Identification of Essential 2D and 3D Chemical Features for Discovery of the Novel Tubulin Polymerization Inhibitors

Author(s): Fateme Azimi , Jahan B. Ghasemi* , Lotfollah Saghaei , Farshid Hassanzadeh , Mohammad Mahdavi , Hojjat Sadeghi-Aliabadi , Marcus T. Scotti , Luciana Scotti* .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 13 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Tubulin polymerization inhibitors interfere with microtubule assembly and their functions lead to mitotic arrest, therefore they are attractive target for design and development of novel anticancer compounds.

Objective: The proposed novel and effective structures following the use of three-dimensionalquantitative structure activity relationship (3D-QSAR) pharmacophore based virtual screening clearly demonstrate the high efficiency of this method in modern drug discovery.

Methods: Combined computational approach was applied to extract the essential 2D and 3D features requirements for higher activity as well as identify new anti-tubulin agents.

Results: The best quantitative pharmacophore model, Hypo1, exhibited good correlation of 0.943 (RMSD=1.019) and excellent predictive power in the training set compounds. Generated model AHHHR, was well mapped to colchicine site and three-dimensional spatial arrangement of their features were in good agreement with the vital interactions in the active site. Total prediction accuracy (0.92 for training set and 0.86 for test set), enrichment factor (4.2 for training set and 4.5 for test set) and the area under the ROC curve (0.86 for training set and 0.94 for the test set), the developed model using Extended Class FingerPrints of maximum diameter 4 (ECFP_4) was chosen as the best model.

Conclusion: Developed computational platform provided a better understanding of requirement features for colchicine site inhibitors and we believe the results of this study might be useful for the rational design and optimization of new inhibitors.

Keywords: Tubulin inhibitor, 3D-QSA, Pharmacophore modeling, Docking, Virtual screening, Extended-connectivity fingerprints, 2D feature, Bayesian model.

[1]
Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[2]
Stefański, T.; Mikstacka, R.; Kurczab, R.; Dutkiewicz, Z.; Kucińska, M.; Murias, M.; Zielińska-Przyjemska, M.; Cichocki, M.; Teubert, A.; Kaczmarek, M.; Hogendorf, A.; Sobiak, S. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur. J. Med. Chem., 2018, 144, 797-816.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.050]. ] [PMID: 29291446]
[3]
Rastogi, S.K.; Zhao, Z.; Barrett, S.L.; Shelton, S.D.; Zafferani, M.; Anderson, H.E.; Blumenthal, M.O.; Jones, L.R.; Wang, L.; Li, X.; Streu, C.N.; Du, L.; Brittain, W.J. Photoresponsive azo-combretastatin A-4 analogues. Eur. J. Med. Chem., 2018, 143, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.012]. ] [PMID: 29172077]
[4]
Downing, K.H.; Nogales, E. Tubulin and microtubule structure. Curr. Opin. Cell Biol., 1998, 10(1), 16-22.
[http://dx.doi.org/10.1016/S0955-0674(98)80082-3]. ] [PMID: 9484591]
[5]
Islam, M.N.; Iskander, M.N. Microtubulin binding sites as target for developing anticancer agents. Mini Rev. Med. Chem., 2004, 4(10), 1077-1104.
[http://dx.doi.org/10.2174/1389557043402946] [PMID: 15579115]
[6]
Kline-Smith, S.L.; Walczak, C.E. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell, 2004, 15(3), 317-327.
[http://dx.doi.org/10.1016/j.molcel.2004.07.012] [PMID: 15304213]
[7]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[8]
Sorger, P.K.; Dobles, M.; Tournebize, R.; Hyman, A.A. Coupling cell division and cell death to microtubule dynamics. Curr. Opin. Cell Biol., 1997, 9(6), 807-814.
[http://dx.doi.org/10.1016/S0955-0674(97)80081-6] [PMID: 9425345]
[9]
Carlson, R.O. New tubulin targeting agents currently in clinical development. Expert Opin. Investig. Drugs, 2008, 17(5), 707-722.
[http://dx.doi.org/10.1517/13543784.17.5.707]. ] [PMID: 18447597]
[10]
Ahsan, M.J.; Yadav, R.P.; Saini, S.; Hassan, M.; Bakht, M.A.; Jadav, S.S. Synthesis, cytotoxic evaluation, and molecular docking studies of new oxadiazole analogues. Lett. Org. Chem., 2018, 15(1), 49-56.
[http://dx.doi.org/[DOI: 10.2174/1570178614666170704103315]
[11]
Gresely, B.P.; de Asís Balaguer, F.; Cardenas, M.G.; Revuelta, M.V.; Vidal, M.N.C.; Marullo, R. Development of a novel class of microtubule destabilizing agents with selectivity against diffuse large B-cell lymphoma (DLBCL) with B-cell receptor (BCR); Activation. Am. Soc. Hematol., 2017, 130(Suppl. 1), 2546.
[12]
Kachaeva, M.V.; Hodyna, D.M.; Semenyuta, I.V.; Pilyo, S.G.; Prokopenko, V.M.; Kovalishyn, V.V.; Metelytsia, L.O.; Brovarets, V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem., 2018, 74, 294-303.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.006] [PMID: 29698921]
[13]
Kumar, N.P.; Thatikonda, S.; Tokala, R.; Kumari, S.S.; Lakshmi, U.J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies. Bioorg. Med. Chem., 2018, 26(8), 1996-2008.
[http://dx.doi.org/10.1016/j.bmc.2018.02.050]. ] [PMID: 29525336]
[14]
Yang, C-R.; Peng, B.; Cao, S-L.; Ren, T-T.; Jiang, W.; Wang, F-C.; Li, Y.S.; Wang, G.; Li, Z.; Xu, S.; Liao, J.; Wang, H.; Li, J.; Xu, X. Synthesis, cytotoxic evaluation and target identification of thieno[2,3-d]pyrimidine derivatives with a dithiocarbamate side chain at C2 position. Eur. J. Med. Chem., 2018, 154, 324-340.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.028]. ] [PMID: 29843103]
[15]
Sayeed, I.B.; Vishnuvardhan, M.V.P.S.; Nagarajan, A.; Kantevari, S.; Kamal, A. Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorg. Chem., 2018, 80, 714-720.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.026]. ] [PMID: 30075408]
[16]
Dumontet, C.; Sikic, B.I. Mechanisms of action of and resistance to antitubulin agents: Microtubule dynamics, drug transport, and cell death. J. Clin. Oncol., 1999, 17(3), 1061-1070.
[http://dx.doi.org/10.1200/JCO.1999.17.3.1061]. ] [PMID: 10071301]
[17]
Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene, 2003, 22(47), 7280-7295.
[http://dx.doi.org/10.1038/sj.onc.1206934] [PMID: 14576838]
[18]
Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm., 2002, 235(1-2), 179-192.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3] [PMID: 11879753]
[19]
Hu, L.; Li, Z.R.; Li, Y.; Qu, J.; Ling, Y-H.; Jiang, J.D.; Boykin, D.W. Synthesis and structure-activity relationships of carbazole sulfonamides as a novel class of antimitotic agents against solid tumors. J. Med. Chem., 2006, 49(21), 6273-6282.
[http://dx.doi.org/10.1021/jm060546h] [PMID: 17034133]
[20]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Lopez Cara, C.; Preti, D.; Fruttarolo, F.; Pavani, M.G.; Tabrizi, M.A.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Balzarini, J.; Hadfield, J.A.; Brancale, A.; Hamel, E. Synthesis and biological evaluation of 2- and 3-aminobenzo[b]thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization. J. Med. Chem., 2007, 50(9), 2273-2277.
[http://dx.doi.org/10.1021/jm070050f] [PMID: 17419607]
[21]
Chen, K.; Zhang, Y-L.; Fan, J.; Ma, X.; Qin, Y-J.; Zhu, H-L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur. J. Med. Chem., 2018, 156, 722-737.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.044]. ] [PMID: 30041136]
[22]
Arnst, K. Abstract 3841: Biologic evaluation of heterocyclic pyrimidines as novel tubulin inhibitors targeting the colchicine binding site. AACR. Cancer Res., 2018, 78(13)(Suppl.), 3841-3841.
[http://dx.doi.org/[DOI: 10.1158/1538-7445.AM2018-3841]
[23]
Zhai, M.; Wang, L.; Liu, S.; Wang, L.; Yan, P.; Wang, J.; Zhang, J.; Guo, H.; Guan, Q.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and biological evaluation of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimetho-xyphenyl)methanone derivatives as tubulin inhibitors. Eur. J. Med. Chem., 2018, 156, 137-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.058]. ] [PMID: 30006160]
[24]
Banerjee, S.; Arnst, K.E.; Wang, Y.; Kumar, G.; Deng, S.; Yang, L.; Li, G.B.; Yang, J.; White, S.W.; Li, W.; Miller, D.D. Heterocyclic-fused pyrimidines as novel tubulin polymerization inhibitors targeting the colchicine binding site: Structural basis and antitumor efficacy. J. Med. Chem., 2018, 61(4), 1704-1718.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01858]. ] [PMID: 29406710]
[25]
Makhouri, F.R.; Ghasemi, J.B. High-throughput docking and molecular dynamics simulations towards the identification of novel peptidomimetic inhibitors against CDC7. Mol. Inform., 2018, 37(11)e1800022
[http://dx.doi.org/10.1002/minf.201800022] [PMID: 29984527]
[26]
Farahani, S.R.; Sohrabi, M.R.; Ghasemi, J.B. A detailed structural study of cytotoxicity effect of ionic liquids on the leukemia rat cell line IPC-81 by three dimensional quantitative structure toxicity relationship. Ecotoxicol. Environ. Saf., 2018, 158, 256-265.
[http://dx.doi.org/10.1016/j.ecoenv.2018.04.040] [PMID: 29709763]
[27]
Makhouri, F.R.; Ghasemi, J.B. In Silico studies in drug research against neurodegenerative diseases. Curr. Neuropharmacol., 2018, 16(6), 664-725.
[http://dx.doi.org/10.2174/1570159X15666170823095628] [PMID: 28831921]
[28]
Mangiatordi, G.F.; Trisciuzzi, D.; Alberga, D.; Denora, N.; Iacobazzi, R.M.; Gadaleta, D.; Catto, M.; Nicolotti, O. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur. J. Med. Chem., 2017, 139, 792-803.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.037]. ] [PMID: 28863359]
[29]
Patel, V.K.; Singh, A.; Jain, D.K.; Patel, P.; Veerasamy, R.; Sharma, P.C. Combretastatin A-4 based thiophene derivatives as antitumor agent: Development of structure activity correlation model using 3D-QSAR, pharmacophore and docking studies. Future J. Pharm. Sci., 2017, 3(2), 71-78.
[http://dx.doi.org/10.1016/j.fjps.2017.03.003]
[30]
Wang, S-F.; Yin, Y.; Zhang, Y-L.; Mi, S-W.; Zhao, M-Y.; Lv, P-C.; Wang, B.Z.; Zhu, H.L. Synthesis, biological evaluation and 3D-QSAR studies of novel 5-phenyl-1H-pyrazol cinnamamide derivatives as novel antitubulin agents. Eur. J. Med. Chem., 2015, 93, 291-299.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.018] [PMID: 25703297]
[31]
Güner, O.; Clement, O.; Kurogi, Y. Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr. Med. Chem., 2004, 11(22), 2991-3005.
[http://dx.doi.org/10.2174/0929867043364036]. ] [PMID: 15544485]
[32]
Karki, R.G.; Kulkarni, V.M. A feature based pharmacophore for Candida albicans MyristoylCoA: protein N-myristoyltransferase inhibitors. Eur. J. Med. Chem., 2001, 36(2), 147-163.
[http://dx.doi.org/10.1016/S0223-5234(00)01202-2] [PMID: 11311746]
[33]
Wang, Z.; Zhang, S.; Jin, H.; Wang, W.; Huo, J.; Zhou, L.; Wang, Y.; Feng, F.; Zhang, L. Angiotensin-I-converting enzyme inhibitory peptides: Chemical feature based pharmacophore generation. Eur. J. Med. Chem., 2011, 46(8), 3428-3433.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.007]. ] [PMID: 21621881]
[34]
Gupta, A.K.; Bhunia, S.S.; Balaramnavar, V.M.; Saxena, A.K. Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR QSAR Environ. Res., 2011, 22(3), 239-263.
[http://dx.doi.org/10.1080/1062936X.2010.548830]. ] [PMID: 21400356]
[35]
Akamatsu, M. Current state and perspectives of 3D-QSAR. Curr. Top. Med. Chem., 2002, 2(12), 1381-1394.
