Fatty Acids and Herbal Medicine

Author(s): Hossein Elyasi, Asghar Sepahvand, Hadis Rahimi, Amirhossein Nafari, Soleiman Azizi, Erfan Khadem, Amir Zamani, Nima Behnaminia, Mahmoud Bahmani*.

Journal Name: Current Traditional Medicine

Volume 5 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Fatty acid is a type of carboxylic acid with carbon chain that can be short (4 carbons, such as butyric acid) or long (14 carbons and more, like DHA). Generally, fatty acids are divided into two groups of unsaturated fatty acids and saturated fatty acids. They have important and valuable medicinal properties especially against microbial pathogens.

Objective: Studies have shown that the epidemic of the twentieth century's heart disease is due to the abuse of trans fatty acids. The consumption of various fatty acids has various therapeutic effects on various diseases.

Methods: Relevant articles were searched from Google Scholar, Pub Med, Scopus, Science direct, and Cochrane library.

Results: Getting omega-3 fatty acids through diet and supplements affects both acute and chronic inflammation. Consumption of omega-3 fatty acids can slow down the growth of cancer, increase the effect of chemotherapy and reduce the side effects of chemotherapy or cancer. This can be done by reducing angiogenesis in the tumor, creating the differentiation of cancer cells, reducing the risk of heart attack from cancer, etc.

Conclusion: In general, fatty acids are valuable and affordable, and available with numerous medicinal properties, including anti-fungal and anti-bacterial properties that can be extracted from and used by many sources, especially many medicinal plants. Since antimicrobial chemicals generally have many side effects and have resistance to many microbial species, various studies and experiments to identify and extract fatty acids and their application to the title of the pharmaceutical formulation are essential.

Keywords: Fatty acids, herbal medicine, anti-fungal, omega-3 fatty acids, cancer, microbe, anti-fungal medicine.

