Evaluation of the Effect of Nanoparticles Zinc Oxide/Camellia sinensis Complex on the Kidney of Rats Treated with Monosodium Glutamate: Antioxidant and Histological Approaches

Author(s): Nahla S. El-Shenawy*, Reham Z. Hamza, Fawziah A. Al-Salmi, Rasha A. Al-Eisa.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG).

Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points.

Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group.

Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.

Keywords: Zinc oxide nanoparticles, monosodium glutamate, Camellia sinensis, renal biomarkers, redox status, histopathology.

Dhanemozhi, A.C.; Rajeswari, V.; Sathyajothi, S. Green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application. Mats. Today: Proc., 2017, 4, 660-667.
Kachynski, A.V.; Kuzmin, A.N.; Nyk, M.; Roy, I.; Prasad, P.N. Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J. Phys. Chem. C Nanomater. Interfaces, 2008, 112(29), 10721-10724. [http://dx.doi.org/10.1021/jp801684j]. [PMID: 19633706].
Zvyagin, A.V.; Zhao, X.; Gierden, A.; Sanchez, W.; Ross, J.A.; Roberts, M.S. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J. Biomed. Opt., 2008, 13(6), 064031. [http://dx.doi.org/10.1117/1.3041492]. [PMID: 19123677].
Espitia, P.J.P.; Soares, N.D.F.F.; Coimbra, J.S.D.R.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc oxide nanoparticles: Synthesis, antimicrobial activity, and food packaging applications. Food Bioprocess Technol., 2012, 5(5), 1447-1464. [http://dx.doi.org/10.1007/s11947-012-0797-6].
Wang, B.; Feng, W.; Wang, M. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res., 2008, 10, 263-276. [http://dx.doi.org/10.1007/s11051-007-9245-3].
Pujalté, I.; Passagne, I.; Brouillaud, B.; Tréguer, M.; Durand, E.; Ohayon-Courtès, C.; L’Azou, B. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol., 2011, 8, 10. [http://dx.doi.org/10.1186/1743-8977-8-10]. [PMID: 21371295].
Ben-Slama, I.; Amara, S.; Mrad, I.; Rihane, N.; Omri, K.I. Sub-acute oral toxicity of zinc oxide nanoparticles in male rats. J. Nanomed. Nanotechnol., 2015, 6, 284. [http://dx.doi.org/10.4172/2157-7439.1000284].
Hamza, R.Z.; Al-Salmi, F.A.; El-Shenawy, N.S. Nanoparticles effects on zinc oxide/green tea complex on the lipid profile and liver functions of rats after monosodium glutamate treatment. J. Appl. Sci., (Faisalabad),, 2018, 18, 65-70. [http://dx.doi.org/10.3923/jas.2018].
Al-Salmi, F.A.; Hamza, R.Z.; El-Shenawy, N.S. The Interaction of Zinc Oxide/Green Tea Extract Complex Nanoparticles and Monosodium Glutamate in Liver of Rats. Curr. Pharm. Biotechnol., 2019.
Frei, B.; Higdon, J.V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J. Nutr., 2003, 133(10) [http://dx.doi.org/10.1093/jn/133.10.3275S].
Senthilkumar, S.R.; Sivakumar, T. Green tea (Camellia Sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci., 2014, 6(6), 461-465.
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650. [http://dx.doi.org/10.1039/c1gc15386b].
Bhattacharya, T.; Bhakta, A.; Ghosh, S.K. Long term effect of monosodium glutamate in liver of albino mice after neo-natal exposure. Nepal Med. Coll. J., 2011, 13(1), 11-16. [PMID: 21991693].
Schiffman, S.S. Intensification of sensory properties of foods for the elderly. J. Nutr., 2000, 130(Suppl. 4S), 927S-930S. [http://dx.doi.org/10.1093/jn/130.4.927S]. [PMID: 10736354].