[http://dx.doi.org/10.2174/1568026023392887]. ] [PMID: 12470286]
[36]
Michaux, C.; de Leval, X.; Julémont, F.; Dogné, J-M.; Pirotte, B.; Durant, F. Structure-based pharmacophore of COX-2 selective inhibitors and identification of original lead compounds from 3D database searching method. Eur. J. Med. Chem., 2006, 41(12), 1446-1455.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.017]. ] [PMID: 17030482]
[37]
Pirhadi, S.; Ghasemi, J.B. Pharmacophore identification, molecular docking, virtual screening, and in silico ADME studies of non‐nucleoside reverse transcriptase inhibitors. Mol. Inform., 2012, 31(11-12), 856-866.
[http://dx.doi.org/10.1002/minf.201200018]. ] [PMID: 27476739]
[38]
Ghasemi, J.B.; Meftahi, N.; Pirhadi, S.; Tavakoli, H. Docking and pharmacophore‐based alignment comparative molecular field analysis three‐dimensional quantitative structure–activity relationship analysis of dihydrofolate reductase inhibitors by linear and nonlinear calibration methods. J. Chemometr., 2013, 27(10), 287-296.
[http://dx.doi.org/10.1002/cem.2515]
[39]
Ardakani, A.; Ghasemi, J.B. Identification of novel inhibitors of HIV-1 integrase using pharmacophore-based virtual screening combined with molecular docking strategies. Med. Chem. Res., 2013, 22(11), 5545-5556.
[http://dx.doi.org/10.1007/s00044-013-0545-0]
[40]
Entezari Heravi, Y.; Sereshti, H.; Saboury, A.A.; Ghasemi, J.; Amirmostofian, M.; Supuran, C.T. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 688-700.
[http://dx.doi.org/10.1080/14756366.2016.1241781]. ] [PMID: 28317396]
[41]
Kamal, A.; Shaik, A.B.; Polepalli, S.; Kumar, G.B.; Reddy, V.S.; Mahesh, R.; Garimella, S.; Jain, N. Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg. Med. Chem., 2015, 23(5), 1082-1095.
[http://dx.doi.org/10.1016/j.bmc.2015.01.004]. ] [PMID: 25648686]
[42]
Kamal, A.; Shaik, A.B.; Jain, N.; Kishor, C.; Nagabhushana, A.; Supriya, B.; Bharath Kumar, G.; Chourasiya, S.S.; Suresh, Y.; Mishra, R.K.; Addlagatta, A. Design and synthesis of pyrazole-oxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur. J. Med. Chem., 2015, 92, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.077]. ] [PMID: 25599948]
[43]
Qin, Y-J.; Li, Y.J.; Jiang, A-Q.; Yang, M-R.; Zhu, Q-Z.; Dong, H.; Zhu, H.L. Design, synthesis and biological evaluation of novel pyrazoline-containing derivatives as potential tubulin assembling inhibitors. Eur. J. Med. Chem., 2015, 94, 447-457.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.058]. ] [PMID: 25828827]
[44]
Li, Y-J.; Qin, Y-J.; Makawana, J.A.; Wang, Y-T.; Zhang, Y-Q.; Zhang, Y-L.; Yang, M.R.; Jiang, A.Q.; Zhu, H.L. Synthesis, biological evaluation and molecular modeling of 1,3,4-thiadiazol-2-amide derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2014, 22(15), 4312-4322.
[http://dx.doi.org/10.1016/j.bmc.2014.05.017] [PMID: 24909678]
[45]
Kamal, A.; Bajee, S.; Lakshma Nayak, V.; Venkata Subba Rao, A.; Nagaraju, B.; Ratna Reddy, C.; Jeevak Sopanrao, K.; Alarifi, A. Synthesis and biological evaluation of arylcinnamide linked combretastatin-A4 hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2957-2964.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.049]. ] [PMID: 27161282]
[46]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00021] [PMID: 27149641]
[47]
Fortin, S.; Moreau, E.; Lacroix, J.; Côté, M-F.; Petitclerc, E.; Gaudreault, R. Synthesis, antiproliferative activity evaluation and structure-activity relationships of novel aromatic urea and amide analogues of N-phenyl-N'-(2-chloroethyl)ureas. Eur. J. Med. Chem., 2010, 45(7), 2928-2937.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.018]. ] [PMID: 20400211]
[48]
Flynn, B.L.; Gill, G.S.; Grobelny, D.W.; Chaplin, J.H.; Paul, D.; Leske, A.F.; Lavranos, T.C.; Chalmers, D.K.; Charman, S.A.; Kostewicz, E.; Shackleford, D.M.; Morizzi, J.; Hamel, E.; Jung, M.K.; Kremmidiotis, G. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J. Med. Chem., 2011, 54(17), 6014-6027.
