A Comprehensive Review on Preclinical Diabetic Models

Author(s): Anshul Shakya*, Sushil Kumar Chaudary, Debapriya Garabadu, Hans Raj Bhat, Bibhuti Bhusan Kakoti, Surajit Kumar Ghosh.

Journal Name: Current Diabetes Reviews

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Abstract:

Background: Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments.

Introduction: Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies.

Methods: The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018.

Results: A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review.

Conclusion: This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.

Keywords: Hyperglycemia, insulin resistance, diabetes mellitus, animal model, streptozotocin, in-vivo, in-vitro.

[1]
Trikkalinou A, Papazafiropoulou AK, Melidonis A. Type 2 diabetes and quality of life. World J Diabetes 2017; 8(4): 120-9.
[http://dx.doi.org/10.4239/wjd.v8.i4.120] [PMID: 28465788]
[2]
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3(11)e442
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[3]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2009; 32(Suppl. 1): S62-7.
[http://dx.doi.org/10.2337/dc09-S062] [PMID: 19118289]
[4]
Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 2005; 26(2): 19-39.
[PMID: 16278749]
[5]
Halban PA, Polonsky KS, Bowden DW, et al. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. Diabetes Care 2014; 37(6): 1751-8.
[http://dx.doi.org/10.2337/dc14-0396] [PMID: 24812433]
[6]
Choby B. Diabetes update: risk factors, screening, diagnosis, and prevention of Type 2 Diabetes. FP Essent 2017; 456: 20-6.
[PMID: 28530381]
[7]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[8]
Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes 2016; 7(17): 354-95.
[http://dx.doi.org/10.4239/wjd.v7.i17.354] [PMID: 27660695]
[9]
Guardado-Mendoza R, Prioletta A, Jiménez-Ceja LM, Sosale A, Folli F. The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch Med Sci 2013; 9(5): 936-43.
[http://dx.doi.org/10.5114/aoms.2013.34991] [PMID: 24273582]
[10]
Chandra M, Miriyala S, Panchatcharam M. PPARγ and its role in cardiovascular diseases. PPAR Res 2017. 20176404638
[http://dx.doi.org/10.1155/2017/6404638] [PMID: 28243251]
[11]
Andújar-Plata P, Pi-Sunyer X, Laferrère B. Metformin effects revisited. Diabetes Res Clin Pract 2012; 95(1): 1-9.
[http://dx.doi.org/10.1016/j.diabres.2011.09.022] [PMID: 22000494]
[12]
Wettergreen SA, Sheth S, Malveaux J. Effects of the addition of acarbose to insulin and non-insulin regimens in veterans with type 2 diabetes mellitus. Pharm Pract (Granada) 2016; 14(4): 832.
[http://dx.doi.org/10.18549/PharmPract.2016.04.832] [PMID: 28042355]
[13]
Kalra S, Ghosh S, Aamir AH, et al. Safe and pragmatic use of sodium-glucose co-transporter 2 inhibitors in type 2 diabetes mellitus: South Asian Federation of Endocrine Societies consensus statement. Indian J Endocrinol Metab 2017; 21(1): 210-30.
[http://dx.doi.org/10.4103/2230-8210.196029] [PMID: 28217523]
[14]
Yue X-D, Wang J-Y, Zhang X-R, et al. Characteristics and impact factors of renal threshold for glucose excretion in patients with type 2 diabetes mellitus. J Korean Med Sci 2017; 32(4): 621-7.
[http://dx.doi.org/10.3346/jkms.2017.32.4.621] [PMID: 28244288]
[15]
Qin L, Chen S, Flood E, et al. Glucagon-like peptide-1 receptor agonist treatment attributes important to injection-naïve patients with type 2 diabetes mellitus: A multinational preference study. Diabetes Ther 2017; 8(2): 321-34.
[http://dx.doi.org/10.1007/s13300-017-0230-2] [PMID: 28155131]
[16]
Feher M, Vega-Hernandez G, Mocevic E, et al. Effectiveness of liraglutide and lixisenatide in the treatment of type 2 diabetes: real-world evidence from The Health Improvement Network (THIN) Database in the United Kingdom. Diabetes Ther 2017; 8(2): 417-31.
[http://dx.doi.org/10.1007/s13300-017-0241-z] [PMID: 28281244]
[17]
Godinho R, Mega C, Teixeira-de-Lemos E, et al. The place of dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapeutics: A “me too” or “the special one” antidiabetic class? J Diabetes Res 2015. 2015806979
[http://dx.doi.org/10.1155/2015/806979] [PMID: 26075286]
[18]
Verma S, Goldenberg RM, Bhatt DL, et al. Dipeptidyl peptidase-4 inhibitors and the risk of heart failure: A systematic review and meta-analysis. CMAJ Open 2017; 5(1): E152-77.
[http://dx.doi.org/10.9778/cmajo.20160058] [PMID: 28459046]
[19]
Verma M, Gupta SJ, Chaudhary A, Garg VK. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review. Bioorg Chem 2017; 70: 267-83.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.004] [PMID: 28043717]
[20]
Cho H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam