Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Chloroquinoline-3-carbonitriles: Synthesis and Reactions

Author(s): Ramadan A. Mekheimer*, Mariam A. Al-Sheikh, Hanadi Y. Medrasi, Ghayah A. Bahatheg and Kamal U. Sadek

Volume 23, Issue 7, 2019

Page: [823 - 851] Pages: 29

DOI: 10.2174/1385272823666190516120946

Price: $65

Abstract

We herein describe the first review which aims to focus soberly the various synthetic methods and chemical reactions of chloroquinoline-3-carbonitrile derivatives. The reactions are subdivided into groups that cover reactions of chloro substituent at 2 or 4 and 2,4 positions, as well as cyano substituent at 3 position and reactions which involve both groups. Most types of reactions have been successfully applied and used in the production of biologically active compounds.

Keywords: Chloroquinoline-3-carbonitriles, synthesis, chemical reactions, biological activities, quinolines, heterocyclic alkaloids.

Graphical Abstract
[1]
Nasveld, P.; Kitchener, S. Treatment of acute vivax malaria with tafenoquine. Trans. R. Soc. Trop. Med. Hyg., 2005, 99(1), 2-5.
[2]
Craig, J.C.; Pearson, D.E. Potential antimalarials. 7. Tribromomethylquinolines and positive halogen compounds. J. Med. Chem., 1971, 14(12), 1221-1222.
[3]
Raynes, K.J.; Stocks, P.A.; O’Neill, P.M.; Park, B.K.; Ward, S.A. New 4-aminoquinoline Mannich base antimalarials. 1. Effect of an alkyl substituent in the 5′-position of the 4′-hydroxyanilino side chain. J. Med. Chem., 1999, 42(15), 2747-2751.
[4]
Shiraki, H.; Kozar, M.P.; Melendez, V.; Hudson, T.H.; Ohrt, C.; Magill, A.J.; Lin, A.J. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives. J. Med. Chem., 2011, 54(1), 131-142.
[5]
Leatham, P.A.; Bird, H.A.; Wright, V.; Seymour, D.; Gordon, A. A double blind study of antrafenine, naproxen and placebo in osteoarthrosis. Eur. J. Rheumatol. Inflamm., 1983, 6(2), 209-211.
[6]
Dillard, R.D.; Pavey, D.E.; Benslay, D.N. Synthesis and antiinflammatory activity of some 2,2-dimethyl-1,2-dihydroquinolines. J. Med. Chem., 1973, 16(3), 251-253.
[7]
Denny, W.A.; Wilson, W.R.; Ware, D.C.; Atwell, G.J.; Milbank, J.B.; Stevenson, R.J. Anti-cancer 2,3Dihydro1H-pyrrolo[3,2-f]quinoline complexes of cobalt and chromium. U.S. Patent 7,064,117, Jun 20, 2006.
[8]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[9]
Kidwai, M.; Bhushan, K.R.; Sapra, P.; Saxena, R.K.; Gupta, R. Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorg. Med. Chem., 2000, 8(1), 69-72.
[10]
Shah, N.M.; Patel, M.P.; Patel, R.G. New N-arylamino biquinoline derivatives: Synthesis, antimicrobial, antituberculosis, and antimalarial evaluation. Eur. J. Med. Chem., 2012, 54, 239-247.
[11]
Mahamoud, A.; Chevalier, J.; Davin-Regli, A.; Barbe, J.; Pagès, J-M. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets, 2006, 7(7), 843-847.
[12]
Muruganantham, N.; Sivakumar, R.; Anbalagan, N.; Gunasekaran, V.; Leonard, J.T. Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol. Pharm. Bull., 2004, 27(10), 1683-1687.
[13]
Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J. Med. Chem., 1994, 37(14), 2129-2137.
[14]
Polanski, J.; Niedbala, H.; Musiol, R.; Podeszwa, B.; Tabak, D.; Palka, A.; Mencel, A.; Finster, J.; Mouscadet, J.F.; Bret, M.L. 5-Hydroxy-6-quinaldic acid as a novel molecular scaffold for HIV-1 integrase inhibitors. Lett. Drug Des. Discov., 2006, 3, 175-178.