Sharma, A.; Prasongwattana, V.; Cha’on, U.; Selmi, C.; Hipkaeo, W.; Boonnate, P.; Pethlert, S.; Titipungul, T.; Intarawichian, P.; Waraasawapati, S.; Puapiroj, A.; Sitprija, V.; Reungjui, S. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS One, 2013, 8(9), e75546. [http://dx.doi.org/10.1371/journal.pone.0075546]. [PMID: 24086562].
Sharma, A.; Fish, B.L.; Moulder, J.E.; Medhora, M.; Baker, J.E.; Mader, M.; Cohen, E.P. Safety and blood sample volume and quality of a refined retro-orbital bleeding technique in rats using a lateral approach. Lab Anim. (NY), 2014, 43(2), 63-66. [http://dx.doi.org/10.1038/laban.432]. [PMID: 24451361].
Paul, M.V.; Abhilash, M.; Varghese, M.V.; Alex, M.; Nair, R.H. Protective effects of α-tocopherol against oxidative stress related to nephrotoxicity by monosodium glutamate in rats. Toxicol. Mech. Methods, 2012, 22(8), 625-630. [http://dx.doi.org/10.3109/15376516.2012.714008]. [PMID: 22827614].
Leung, J.C.; Ragland, N.; Marphis, T.; Silverstein, D.M. NMDA agonists and antagonists induce renal culture cell toxicity. Med. Chem., 2008, 4(6), 565-571. [http://dx.doi.org/10.2174/157340608786242034]. [PMID: 18991741].
Huang, T.; Barclay, B.J.; Kalman, T.I.; von Borstel, R.C.; Hastings, P.J. The phenotype of a dihydrofolate reductase mutant of Saccharomyces cerevisiae. Gene, 1992, 121(1), 167-171. [http://dx.doi.org/10.1016/0378-1119(92)90177-Q]. [PMID: 1427091].
Hamza, R.Z.; Al-Harbi, M.S. Monosodium glutamate induced testicular toxicity and the possible ameliorative role of vitamin E or selenium in male rats. Toxicol. Rep., 2014, 1, 1037-1045. [http://dx.doi.org/10.1016/j.toxrep.2014.10.002]. [PMID: 28962317].
Sharma, A.; Wongkham, C.; Prasongwattana, V.; Boonnate, P.; Thanan, R.; Reungjui, S.; Cha’on, U. Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate. PLoS One, 2014, 9(12), e116233. [http://dx.doi.org/10.1371/journal.pone.0116233]. [PMID: 25551610].
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358. [http://dx.doi.org/10.1016/0003-2697(79)90738-3]. [PMID: 36810].
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474. [http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x].
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126. [http://dx.doi.org/10.1016/S0076-6879(84)05016-3]. [PMID: 6727660].
Hafeman, D.G.; Sunde, R.A.; Hoekstra, W.G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J. Nutr., 1974, 104(5), 580-587. [http://dx.doi.org/10.1093/jn/104.5.580]. [PMID: 4823943].
Beutler. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-886.
Suzuki, K.; Ota, H.; Sasagawa, S.; Sakatani, T.; Fujikura, T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal. Biochem., 1983, 132(2), 345-352. [http://dx.doi.org/10.1016/0003-2697(83)90019-2]. [PMID: 6312841].
Litwack, G.; Bothwell, J.W.; Williams, J.N., Jr; Elvehjem, C.A. A colorimetric assay for xanthine oxidase in rat liver homogenates. J. Biol. Chem., 1953, 200(1), 303-310. [PMID: 13034787].
Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol., 1994, 233, 380-385. [http://dx.doi.org/10.1016/S0076-6879(94)33044-1]. [PMID: 8015473].
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591. [J]. [http://dx.doi.org/10.1038/nrd2803]. [PMID: 19478820].
Arimon, M.; Takeda, S.; Post, K.L.; Svirsky, S.; Hyman, B.T.; Berezovska, O. Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol. Dis., 2015, 84, 109-119. [http://dx.doi.org/10.1016/j.nbd.2015.06.013]. [PMID: 26102023].
Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med., 2006, 145(4), 247-254. [http://dx.doi.org/10.7326/0003-4819-145-4-200608150-00004]. [PMID: 16908915].