Metcalfe LD, Schmitz AA, Pelka JR. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem 1966; 38(3): 514-5.
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8(11): 1288-95.
[http://dx.doi.org/10.1038/nm788] [PMID: 12368907]
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116(11): 3015-25.
[http://dx.doi.org/10.1172/JCI28898] [PMID: 17053832]
Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415(6869): 339-43.
[http://dx.doi.org/10.1038/415339a] [PMID: 11797013]
Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 2009; 100(1): 261-8.
[http://dx.doi.org/10.1016/j.biortech.2008.06.039] [PMID: 18693011]
Wood JD, Enser M, Fisher AV, et al. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci 2008; 78(4): 343-58.
[http://dx.doi.org/10.1016/j.meatsci.2007.07.019] [PMID: 22062452]
Frostegård A, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 1993; 59(11): 3605-17.
[PMID: 16349080]
Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 1994; 60(2): 189-94.
[http://dx.doi.org/10.1093/ajcn/60.2.189] [PMID: 7913291]
Hu FB, Bronner L, Willett WC, et al. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA 2002; 287(14): 1815-21.
[http://dx.doi.org/10.1001/jama.287.14.1815] [PMID: 11939867]
Oomen CM, Ocké MC, Feskens EJ, van Erp-Baart MA, Kok FJ, Kromhout D. Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: A prospective population-based study. Lancet 2001; 357(9258): 746-51.
[http://dx.doi.org/10.1016/S0140-6736(00)04166-0] [PMID: 11253967]
Thelen JJ, Ohlrogge JB. Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 2002; 4(1): 12-21.
[http://dx.doi.org/10.1006/mben.2001.0204] [PMID: 11800570]
Ohlrogge JB. Design of new plant products: Engineering of fatty acid metabolism. Plant Physiol 1994; 104(3): 821-6.
[http://dx.doi.org/10.1104/pp.104.3.821] [PMID: 12232128]
Pietinen P, Ascherio A, Korhonen P, et al. Intake of fatty acids and risk of coronary heart disease in a cohort of finnish men. The alpha-tocopherol, beta-carotene cancer prevention study. Am J Epidemiol 1997; 145(10): 876-87.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009047] [PMID: 9149659]
Lemaitre RN, King IB, Mozaffarian D, Kuller LH, Tracy RP, Siscovick DS. N-3 polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: The cardiovascular health study. Am J Clin Nutr 2003; 77(2): 319-25.
[http://dx.doi.org/10.1093/ajcn/77.2.319] [PMID: 12540389]
Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002; 56(8): 365-79.
[http://dx.doi.org/10.1016/S0753-3322(02)00253-6] [PMID: 12442909]
Manson JE, Bassuk SS, Lee IM, et al. The Vitamin D and OmegA-3 TriaL (VITAL): Rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials 2012; 33(1): 159-71.
[http://dx.doi.org/10.1016/j.cct.2011.09.009] [PMID: 21986389]
Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr 2004; 24: 597-615.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132106] [PMID: 15189133]
Jazayeri S, Tehrani-Doost M, Keshavarz SA, et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry 2008; 42(3): 192-8.
[http://dx.doi.org/10.1080/00048670701827275] [PMID: 18247193]
Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 2008; 233(6): 674-88.
[http://dx.doi.org/10.3181/0711-MR-311] [PMID: 18408140]
Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr 1996; 63(1): 116-22.
[http://dx.doi.org/10.1093/ajcn/63.1.116] [PMID: 8604658]
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18(2): 153-61.
[http://dx.doi.org/10.1016/j.cmet.2013.05.017] [PMID: 23791484]
Su KP, Huang SY, Chiu CC, Shen WW. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2003; 13(4): 267-71.
[http://dx.doi.org/10.1016/S0924-977X(03)00032-4] [PMID: 12888186]
Fearon KC, Von Meyenfeldt MF, Moses AG, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: A randomised double blind trial. Gut 2003; 52(10): 1479-86.
[http://dx.doi.org/10.1136/gut.52.10.1479] [PMID: 12970142]
Ding M, Shi JY, Xing YZ, et al. Serum adipocyte fatty acid-binding protein levels are associated with peripheral arterial disease in women, but not men, with type 2 diabetes mellitus. J Diabetes 2018; 10(6): 478-86.
[http://dx.doi.org/10.1111/1753-0407.12549] [PMID: 28303680]
Fu N, Wang S, Zhang Y, et al. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur J Med Chem 2017; 136: 596-602.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.001] [PMID: 28551587]
Gołębiowski M, Urbanek A, Oleszczak A, et al. The antifungal activity of fatty acids of all stages of Sarcophaga carnaria L. (Diptera: Sarcophagidae). Microbiol Res 2014; 169(4): 279-86.
[http://dx.doi.org/10.1016/j.micres.2013.07.011] [PMID: 23969191]
Salem MZ, Ali HM, Mansour MM. Fatty acid methyl esters from air-dried wood, bark, and leaves of Brachychiton diversifolius R. Br: Antibacterial, antifungal, and antioxidant activities. BioResources 2014; 9(3): 3835-45.
Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016; 8(3): 128.
[http://dx.doi.org/10.3390/nu8030128] [PMID: 26950145]
Laforest M, Soufiane B, Simard MJ, Obeid K, Page E, Nurse RE. Acetyl-CoA carboxylase overexpression in herbicide-resistant large crabgrass (Digitaria sanguinalis). Pest Manag Sci 2017; 73(11): 2227-35.
[http://dx.doi.org/10.1002/ps.4675] [PMID: 28755464]
Chow JD, Lawrence RT, Healy ME, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol Metab 2014; 3(4): 419-31.
[http://dx.doi.org/10.1016/j.molmet.2014.02.004] [PMID: 24944901]
Leonard AE, Pereira SL, Sprecher H, Huang YS. Elongation of long-chain fatty acids. Prog Lipid Res 2004; 43(1): 36-54.
[http://dx.doi.org/10.1016/S0163-7827(03)00040-7] [PMID: 14636670]
Harwood JL. Recent advances in the biosynthesis of plant fatty acids. Biochimica et Biophysica Acta (BBA). Lipids and Lipid Metabolism 1996; 1301(1-2): 7-56.
Lopez AM, Chuang JC, Posey KS, Turley SD. Corrigenda to suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis Brain Res 1654 Brain Res 2017; 1657:3831654; 2017: 77-84
[http://dx.doi.org/10.1016/j.brainres.2016.12.016] [PMID: 28017700]
Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 2016; 16(11): 732-49.
[http://dx.doi.org/10.1038/nrc.2016.89] [PMID: 27658529]
Berod L, Friedrich C, Nandan A, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 2014; 20(11): 1327-33.
[http://dx.doi.org/10.1038/nm.3704] [PMID: 25282359]
Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med 2016; 22(10): 1108-19.
[http://dx.doi.org/10.1038/nm.4181] [PMID: 27643638]
Jacome-Sosa MM, Parks EJ. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol 2014; 25(3): 213-20.
[http://dx.doi.org/10.1097/MOL.0000000000000080] [PMID: 24785962]
Uddin M, Juraimi AS, Hossain MS, et al. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. The Scientific World Journal 2014.
Bigogno C, Khozin GI, Boussiba S, Vonshak A, Cohen Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochem 2002; 60(5): 497-503.
[http://dx.doi.org/10.1016/S0031-9422(02)00100-0] [PMID: 12052516]
Melo DMM, Silvestre AJ, Silva CM. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 2014; 92: 115-76.
Garcés R, Mancha M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem 1993; 211(1): 139-43.
[http://dx.doi.org/10.1006/abio.1993.1244] [PMID: 8323025]
Murata N, Sato N, Takahashi N, et al. Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 1982; 23(6): 1071-9.
Trindade AS, Dantas AF, Lima DC, Ferreira SL, Teixeira LS. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry. Food Chem 2015; 185: 145-50.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.118] [PMID: 25952852]
Kim SA, Rhee MS. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157: H7. Food Control 2016; 60: 447-54.
Burt S. Essential oils: Their antibacterial properties and potential applications in foods- A review. Int J Food Microbiol 2004; 94(3): 223-53.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
Gonzalez MD, Moreno E, Quevedo-Sarmiento J, et al. Studies on antibacterial activity of waste waters from olive oil mills (alpechin): Inhibitory activity of phenolic and fatty acids. Chemosphere 1990; 20(3-4): 423-32.
Dilika F, Bremner PD, Meyer JJ. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000; 71(4): 450-2.
[http://dx.doi.org/10.1016/S0367-326X(00)00150-7] [PMID: 10925024]
Ouattara B, Simard RE, Holley RA, Piette GJ, Bégin A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int J Food Microbiol 1997; 37(2-3): 155-62.
[http://dx.doi.org/10.1016/S0168-1605(97)00070-6] [PMID: 9310850]
Sato Y, Oketani H, Singyouchi K, et al. Extraction and purification of effective antimicrobial constituents of Terminalia chebula RETS against methicillin-resistant staphylococcus aureus. Biol Pharm Bull 1997; 20(4): 401-4.
[http://dx.doi.org/10.1248/bpb.20.401] [PMID: 9145218]
Roleira FM, Tavares-da-Silva EJ, Varela CL, et al. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem 2015; 183: 235-58.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.039] [PMID: 25863633]
Nabavi SF, Bilotto S, Russo GL, et al. Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer Metastasis Rev 2015; 34(3): 359-80.
[http://dx.doi.org/10.1007/s10555-015-9572-2] [PMID: 26227583]
Sauer LA, Dauchy RT, Blask DE. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Cancer Res 2000; 60(18): 5289-95.
[PMID: 11016660]
Nagao K, Yanagita T. Conjugated fatty acids in food and their health benefits. J Biosci Bioeng 2005; 100(2): 152-7.
[http://dx.doi.org/10.1263/jbb.100.152] [PMID: 16198256]
Ligresti A, Moriello AS, Starowicz K, et al. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 2006; 318(3): 1375-87.
[http://dx.doi.org/10.1124/jpet.106.105247] [PMID: 16728591]
Mullen GE, Yet L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg Med Chem Lett 2015; 25(20): 4363-9.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.087] [PMID: 26364942]
Micallef MA, Garg ML. Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals. Atherosclerosis 2009; 204(2): 476-82.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.09.020] [PMID: 18977480]
Zhao G, Etherton TD, Martin KR, et al. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 2005; 336(3): 909-17.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.204] [PMID: 16169525]
Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; 21(6): 495-505.