[15]
Polanski, J.; Niedbala, H.; Musiol, R.; Podeszwa, B.; Tabak, D.; Palka, A.; Mencel, A.; Mouscadet, J.F.; Le Bret, M. Fragment based approach for the investigation of HIV-1 integrase inhibition. Lett. Drug Des. Discov., 2007, 4, 99-105.
[16]
Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(7), 2109-2118.
[17]
Proctor, G.R.; Harvey, A.L. Synthesis of tacrine analogues and their structure-activity relationships. Curr. Med. Chem., 2000, 7(3), 295-302.
[18]
Jiang, J.; Hoang, M.; Young, J.R.; Chaung, D.; Eid, R.; Turner, C.; Lin, P.; Tong, X.; Wang, J.; Tan, C.; Feighner, S.; Palyha, O.; Hreniuk, D.L.; Pan, J.; Sailer, A.W.; MacNeil, D.J.; Howard, A.; Shearman, L.; Stribling, S.; Camacho, R.; Strack, A.; Van der Ploeg, L.H.; Goulet, M.T.; DeVita, R.J. 2-Aminoquinoline Melanin-Concentrating Hormone (MCH)1R antagonists. Bioorg. Med. Chem. Lett., 2006, 16(20), 5270-5274.
[19]
Jiang, J.; Lin, P.; Hoang, M.; Chang, L.; Tan, C.; Feighner, S.; Palyha, O.C.; Hreniuk, D.L.; Pan, J.; Sailer, A.W.; Morin, N.R.; MacNeil, D.J.; Howard, A.D.; Van der Ploeg, L.H.Y.; Goulet, M.T.; DeVita, R.J. 4-Aminoquinoline Melanin-Concentrating Hormone 1-Receptor (MCH1R) antagonists. Bioorg. Med. Chem. Lett., 2006, 16(20), 5275-5279.
[20]
Ulven, T.; Little, P.B.; Receveur, J-M.; Frimurer, T.M.; Rist, O.; Nørregaard, P.K.; Högberg, T. 6-Acylamino-2-amino-4-methylquinolines as potent melanin-concentrating hormone 1 receptor antagonists: Structure-activity exploration of eastern and western parts. Bioorg. Med. Chem. Lett., 2006, 16(4), 1070-1075.
[21]
Ulven, T.; Frimurer, T.M.; Receveur, J-M.; Little, P.B.; Rist, O.; Nørregaard, P.K.; Högberg, T. 6-Acylamino-2-aminoquinolines as potent melanin-concentrating hormone 1 receptor antagonists. Identification, structure-activity relationship, and investigation of binding mode. J. Med. Chem., 2005, 48(18), 5684-5697.
[22]
Arienzo, R.; Clark, D.E.; Cramp, S.; Daly, S.; Dyke, H.J.; Lockey, P.; Norman, D.; Roach, A.G.; Stuttle, K.; Tomlinson, M.; Wong, M.; Wren, S.P. Structure-activity relationships of a novel series of Melanin-Concentrating Hormone (MCH) receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14(15), 4099-4102.
[23]
Boschelli, D.H.; Wang, Y.D.; Ye, F.; Wu, B.; Zhang, N.; Dutia, M.; Powell, D.W.; Wissner, A.; Arndt, K.; Weber, J.M.; Boschelli, F. Synthesis and src kinase inhibitory activity of a series of 4-phenylamino-3-quinolinecarbonitriles. J. Med. Chem., 2001, 44(5), 822-833.
[24]
Dubé, D.; Blouin, M.; Brideau, C.; Chan, C.C.; Desmarais, S.; Ethier, D.; Falgueyret, J.P.; Friesen, R.W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R.N. Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530. Bioorg. Med. Chem. Lett., 1998, 8(10), 1255-1260.
[25]
Meléndez Gómez, C.M.; Kouznetsov, V.V.; Sortino, M.A.; Alvarez, S.L.; Zacchino, S.A. In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels-Alder reactions. Bioorg. Med. Chem., 2008, 16(17), 7908-7920.
[26]
Dzimbeg, G.; Zorc, B.; Kralj, M.; Ester, K.; Pavelić, K.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E.; Mintas, M. The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: Synthesis, cytostatic and antiviral activity evaluations. Eur. J. Med. Chem., 2008, 43(6), 1180-1187.