Basile, D.P.; Anderson, M.D.; Sutton, T.A. Pathophysiology of acute kidney injury. Compr. Physiol., 2012, 2(2), 1303-1353. [PMID: 23798302].
Traynor, J.l.; Mactier, R.; Geddes, C.C.; Fox, J.G. How to measure renal function in clinical practice. BMJ, 2006, 333(7571), 733-737.
Gantedi, S.; Anreddy, R.N.R. Toxicological studies of zinc oxide nanomaterials in rats. Toxicol. Environ. Chem., 2012, 94(9), 1768-1779. [http://dx.doi.org/10.1080/02772248.2012.731290].
Amara, S.; Ben-Slama, I.; Mrad, I.; Rihane, N.; Jeljeli, M. Acute exposure to zinc oxide nanoparticles do not affect the cognitive capacity and neurotransmitters levels in adult rats. Nanotoxicology, 2014, 208-215.
Ortiz, G.G.; Bitzer-Quintero, O.K.; Zárate, C.B.; Rodríguez-Reynoso, S.; Larios-Arceo, F.; Velázquez-Brizuela, I.E.; Pacheco-Moisés, F.; Rosales-Corral, S.A. Monosodium glutamate-induced damage in liver and kidney: A morphological and biochemical approach. Biomed. Pharmacother., 2006, 60(2), 86-91. [http://dx.doi.org/10.1016/j.biopha.2005.07.012]. [PMID: 16488110].
Onaolapo, A.Y.; Onaolapo, O.J.; Mosaku, T.J.; Akanji, O.; Abiodun, O.A. Histological study of the hepatic and renal effects of subchronic low dose oral monosodium glutamate in Swiss Albino Mice. Br. J. Med. Med. Res., 2013, 3(2), 294-306. [http://dx.doi.org/10.9734/BJMMR/2013/2065].
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidantssuperoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. In. Alexandria J. Med., 2017. [http://dx.doi.org/10.1016/j.ajme.2017.09.001].
Lippi, G.; Montagnana, M.; Franchini, M.; Favaloro, E.J.; Targher, G. The paradoxical relationship between serum uric acid and cardiovascular disease. Clin. Chim. Acta, 2008, 392(1-2), 1-7. [http://dx.doi.org/10.1016/j.cca.2008.02.024]. [PMID: 18348869].
Ekpenyong, C.; Akpan, E. Abnormal serum uric acid levels in health and disease: a double-edged sword. Am. J. Int. Med., 2014, 2(6), 113-130. [http://dx.doi.org/10.11648/j.ajim.20140206.15].
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14. [http://dx.doi.org/10.1016/j.ijcard.2015.08.109]. [PMID: 26316329].
Sharma, A. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: A mini-review. J. Biomed. Sci., 2015, 22, 93. [http://dx.doi.org/10.1186/s12929-015-0192-5]. [PMID: 26493866].
Hillyer, J.F.; Albrecht, R.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci., 2001, 90(12), 1927-1936. [http://dx.doi.org/10.1002/jps.1143]. [PMID: 11745751].
Sharma, V.; Singh, P.; Pandey, A.K.; Dhawan, A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res., 2012, 745(1-2), 84-91. [http://dx.doi.org/10.1016/j.mrgentox.2011.12.009]. [PMID: 22198329].
Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol., 2009, 29(1), 69-78. [http://dx.doi.org/10.1002/jat.1385]. [PMID: 18756589].
Srivastava, R.C.; Husain, M.M.; Hasan, S.K.; Athar, M. Green tea polyphenols and tannic acid act as potent inhibitors of phorbol ester-induced nitric oxide generation in rat hepatocytes independent of their antioxidant properties. Cancer Lett., 2000, 153(1-2), 1-5. [http://dx.doi.org/10.1016/S0304-3835(99)00400-0]. [PMID: 10779623].
Farombi, E.O.; Onyema, O.O. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: Modulatory role of vitamin C, vitamin E and quercetin. Hum. Exp. Toxicol., 2006, 25(5), 251-259. [http://dx.doi.org/10.1191/0960327106ht621oa]. [PMID: 16758767]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [542 - 550]
Pages: 9
DOI: 10.2174/1389201020666190522075928
Price: $58

Article Metrics

PDF: 29