[http://dx.doi.org/10.1021/jm200454y] [PMID: 21774499]
[49]
La Regina, G.; Sarkar, T.; Bai, R.; Edler, M.C.; Saletti, R.; Coluccia, A.; Piscitelli, F.; Minelli, L.; Gatti, V.; Mazzoccoli, C.; Palermo, V.; Mazzoni, C.; Falcone, C.; Scovassi, A.I.; Giansanti, V.; Campiglia, P.; Porta, A.; Maresca, B.; Hamel, E.; Brancale, A.; Novellino, E.; Silvestri, R. New arylthioindoles and related bioisosteres at the sulfur bridging group. 4. Synthesis, tubulin polymerization, cell growth inhibition, and molecular modeling studies. J. Med. Chem., 2009, 52(23), 7512-7527.
[http://dx.doi.org/10.1021/jm900016t]. ] [PMID: 19601594]
[50]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Aghazadeh Tabrizi, M.; Brancale, A.; Fu, X.H.; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Porcù, E.; Basso, G.; Viola, G. Discovery and optimization of a series of 2-aryl-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)thiazoles as novel anticancer agents. J. Med. Chem., 2012, 55(11), 5433-5445.
[http://dx.doi.org/10.1021/jm300388h] [PMID: 22578111]
[51]
Version, D.S. 2.5 (DS 2.5) User Manual; Accelrys Inc: San Diego, CA, 2009. (Available at:. http://www.3dsbiovia.com/events/ webinars/european-webinar-series/index2.php
[52]
Krovat, E.M.; Langer, T. Non-peptide angiotensin II receptor antagonists: chemical feature based pharmacophore identification. J. Med. Chem., 2003, 46(5), 716-726.
[http://dx.doi.org/10.1021/jm021032v]. ] [PMID: 12593652]
[53]
Zhang, Y.; Zhang, S.; Xu, G.; Yan, H.; Pu, Y.; Zuo, Z. The discovery of new acetylcholinesterase inhibitors derived from pharmacophore modeling, virtual screening, docking simulation and bioassays. Mol. Biosyst., 2016, 12(12), 3734-3742.
[http://dx.doi.org/10.1039/C6MB00661B] [PMID: 27801451]
[54]
Al-Najjar, B.O.; Wahab, H.A.; Tengku Muhammad, T.S.; Shu-Chien, A.C.; Ahmad Noruddin, N.A.; Taha, M.O. Discovery of new nanomolar peroxisome proliferator-activated receptor γ activators via elaborate ligand-based modeling. Eur. J. Med. Chem., 2011, 46(6), 2513-2529.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.040] [PMID: 21482446]
[55]
Sakkiah, S.; Thangapandian, S.; John, S.; Kwon, Y.J.; Lee, K.W. 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors. Eur. J. Med. Chem., 2010, 45(6), 2132-2140.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.016] [PMID: 20206418]
[56]
Chen, Y.D.; Jiang, Y-J.; Zhou, J-W.; Yu, Q-S.; You, Q-D. Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling. J. Mol. Graph. Model., 2008, 26(7), 1160-1168.
[http://dx.doi.org/10.1016/j.jmgm.2007.10.007]. ] [PMID: 18061500]
[57]
Bhattacharjee, A.K.; Hartell, M.G.; Nichols, D.A.; Hicks, R.P.; Stanton, B.; van Hamont, J.E.; Milhous, W.K. Structure-activity relationship study of antimalarial indolo [2,1-b]quinazoline-6,12-diones (tryptanthrins). Three dimensional pharmacophore modeling and identification of new antimalarial candidates. Eur. J. Med. Chem., 2004, 39(1), 59-67.
[http://dx.doi.org/10.1016/j.ejmech.2003.10.004] [PMID: 14987834]
[58]
Kurogi, Y.; Güner, O.F. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr. Med. Chem., 2001, 8(9), 1035-1055.
[http://dx.doi.org/10.2174/0929867013372481] [PMID: 11472240]
[59]
Poptodorov, K.; Luu, T.; Langer, T.; Hoffmann, R. Pharmacophores and pharmacophore searches (methods and principles in medicinal chemistry), 1st ed; Wiley & Sons: New York, 2006, Vol. 32, p. 395.