[27]
Aggarwal, A.K.; Jenekhe, S.A. New conjugated polyanthrazolines containing thiophene moieties in the main chain. Macromolecules, 1991, 24, 6806-6808.
[28]
Zhang, X.; Shetty, A.S.; Jenekhe, S.A. Electroluminescence and photophysical properties of polyquinolines. Macromolecules, 1999, 32, 7422-7429.
[29]
Jenekhe, S.A.; Lu, L.; Alam, M.M. New conjugated polymers with donor-acceptor architectures: Synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules, 2001, 34, 7315-7324.
[30]
Kim, J.I.; Shin, I-S.; Kim, H.; Lee, J-K. Efficient electrogenerated chemiluminescence from cyclometalated iridium(III) complexes. J. Am. Chem. Soc., 2005, 127(6), 1614-1615.
[31]
Całus, S.; Gondek, E.; Danel, A.; Jarosz, B.; Pokładko, M.; Kityk, A.V. Electro-luminescence of 6-R-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline-based organic light-emitting diodes (R = F, Br, Cl, CH3, C2H3 and N(C6H5)2). Mater. Lett., 2007, 61, 3292-3295.
[32]
Holla, B.S.; Mahalinga, M.; Karthikeyan, M.S.; Akberali, P.M.; Shetty, N.S. Synthesis of some novel pyrazolo[3,4-d] pyrimidine derivatives as potential antimicrobial agents. Bioorg. Med. Chem., 2006, 14(6), 2040-2047.
[33]
Zhang, S.L.; Zhai, X.; Zhang, S.J.; Yu, H.H.; Gong, P. Synthesis and cytotoxicity studies of quinoline-3-carbonitrile derivatives. Chin. Chem. Lett., 2010, 21, 939-942.
[34]
Liu, B.; You, Q.D. Li Design, Z.Y. Design, synthesis and antitumor activity of 6,7-disubstituted-4-(heteroarylamino) quinoline-3-carbonitrile derivatives. Chin. Chem. Lett., 2010, 21, 554-557.
[35]
Kamath, S.; Buolamwini, J.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev., 2006, 26(5), 569-594.
[36]
Hu, Y.; Green, N.; Gavrin, L.K.; Janz, K.; Kaila, N.; Li, H.Q.; Thomason, J.R.; Cuozzo, J.W.; Hall, J.P.; Hsu, S.; Nickerson-Nutter, C.; Telliez, J.B.; Lin, L.L.; Tam, S. Inhibition of Tpl2 kinase and TNFalpha production with quinoline-3-carbonitriles for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2006, 16(23), 6067-6072.
[37]
Neelima; Bhat, B.K.; Bhaduri, A.P. Unusual reaction of 2-chloro-6,7-dialkoxy-quinoline-3-aldoxime with epichlorohydrin. Indian J. Chem., 1984, 23B, 431-434.
[38]
Srivastava, R.P. Neelima; Bhaduri, A.P. Synthetic applications of 2-chloro-3-formylquinoline. J. Heterocycl. Chem., 1987, 24, 219-222.
[39]
El-Sayed, O.A.; Aboul-Enein, H.Y. Synthesis and antimicrobial activity of novel pyrazolo[3,4-b]quinoline derivatives. Arch. Pharm. (Weinheim), 2001, 334(4), 117-120.
[40]
Srivastava, A.; Singh, R.M. Vilsmeier-Haack reagent: A facile synthesis of 2-chloro-3-formylquinolines from N-arylacetamides and transformation into different functionalities. Indian J. Chem., 2005, 44B, 1868-1875.
[41]
Upadhyay, S.; Chandra, A.; Singh, R.M. A one pot method of conversion of aldehydes into nitriles using iodine in ammonia water: Synthesis of 2-chloro-3-cyanoquinolines. Indian J. Chem., 2009, 48B, 152-154.
[42]
Toche, R.; Janrao, R. An efficient microwave-assisted Suzuki cross-coupling reactions on quinoline derivatives in water and study the electronic effects thereof. Int. J. Sci. Res. Pub., 2013, 3, 1-9.
