selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther., 2011, 21(3), 173-178.
[http://dx.doi.org/10.1089/nat.2011.0283] [PMID: 21749294]
[168]
Kurosaki, T.; Higuchi, N.; Kawakami, S.; Higuchi, Y.; Nakamura, T.; Kitahara, T.; Hashida, M.; Sasaki, H. Self-assemble gene delivery system for molecular targeting using nucleic acid aptamer. Gene, 2012, 491(2), 205-209.
[http://dx.doi.org/10.1016/j.gene.2011.09.021] [PMID: 22001405]
[169]
Gilboa-Geffen, A.; Hamar, P.; Le, M.T.; Wheeler, L.A.; Trifonova, R.; Petrocca, F.; Wittrup, A.; Lieberman, J. Gene knockdown by epcam aptamer-sirna chimeras suppresses epithelial breast cancers and their tumor-initiating cells. Mol. Cancer Ther., 2015, 14(10), 2279-2291.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0201-T] [PMID: 26264278]
[170]
Li, X.; Mao, C. Using phage as a platform to select cancer cell-targeting peptides. Methods Mol. Biol., 2014, 1108, 57-68.
[http://dx.doi.org/10.1007/978-1-62703-751-8_4] [PMID: 24243240]
[171]
Wu, C-H.; Liu, I.J.; Lu, R-M.; Wu, H-C. Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci., 2016, 23, 8-8.
[http://dx.doi.org/10.1186/s12929-016-0223-x] [PMID: 26786672]
[172]
Wu, C.H.; Liu, I.J.; Lu, R.M.; Wu, H.C. Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci., 2016, 23, 8.
[http://dx.doi.org/10.1186/s12929-016-0223-x] [PMID: 26786672]
[173]
Lin, W.; Chien, W. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery. J. Nanopart. Res., 2015, 17(9), 1-14.
[http://dx.doi.org/10.1007/s11051-015-3132-0]
[174]
Terashima, T.; Ogawa, N.; Nakae, Y.; Sato, T.; Katagi, M.; Okano, J.; Maegawa, H.; Kojima, H. Gene therapy for neuro-pathic pain through sirna-irf5 gene delivery with homing pep-tides to microglia. Mol. Ther. Nucleic Acids, 2018, 11, 203-215.
[http://dx.doi.org/10.1016/j.omtn.2018.02.007] [PMID: 29858055]
[175]
Wada, A. Development of Next-Generation Peptide Binders Using In vitro Display Technologies and Their Potential Applications. Front. Immunol., 2013, 4(224), 224.
[http://dx.doi.org/10.3389/fimmu.2013.00224] [PMID: 23914189]
[176]
Higa, M.; Katagiri, C.; Shimizu-Okabe, C.; Tsumuraya, T.; Sunagawa, M.; Nakamura, M.; Ishiuchi, S.; Takayama, C.; Kondo, E.; Matsushita, M. Identification of a novel cell-penetrating peptide targeting human glioblastoma cell lines as a cancer-homing transporter. Biochem. Biophys. Res. Commun., 2015, 457(2), 206-212.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.089] [PMID: 25562654]
[177]
Kondo, E.; Saito, K.; Tashiro, Y.; Kamide, K.; Uno, S.; Furuya, T.; Mashita, M.; Nakajima, K.; Tsumuraya, T.; Kobayashi, N.; Nishibori, M.; Tanimoto, M.; Matsushita, M. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat. Commun., 2012, 3, 951.
[http://dx.doi.org/10.1038/ncomms1952] [PMID: 22805558]
[178]
Zarebkohan, A.; Najafi, F.; Moghimi, H.R.; Hemmati, M.; Deevband, M.R.; Kazemi, B. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur. J. Pharm. Sci., 2015, 78, 19-30.
[http://dx.doi.org/10.1016/j.ejps.2015.06.024] [PMID: 26118442]
[179]
Li, X.; Xie, Z.; Xie, C.; Lu, W.; Gao, C.; Ren, H.; Ying, M.; Wei, X.; Gao, J.; Su, B.; Ren, Y.; Liu, M. D-sp5 peptide-modified highly branched polyethylenimine for gene therapy of gastric adenocarcinoma. Bioconjug. Chem., 2015, 26(8), 1494-1503.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00137] [PMID: 26052814]
[180]
Qian, Y.; Zha, Y.; Feng, B.; Pang, Z.; Zhang, B.; Sun, X.; Ren, J.; Zhang, C.; Shao, X.; Zhang, Q.; Jiang, X. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials, 2013, 34(8), 2117-2129.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.050] [PMID: 23245924]
[181]
Blevins, K.S.; Jeong, J.H.; Ou, M.; Brumbach, J.H.; Kim, S.W. EphA2 targeting peptide tethered bioreducible poly(cystamine bisacrylamide-diamino hexane) for the delivery of therapeutic pCMV-RAE-1γ to pancreatic islets. J. Control. Release, 2012, 158(1), 115-122.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.022] [PMID: 22062690]
[182]
Wang, C.; Ning, L.; Wang, H.; Lu, Z.; Li, X.; Fan, X.; Wang, X.; Liu, Y. A peptide-mediated targeting gene delivery system for malignant glioma cells. Int. J. Nanomedicine, 2013, 8, 3631-3640.
[PMID: 24101872]
[183]
Mokhtarzadeh, A.; Parhiz, H.; Hashemi, M.; Ayatollahi, S.; Abnous, K.; Ramezani, M. Targeted gene delivery to mcf-7 cells using peptide-conjugated polyethylenimine. AAPS PharmSciTech, 2015, 16(5), 1025-1032.
[http://dx.doi.org/10.1208/s12249-014-0208-6] [PMID: 25652728]
[184]
Kuo, C.H.; Leon, L.; Chung, E.J.; Huang, R.T.; Sontag, T.J.; Reardon, C.A.; Getz, G.S.; Tirrell, M.; Fang, Y. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8142-8153.
[http://dx.doi.org/10.1039/C4TB00977K] [PMID: 25685357]
[185]
Migliaccio, N.; Palmieri, C.; Ruggiero, I.; Fiume, G.; Martucci, N.M.; Scala, I.; Quinto, I.; Scala, G.; Lamberti, A.; Arcari, P. B-cell receptor-guided delivery of peptide-siRNA complex for B-cell lymphoma therapy. Cancer Cell Int., 2015, 15, 50.
[http://dx.doi.org/10.1186/s12935-015-0202-4] [PMID: 25983658]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [588 - 608]
Pages: 21
DOI: 10.2174/1567201816666190529072914
Price: $58

Article Metrics

PDF: 37
HTML: 3
EPUB: 2
PRC: 1