[http://dx.doi.org/10.1080/07315724.2002.10719248] [PMID: 12480795]
Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001; 36(9): 1007-24.
[http://dx.doi.org/10.1007/s11745-001-0812-7] [PMID: 11724453]
Akthar MS, Degaga B, Azam T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues in Bio Sci Pharma Res 2014; 2(1): 1-7.
Karimi E, Jaafar HZ, Ghasemzadeh A, Ebrahimi M. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol Res 2015; 48(1): 9.
[http://dx.doi.org/10.1186/0717-6287-48-9] [PMID: 25761515]
Zeng Z, Zhang S, Wang H, Piao X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J Anim Sci Biotechnol 2015; 6(1): 7.
[http://dx.doi.org/10.1186/s40104-015-0004-5] [PMID: 25774291]
Walters D, Raynor L, Mitchell A, Walker R, Walker K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 2004; 157(1): 87-90.
[http://dx.doi.org/10.1023/B:MYCO.0000012222.68156.2c] [PMID: 15008350]
Sinanoglou VJ, Zoumpoulakis P, Heropoulos G, et al. Lipid and fatty acid profile of the edible fungus Laetiporus sulphurous. Antifungal and antibacterial properties. J Food Sci Technol 2015; 52(6): 3264-72.
[PMID: 26028707]
Hygreeva D, Pandey MC, Radhakrishna K. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci 2014; 98(1): 47-57.
[http://dx.doi.org/10.1016/j.meatsci.2014.04.006] [PMID: 24845336]
Abdelillah A, Houcine B, Halima D, et al. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic aspergillus. Asian Pac J Trop Biomed 2013; 3(6): 443-8.
[http://dx.doi.org/10.1016/S2221-1691(13)60094-5] [PMID: 23730556]
Frank CL, Sitler-Elbel KG, Hudson AJ, Ingala MR. The antifungal properties of epidermal fatty acid esters: Insights from White-Nose Syndrome (WNS) in bats. Molecules 2018; 23(8): 1986.
[http://dx.doi.org/10.3390/molecules23081986] [PMID: 30096918]
Foskolos A, Siurana A, Rodriquez-Prado M, Ferret A, Bravo D, Calsamiglia S. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system. J Dairy Sci 2015; 98(8): 5482-91.
[http://dx.doi.org/10.3168/jds.2014-8674] [PMID: 26004834]
Carballeira NM, Sanabria D, Cruz C, Parang K, Wan B, Franzblau S. 2,6-hexadecadiynoic acid and 2,6-nonadecadiynoic acid: Novel synthesized acetylenic fatty acids as potent antifungal agents. Lipids 2006; 41(5): 507-11.
[http://dx.doi.org/10.1007/s11745-006-5124-4] [PMID: 16933795]
Liu S, Ruan W, Li J, et al. Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 2008; 166(2): 93-102.
[http://dx.doi.org/10.1007/s11046-008-9124-1] [PMID: 18443921]
Avis TJ, Bélanger RR. Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 2001; 67(2): 956-60.
[http://dx.doi.org/10.1128/AEM.67.2.956-960.2001] [PMID: 11157268]
Liu X, Han R, Wang Y, et al. Fungicidal activity of a medium-chain fatty acids mixture comprising caprylic, pelargonic and capric acids. Plant Pathol J 2014; 13(1): 65-70.
Sahraee S, Milani JM, Ghanbarzadeh B, et al. Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. Lebensm Wiss Technol 2017; 76: 33-9.
Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 2015; 1851(4): 469-84.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.010] [PMID: 25149823]
de Souza RJ, Mente A, Maroleanu A, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. Br Med J 2015; 351: h3978.
[http://dx.doi.org/10.1136/bmj.h3978] [PMID: 26268692]
Spector AA, Kim HY. Discovery of essential fatty acids. J Lipid Res 2015; 56(1): 11-21.
[http://dx.doi.org/10.1194/jlr.R055095] [PMID: 25339684]
Dyall SC. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 2015; 7: 52.
[http://dx.doi.org/10.3389/fnagi.2015.00052] [PMID: 25954194]
Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv Nutr 2012; 3(1): 1-7.
[http://dx.doi.org/10.3945/an.111.000893] [PMID: 22332096]
Svahn SL, Ulleryd MA, Grahnemo L, et al. Dietary omega-3 fatty acids increase survival and decrease bacterial load in mice subjected to S. aureus-induced sepsis. Infect Immun 2016.IAI-01391
Galbraith H, Miller TB, Paton AM, Thompson JK. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol 1971; 34(4): 803-13.
[http://dx.doi.org/10.1111/j.1365-2672.1971.tb01019.x] [PMID: 5004248]
Mericli F, Becer E, Kabaday H, et al. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil. Pharm Biol 2017; 55(1): 1239-48.
[http://dx.doi.org/10.1080/13880209.2017.1296003] [PMID: 28262033]
de Morais SM, de Nascimento JE, de Sousa SAA, et al. Fatty acid profile and anti-inflammatory activity of fixed plant oils. Acta Sci Vet 2017; 45: 1-8.
Proctor VW. Studies of algal antibiosis using haematococcus and chlamydomonas. Limnol Oceanogr 1957; 2(2): 125-39.
Carballeira NM. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog Lipid Res 2008; 47(1): 50-61.
[http://dx.doi.org/10.1016/j.plipres.2007.10.002] [PMID: 18023422]
Sud IJ, Chou DL, Feingold DS. Effect of free fatty acids on liposome susceptibility to imidazole antifungals. Antimicrob Agents Chemother 1979; 16(5): 660-3.
[http://dx.doi.org/10.1128/AAC.16.5.660] [PMID: 393166]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [246 - 256]
Pages: 11
DOI: 10.2174/2215083805666190514082338
Price: $25

Article Metrics

PDF: 42
PRC: 1