[43]
Neelima; Bhat, B.; Bhaduri, A.P.; Mehrotra, P.K.; Bhaduri, V.P. Possible pregnancy interceptive agents: Syntheses of 6,7-dimethoxy-2,3,4-trisubstituted-quinolines & 3-cyano-6,7-dimethoxy-2,4-disubstituted-1,4-dihydroquinolines. Indian J. Chem., 1986, 25B, 939-944.
[44]
Neelima; Bhat, B.; Bhaduri, A.P. Grignard reaction of 2-substituted-3-cyano-quinolines. Z. Naturforsch. C, 1985, 40b, 990-995.
[45]
Amin, M.A-S.; Ismail, M.M.; Barakat, S.E-S.; Abdul-Rahman, A.A-A.; Bayomi, A.H.; El-Gamal, K.M.A. Synthesis and antimicrobial activity of some new quinoline and 1H-pyrazolo[3,4-b] quinoline derivatives. Bull. Pharm. Sci. Assiut Univ., 2004, 27, 237-245.
[46]
Baker, R.H.; Van Oot, J.G.; Tinsley, S.W.; Butler, D.; Riegel, B. 6-Methoxy-8-nitroquinolines with Substituents in the 3- and 4-Positions. J. Am. Chem. Soc., 1949, 71, 3060-3061.
[47]
Wissner, A.; Berger, D.M.; Boschelli, D.H.; Floyd, M.B., Jr; Greenberger, L.M.; Gruber, B.C.; Johnson, B.D.; Mamuya, N.; Nilakantan, R.; Reich, M.F.; Shen, R.; Tsou, H-R.; Upeslacis, E.; Wang, Y.F.; Wu, B.; Ye, F.; Zhang, N. 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. J. Med. Chem., 2000, 43(17), 3244-3256.
[48]
Miller, L.M.; Mayer, S.C.; Berger, D.M.; Boschelli, D.H.; Boschelli, F.; Di, L.; Du, X.; Dutia, M.; Floyd, M.B.; Johnson, M.; Kenny, C.H.; Krishnamurthy, G.; Moy, F.; Petusky, S.; Tkach, D.; Torres, N.; Wu, B.; Xu, W. Lead identification to generate 3-cyanoquinoline inhibitors of insulin-like growth factor receptor (IGF-1R) for potential use in cancer treatment. Bioorg. Med. Chem. Lett., 2009, 19(1), 62-66.
[49]
Wang, Y.D.; Miller, K.; Boschelli, D.H.; Ye, F.; Wu, B.; Floyd, M.B.; Powell, D.W.; Wissner, A.; Weber, J.M.; Boschelli, F. Inhibitors of src tyrosine kinase: The preparation and structure-activity relationship of 4-anilino-3-cyanoquinolines and 4-anilinoquinazolines. Bioorg. Med. Chem. Lett., 2000, 10(21), 2477-2480.
[50]
Boschelli, D.H.; Ye, F.; Wang, Y.D.; Dutia, M.; Johnson, S.L.; Wu, B.; Miller, K.; Powell, D.W.; Yaczko, D.; Young, M.; Tischler, M.; Arndt, K.; Discafani, C.; Etienne, C.; Gibbons, J.; Grod, J.; Lucas, J.; Weber, J.M.; Boschelli, F. Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J. Med. Chem., 2001, 44(23), 3965-3977.
[51]
Wissner, A.; Brawner Floyd, M.B.; Rabindran, S.K.; Nilakantan, R.; Greenberger, L.M.; Shen, R.; Wang, Y-F.; Tsou, H-R. Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: Analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents. Bioorg. Med. Chem. Lett., 2002, 12(20), 2893-2897.
[52]
Berger, D.; Dutia, M.; Powell, D.; Wu, B.; Wissner, A.; DeMorin, F.; Weber, J.; Boschelli, F. 8-Anilinoimidazo[4,5-g] quinoline-7-carbonitriles as Src kinase inhibitors. Bioorg. Med. Chem. Lett., 2002, 12(19), 2761-2765.