[60]
Fisher, R. The Principle of Experimentation Illustrated by a Psycho-physical. ExpeHafner Publishing Co, 8th ed; Hafner Publishing: NewYork, 1966.
[61]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0]. ] [PMID: 11259830]
[62]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[63]
Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem., 2003, 24(13), 1549-1562.
[http://dx.doi.org/10.1002/jcc.10306] [PMID: 12925999]
[64]
Momany, F.A.; Rone, R. Validation of the general purpose QUANTA® 3.2/CHARMm® force field. J. Comput. Chem., 1992, 13(7), 888-900.
[http://dx.doi.org/10.1002/jcc.540130714]
[65]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202.
[http://dx.doi.org/10.1038/nature02393] [PMID: 15014504]
[66]
Xia, X.; Maliski, E.G.; Gallant, P.; Rogers, D. Classification of kinase inhibitors using a Bayesian model. J. Med. Chem., 2004, 47(18), 4463-4470.
[http://dx.doi.org/10.1021/jm0303195] [PMID: 15317458]
[67]
Klon, A.E.; Glick, M.; Davies, J.W. Combination of a naive Bayes classifier with consensus scoring improves enrichment of high-throughput docking results. J. Med. Chem., 2004, 47(18), 4356-4359.
[http://dx.doi.org/10.1021/jm049970d] [PMID: 15317449]
[68]
Metz, J.T.; Huth, J.R.; Hajduk, P.J. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J. Comput. Aided Mol. Des., 2007, 21(1-3), 139-144.
[http://dx.doi.org/10.1007/s10822-007-9109-z] [PMID: 17340041]
[69]
Prathipati, P.; Ma, N.L.; Keller, T.H. Global Bayesian models for the prioritization of antitubercular agents. J. Chem. Inf. Model., 2008, 48(12), 2362-2370.
[http://dx.doi.org/10.1021/ci800143n] [PMID: 19053518]
[70]
Bender, A.; Glen, R.C. A discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication. J. Chem. Inf. Model., 2005, 45(5), 1369-1375.
[http://dx.doi.org/10.1021/ci0500177] [PMID: 16180913]
[71]
Schellhammer, I.; Rarey, M. TrixX: structure-based molecule indexing for large-scale virtual screening in sublinear time. J. Comput. Aided Mol. Des., 2007, 21(5), 223-238.
[http://dx.doi.org/10.1007/s10822-007-9103-5] [PMID: 17294247]
[72]
Oloff, S.; Zhang, S.; Sukumar, N.; Breneman, C.; Tropsha, A. Chemometric analysis of ligand receptor complementarity: identifying complementary ligands based on receptor information (CoLiBRI). J. Chem. Inf. Model., 2006, 46(2), 844-851.
[http://dx.doi.org/10.1021/ci050065r]. ] [PMID: 16563016]
[73]
Vogt, M.; Bajorath, J. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints. Chem. Biol. Drug Des., 2008, 71(1), 8-14.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00602.x]. ] [PMID: 18069988]
[74]
Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures. Org. Biomol. Chem., 2004, 2(22), 3256-3266.
[http://dx.doi.org/10.1039/b409865j] [PMID: 15534703]
[75]
Brown, R.D.; Martin, Y.C. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci., 1997, 37(1), 1-9.
[http://dx.doi.org/10.1021/ci960373c]
[76]
Rogers, D.; Brown, R.D.; Hahn, M. Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen., 2005, 10(7), 682-686.
[http://dx.doi.org/10.1177/1087057105281365]. ] [PMID: 16170046]
[77]
Ke, Y-Y.; Coumar, M.S.; Shiao, H-Y.; Wang, W-C.; Chen, C-W.; Song, J-S.; Chen, C.H.; Lin, W.H.; Wu, S.H.; Hsu, J.T.; Chang, C.M.; Hsieh, H.P. Ligand efficiency based approach for efficient virtual screening of compound libraries. Eur. J. Med. Chem., 2014, 83, 226-235.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.029] [PMID: 24960626]
[78]
Studio D. version 2.1; Accelrys, Inc.: San Diego,CA, 2008.(Available at:. http://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php
[79]
Pirhadi, S.; Shiri, F.; Ghasemi, J.B. Pharmacophore elucidation and 3D-QSAR analysis of a new class of highly potent inhibitors of acid ceramidase based on maximum common substructure and field fit alignment methods. J. Indian Chem. Soc., 2014, 11(5), 1329-1336.
[http://dx.doi.org/10.1007/s13738-013-0402-6]
[80]
Pirhadi, S.; Shiri, F.; Ghasemi, J.B. Methods and applications of structure based pharmacophores in drug discovery. Curr. Top. Med. Chem., 2013, 13(9), 1036-1047.
[http://dx.doi.org/10.2174/1568026611313090006] [PMID: 23651482]
[81]
Guner, O.F. Pharmacophore perception, development, and use in drug design; International University Line: La Jolla, CA, 2000, p. 29.
[82]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[83]
Kandil, S.; Wymant, J.M.; Kariuki, B.M.; Jones, A.T.; McGuigan, C.; Westwell, A.D. Novel cis-selective and non-epimerisable C3 hydroxy azapodophyllotoxins targeting microtubules in cancer cells. Eur. J. Med. Chem., 2016, 110, 311-325.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.037] [PMID: 26854430]
[84]
John, S.; Thangapandian, S.; Sakkiah, S.; Lee, K.W. Identification of potent virtual leads to design novel indoleamine 2,3-dioxygenase inhibitors: Pharmacophore modeling and molecular docking studies. Eur. J. Med. Chem., 2010, 45(9), 4004-4012.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.057] [PMID: 20580138]
[85]
Khan, M.F.; Verma, G.; Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Rizvi, M.A. Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1, 3, 4-thiadiazole amides and sulfonamides as antitubulin agents. Arab. J. Chem., 2016.
[http://dx.doi.org/10.1016/j.arabjc.2016.11.004]
[86]
Kim, N.D.; Park, E-S.; Kim, Y.H.; Moon, S.K.; Lee, S.S.; Ahn, S.K.; Yu, D.Y.; No, K.T.; Kim, K.H. Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Bioorg. Med. Chem., 2010, 18(19), 7092-7100.
[http://dx.doi.org/10.1016/j.bmc.2010.07.072]. ] [PMID: 20810285]
[87]
Abdel Bar, F.M.; Khanfar, M.A.; Elnagar, A.Y.; Badria, F.A.; Zaghloul, A.M.; Ahmad, K.F.; Sylvester, P.W.; El Sayed, K.A. Design and pharmacophore modeling of biaryl methyl eugenol analogs as breast cancer invasion inhibitors. Bioorg. Med. Chem., 2010, 18(2), 496-507.
[http://dx.doi.org/10.1016/j.bmc.2009.12.019] [PMID: 20034800]
[88]
Vadivelan, S.; Deeksha, T.N.; Arun, S.; Machiraju, P.K.; Gundla, R.; Sinha, B.N.; Jagarlapudi, S.A. Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads. Eur. J. Med. Chem., 2011, 46(3), 851-859.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.022]. ] [PMID: 21272964]
[89]
Dror, O.; Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. Novel approach for efficient pharmacophore-based virtual screening: method and applications. J. Chem. Inf. Model., 2009, 49(10), 2333-2343.
[http://dx.doi.org/10.1021/ci900263d] [PMID: 19803502]
[90]
Braga, R.C.; Andrade, C.H. Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr. Top. Med. Chem., 2013, 13(9), 1127-1138.
[http://dx.doi.org/10.2174/1568026611313090010] [PMID: 23651486]
[91]
Purushottamachar, P.; Patel, J.B.; Gediya, L.K.; Clement, O.O.; Njar, V.C. First chemical feature-based pharmacophore modeling of potent retinoidal retinoic acid metabolism blocking agents (RAMBAs): identification of novel RAMBA scaffolds. Eur. J. Med. Chem., 2012, 47(1), 412-423.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.010] [PMID: 22130607]
[92]
Yang, L-L.; Li, G-B.; Yan, H-X.; Sun, Q-Z.; Ma, S.; Ji, P.; Wang, Z.R.; Feng, S.; Zou, J.; Yang, S.Y. Discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization. Eur. J. Med. Chem., 2012, 56, 30-38.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.007] [PMID: 22944772]
[93]
Balaji, B.; Hariharan, S.; Shah, D.B.; Ramanathan, M. Discovery of potential and selective COX-1 inhibitory leads using pharmacophore modelling, in silico screening and in vitro evaluation. Eur. J. Med. Chem., 2014, 86, 469-480.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.005] [PMID: 25203777]
[94]
Sun, H-P.; Zhu, J.; Chen, F-H.; Zhang, S-L.; Zhang, Y.; You, Q-D. Combination of pharmacophore model development and binding mode analyses: Identification of ligand features essential for IκB kinase-beta (IKKβ) inhibitors and virtual screening based on it. Eur. J. Med. Chem., 2011, 46(9), 3942-3952.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.066] [PMID: 21708416]
[95]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019]. ] [PMID: 11259830]
[96]
Zaccagnini, L.; Brogi, S.; Brindisi, M.; Gemma, S.; Chemi, G.; Legname, G.; Campiani, G.; Butini, S. Identification of novel fluorescent probes preventing PrPSc replication in prion diseases. Eur. J. Med. Chem., 2017, 127, 859-873.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.064]. ] [PMID: 27842893]
[97]
Qian, Y.; Zhang, H-J.; Lv, P-C.; Zhu, H-L. Synthesis, molecular modeling and biological evaluation of guanidine derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2010, 18(23), 8218-8225.
[http://dx.doi.org/10.1016/j.bmc.2010.10.008]. ] [PMID: 21036623]
[98]
Kumar, G.B.; Nayak, V.L.; Sayeed, I.B.; Reddy, V.S.; Shaik, A.B.; Mahesh, R.; Baig, M.F.; Shareef, M.A.; Ravikumar, A.; Kamal, A. Design, synthesis of phenstatin/isocombretastatin-oxindole conjugates as antimitotic agents. Bioorg. Med. Chem., 2016, 24(8), 1729-1740.
[http://dx.doi.org/10.1016/j.bmc.2016.02.047] [PMID: 26970659]
[99]
Qian, Y.; Ma, G-Y.; Yang, Y.; Cheng, K.; Zheng, Q-Z.; Mao, W-J.; Shi, L.; Zhao, J.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of dithiocarbamates as novel antitubulin agents. Bioorg. Med. Chem., 2010, 18(12), 4310-4316.
[http://dx.doi.org/10.1016/j.bmc.2010.04.091]. ] [PMID: 20493717]
[100]
Sirisoma, N.; Kasibhatla, S.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen, J.A.; Anderson, M.B.; Baichwal, V.; Mather, G.G.; Jessing, K.; Hussain, R.; Hoang, K.; Pleiman, C.M.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 2-chloro-N-(4-methoxyphenyl)-N-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity. J. Med. Chem., 2008, 51(15), 4771-4779.
[http://dx.doi.org/10.1021/jm8003653] [PMID: 18651728]
[101]
Gakh, A.A.; Sosnov, A.V.; Krasavin, M.; Nguyen, T.L.; Hamel, E. Identification of diaryl 5-amino-1,2,4-oxadiazoles as tubulin inhibitors: the special case of 3-(2-fluorophenyl)-5-(4-methoxy-phenyl)amino-1,2,4-oxadiazole. Bioorg. Med. Chem. Lett., 2013, 23(5), 1262-1268.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.007] [PMID: 23385208]
[102]
Álvarez, C.; Álvarez, R.; Corchete, P.; Pérez-Melero, C.; Peláez, R.; Medarde, M. Exploring the effect of 2,3,4-trimethoxy-phenyl moiety as a component of indolephenstatins. Eur. J. Med. Chem., 2010, 45(2), 588-597.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.047] [PMID: 19939521]
[103]
Peyrot, V.; Leynadier, D.; Sarrazin, M.; Briand, C.; Rodriquez, A.; Nieto, J.M.; Andreu, J.M. Interaction of tubulin and cellular microtubules with the new antitumor drug MDL 27048. A powerful and reversible microtubule inhibitor. J. Biol. Chem., 1989, 264(35), 21296-21301.
[PMID: 2592375]
[104]
Hour, M-J.; Huang, L-J.; Kuo, S-C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K.H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: Their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem., 2000, 43(23), 4479-4487.
[http://dx.doi.org/10.1021/jm000151c] [PMID: 11087572]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 13
Year: 2019
Page: [1092 - 1120]
Pages: 29
DOI: 10.2174/1568026619666190520083655
Price: $58

Article Metrics

PDF: 10
HTML: 2
PRC: 1