[53]
Wissner, A.; Overbeek, E.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Mamuya, N.; Rosfjord, E.C.; Discafani, C.; Davis, R.; Shi, X.; Rabindran, S.K.; Gruber, B.C.; Ye, F.; Hallett, W.A.; Nilakantan, R.; Shen, R.; Wang, Y-F.; Greenberger, L.M.; Tsou, H-R. Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the Epidermal Growth Factor Receptor (EGFR) and the Human Epidermal growth factor Receptor-2 (HER-2). J. Med. Chem., 2003, 46(1), 49-63.
[54]
Boschelli, D.H.; Wang, Y.D.; Johnson, S.; Wu, B.; Ye, F.; Barrios Sosa, A.C.; Golas, J.M.; Boschelli, F. 7-Alkoxy-4-phenylamino-3-quinolinecar-bonitriles as dual inhibitors of Src and Abl kinases. J. Med. Chem., 2004, 47(7), 1599-1601.
[55]
Pannala, M.; Kher, S.; Wilson, N.; Gaudette, J.; Sircar, I.; Zhang, S-H.; Bakhirev, A.; Yang, G.; Yuen, P.; Gorcsan, F.; Sakurai, N.; Barbosa, M.; Cheng, J-F. Synthesis and structure-activity relationship of 4-(2-aryl-cyclopropylamino)-quinoline-3-carbonitriles as EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(21), 5978-5982.
[56]
Liu, B.; You, Q.D.; Li, Z.Y. Design, synthesis and antitumor activity of 6,7-disubstituted-4-(heteroarylamino) quinoline-3-carbonitrile derivatives. Chin. Chem. Lett., 2010, 21, 554-557.
[57]
Zhang, S.L.; Zhai, X.; Zhang, S.J.; Yu, H.H.; Gong, P. Synthesis and cytotoxicity studies of quinoline-3-carbonitrile derivatives. Chin. Chem. Lett., 2010, 21, 939-942.
[58]
Tsou, H-R.; Overbeek-Klumpers, E.G.; Hallett, W.A.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Michalak, R.S.; Nilakantan, R.; Discafani, C.; Golas, J.; Rabindran, S.K.; Shen, R.; Shi, X.; Wang, Y-F.; Upeslacis, J.; Wissner, A. Optimization of 6,7-disubstituted-4-(arylamino) quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem., 2005, 48(4), 1107-1131.
[59]
Cao, X.; You, Q-D.; Li, Z-Y.; Guo, Q-L.; Shang, J.; Yan, M.; Chern, J-W.; Chen, M-L. Design and synthesis of 7-alkoxy-4-heteroarylamino-3-quinolinecarbonitriles as dual inhibitors of c-Src kinase and nitric oxide synthase. Bioorg. Med. Chem., 2008, 16(11), 5890-5898.
[60]
Green, N.; Hu, Y.; Janz, K.; Li, H-Q.; Kaila, N.; Guler, S.; Thomason, J.; Joseph-McCarthy, D.; Tam, S.Y.; Hotchandani, R.; Wu, J.; Huang, A.; Wang, Q.; Leung, L.; Pelker, J.; Marusic, S.; Hsu, S.; Telliez, J-B.; Hall, J.P.; Cuozzo, J.W.; Lin, L-L. Inhibitors of Tumor progression loci-2 (Tpl2) kinase and Tumor Necrosis Factor α (TNF-α) production: Selectivity and in vivo antiinflammatory activity of novel 8-substituted-4-anilino-6-aminoquinoline-3-carbonitriles. J. Med. Chem., 2007, 50(19), 4728-4745.
[61]
Boschelli, D.H.; Wang, D.Y.; Ye, F.; Yamashita, A.; Zhang, N.; Powell, D.; Weber, J.; Boschelli, F. Inhibition of Src kinase activity by 4-anilino-7-thienyl-3-quinolinecarbonitriles. Bioorg. Med. Chem. Lett., 2002, 12(15), 2011-2014.
[62]
Boschelli, D.H.; Wu, B.; Ye, F.; Durutlic, H.; Golas, J.M.; Lucas, J.; Boschelli, F. Facile preparation of new 4-phenylamino-3-quinolinecarbonitrile Src kinase inhibitors via 7-fluoro intermediates: Identification of potent 7-amino analogs. Bioorg. Med. Chem., 2008, 16(1), 405-412.
[63]
Gompper, R.; Töpfl, W. Ketenderivate, II. Reaktionen substituierter Ketenmercaptale. Chem. Ber., 1962, 95, 2871-2880.
[64]
Gabriel, S. Some quinoline derivatives. Chem. Ber., 1918, 51, 1500-1515.
[65]
Hamana, M.; Kumadaki, S. Studies on tertiary amine oxides. LXIV. Reaction of 4-nitro-quinoline 1-oxide and related compounds with potassium cyanide. Chem. Pharm. Bull., 1978, 26, 3856-3862.
[66]
Koller, G.; Ruppersberg, H.; Strang, E. Über die kondensation von o-amino-benzaldehyd mit ketodicarbonsäureestern und diketocarbonsäureestern. Monatsh. Chem., 1929, 52, 59-67.
[67]
Neelima; Bhat, B.; Bhaduri, A.P. Novel syntheses of 3-cyano-3,4-dihydro-quinolin-2(1H)-one and derivatives of 2,3-dicarbomethoxy-2-hydroxycyclopenta[b]quinoline. J. Heterocycl. Chem., 1986, 23, 409-411.
[68]
Singh, R.M.; Sharma, N.; Kumar, R.; Asthana, M.; Upadhyay, S. An alternative synthesis of pyrimido[4,5-b]quinoline-4-ones via metal-free amination in water and Vilsmeier-Haack cyclization. Tetrahedron, 2012, 68, 10318-10325.
[69]
Hegde, H.; Shetty, N.S. Facile one-pot multicomponent synthesis of 1H-pyrazolo- [3,4-b]quinolines using L-proline as a catalyst. Chem. Heterocycl. Compd., 2017, 53, 883-886.
[70]
Kumar, K.S.; Kiran Kumar, S.; Yogi Sreenivas, B.; Gorja, D.R.; Kapavarapu, R.; Rambabu, D.; Rama Krishna, G.; Reddy, C.M.; Basaveswara Rao, M.V.; Parsa, K.V.L.; Pal, M. C-C bond formation at C-2 of a quinoline ring: synthesis of 2-(1H-indol-3-yl) quinoline-3-carbonitrile derivatives as a new class of PDE4 inhibitors. Bioorg. Med. Chem., 2012, 20(7), 2199-2207.
[71]
Mekheimer, R.A. Some New Approaches for the Synthesis of Azoles, Azines and Azoloazines., PhD Thesis, Chemistry Department, Faculty of Science, Minia University: Minia, Egypt, November. 1990.
[72]
Mekheimer, R.A.; Elgemeie, G.H.; Kappe, Th. Synthesis of some novel azido- and tetrazoloquinoline-3-carbonitriles and their conversion into 2,4-diamino-quinoline-3-carbonitriles. J. Chem. Res., 2005, 2, 82-85.
[73]
Mekheimer, R.A.; Refaey, S.M.; Sadek, K.U.; Abdel Hameed, A.M.; Ibrahim, M.A.; Shah, A. Fused quinoline heterocycles VIII. Synthesis of polyfunctionally substituted pyrazolo[4,3-c]quinolin-4(5H)-ones. J. Chem. Res., 2008, 12, 735-737.
[74]
Mekheimer, R.; Ahmed, E.Kh.; Khattab, A.F. A novel nucleophilic substitution with quinoline derivatives. Synthesis of quinolones and pyrazolo[4,3-c]quinoline derivatives. Bull. Chem. Soc. Jpn., 1993, 66, 2936-2940.
[75]
Mekheimer, R.A. Fused quinoline heterocycles I. First example of the 2,4-diazido-quinoline-3-carbonitrile and 1-aryl-1,5-dihydro-1,2,3,4,5,6-hexaazaacephenanthrylenes ring systems. J. Chem. Soc., Perkin Trans. 1, 1999, 2183-2188.
[76]
Vitry, C.; Vasse, J-L.; Dupas, G.; Levacher, V.; Quéguiner, G.; Bourguignon, J. Stable annelated chiral NADH models with a rigidified amide part in the quinoline series: Synthesis, reactivity and grafting on a Merrifield resin. Tetrahedron, 2001, 57, 3087-3098.
[77]
Singh, R.M.; Kumar, R.; Sharma, N.; Asthana, M. Palladium-catalyzed one-pot synthesis of benzo[b] [1,6]naphthyridines via Sonogashira coupling and annulation reactions from 2-chloroquinoline-3-carbonitriles. Tetrahedron, 2013, 69, 9443-9450.
[78]
Kumar, R.; Asthana, M.; Singh, R.M. Pd-Catalyzed one-pot stepwise synthesis of benzo[b][1,6]naphthyridines from 2-chloroquinoline-3-carbonitriles using sulfur and amines as nucleophiles. J. Org. Chem., 2017, 82(21), 11531-11542.
[79]
Bracher, F.; Papke, Th. A Convenient formal total synthesis of the cytotoxic marine alkaloid amphimedine. Liebigs Ann., 1996, 1, 115-116.
[80]
Kobayashi, Y.; Kumadaki, I.; Taguchi, S.; Hanzawa, Y. Studies on organic fluorine compounds. X. Reaction of trifluoromethyl group in heterocycles with sodium amide. Chem. Pharm. Bull. (Tokyo), 1972, 20, 1047-1049.
[81]
Hopper, D.W.; Dutia, M.; Berger, D.M.; Powell, D.W. Observation of differential reactivity of cyclic amines in SN2 and SNAr displacement reactions in the course of synthesizing C-6, C-7 substituted quinolinecarbonitrile MEK1 kinase inhibitors. Tetrahedron Lett., 2008, 49, 137-140.
[82]
Mekheimer, R.A.; Kappe, Th. Nucleophilic substitution of 2,4-dichloro-quinoline-3-carbonitile with different nucleophiles. Synthesis of several new quinoline-3-carbonitrile derivatives. Heterocycl. Commun., 1998, 4, 131-138.
[83]
Scriven, E.F.V. Azides and Nitrenes; Academic Press, 1984, pp. 511-516.
[84]
Satyanarayana, K.; Rehse, K. No donors with antithrombotic and vasodilating activities, Part 23. Organic azides. Arch. Pharm. (Weinheim), 1998, 331(6), 207-210.
[85]
Castillo, R.; Andrés, J.; Domingo, L.R. Lewis acid mediated domino reaction between 2-cyclohexenone and methyl azide-A DFT Study. Eur. J. Org. Chem., 2005, 4705-4709.
[86]
Stadlbauer, W.; Hojas, G. Synthesis of 4-azido-3-diazo-3H-pyrazolo[3,4-b]quinoline from 3-amino-4-hydrazino-1H-pyrazolo[3,4-b]quinoline. J. Chem. Soc., Perkin Trans. 1, 2000, 3085-3087.
[87]
Mekheimer, R. A convenient synthesis of new substituted pyrazolo[4,3-c]quinolines with potential antiinflammatory activity. Pharmazie, 1994, 49(7), 486-489.
[88]
Mekheimer, R.A.; Ahmed, E.Kh.; El-Faham, H.A.; Kamel, L.H.; Doepp, D. Fused quinoline heterocycles V. Synthesis of novel 1,2,3,5,6-pentaazaaceanthrylene derivatives. J. Chem. Res., 2003, 2003(7), 388-389.
[89]
Shah, A.; Diculescu, V.C.; Qureshi, R.; Oliveira-Brett, A.M. Electrochemical reduction mechanism of camptothecin at glassy carbon electrode. Bioelectro Chem., 2010, 79(2), 173-178.
[90]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Totte, J.; Tona, L.; Kambu, K.; Berghe, D.V.; Vlietinck, A.J. Antibacterial and antifungal activities of neocryptolepine, biscryptolepine and cryptoquindoline, alkaloids isolated from Cryptolepis sanguinolenta. Phytomedicine, 1998, 5(3), 209-214.
[91]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Vlietinck, A.J.; Turger, C.A. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. J. Nat. Prod., 1997, 60(7), 688-691.
[92]
Grellier, P.; Ramiaramanana, L.; Millerioux, V.; Deharo, E.; Schrével, J.; Frappier, F.; Trigalo, F.; Bodo, B.; Pousset, J.L. Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from cryptolepis sanguinolenta. Phytother. Res., 1996, 10, 317-321.
[93]
Shaban, E.; Świtalska, M.; Wang, L.; Wang, N.; Xiu, F.; Hayashi, I.; Ngoc, T.A.; Nagae, S.; El-Ghlban, S.; Shimoda, S.; Gokha, A.A.A.E.; Sayed, I.E.T.E.; Wietrzyk, J.; Inokuchi, T. Synthesis and in vitro antiproliferative activity of 11-substituted neocryptolepines with a branched ω-aminoalkylamino chain. Molecules, 2017, 22(11), 1954-1964.
[94]
Mishra, K.; Pandey, A.K.; Singh, J.B.; Singh, R.M. Metal free TBHP-promoted intramolecular carbonylation of arenes via radical cross-dehydrogenative coupling: Synthesis of indenoquinolinones, 4-azafluorenones and fluorenones. Org. Biomol. Chem., 2016, 14(26), 6328-6336.
[95]
Steinschifter, W.; Stadlbauer, W. Regioselective azidation of 2,4-dichloro-quinolines. J. Prakt. Chem., 1994, 336, 311-318.
[96]
Mekheimer, R.A. Fused quinoline heterocycles. II. First synthesis of 1,2, 3,4,5,6-hexaazaaceanthrylenes and 5,7,8,10a,11-pentaazabenzo[a]fluorenes. Synth. Commun., 2001, 31, 1971-1982.
[97]
Mekheimer, R.A. Fused quinoline heterocycles III: Synthesis of first annulated 1,4,5,6,6a-pentaazabenzo[a]indacenes, 1,3,5,6-tetraazaaceanthrylenes and 5,7,9,11-tetra-azabenzo[a]fluorenes. Synthesis, 2000, 2078-2084.
[98]
Mekheimer, R.A.; Ahmed, E.Kh.; El-Fahham, H.A.; Kamel, L.H. Fused quinoline heterocycles IV: First synthesis of four heterocyclic ring systems of 1H-5-thia-1,2,3,6-tetraazaacephenanthrylenes and 1H-5-thia-1,3,6-triaza-acephenanthrylenes. Synthesis, 2001, 97-102.
[99]
Mekheimer, R.A.; Sadek, K.U.; Abd El-Nabi, H.A.; Mohamed, A.A-H.; Ebraheem, E.A.; Smith, M.B. Fused quinoline heterocycles VI: Synthesis of 5H-1-thia-3,5,6-triazaaceanthrylenes and 5H-1-thia-3,4,5,6-tetraazaacean-thrylenes. J. Heterocycl. Chem., 2005, 42, 567-574.
[100]
Mekheimer, R.A.; Abdel Hameed, A.M.; Sadek, K.U. Fused quinoline heterocycles VII: Synthesis of new isoxazolo[3`,4`:4,5]pyrrolo(or thieno)[2,3-c]quinolines. ARKIVOC, 2008, XVI, 144-153.
[101]
Mekheimer, R.A.; Al-Sheikh, M.A.; Medrasi, H.Y.; Bahatheg, Gh. A. Fused quinoline heterocycles X. First synthesis of new four heterocyclic ring systems 10-amino-6,9-disubstituted-[1,2,4]triazino [4`,3`:1,5]pyrazolo[4,3-c]qu-inoline derivatives. Synth. Commun., 2017, 47, 1052-1064.
[102]
Mekheimer, R.A.; Al-Sheikh, M.A.; Medrasi, H.Y.; Bahatheg, G.A. Naphthy-ridines part 4: Unprecedented synthesis of polyfunctionally substituted benzo[c][2,7]naphthy-ridines and benzo[c]pyrimido[4,5,6-ij][2,7]nap-hthyridines with structural analogy to pyrido-[4,3,2-mn]acridines present in the marine tetracyclic pyridoacridine alkaloids. Mol. Divers., 2018, 22, 159-171.
[103]
Hassan, A.A.; Mekheimer, R.; Mohamed, N.K. Synthesis of pyrimidopyrazolo- quinoline and quinonopyrazoloquinazolinetrione derivatives. Pharmazie, 1997, 52, 589-593.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy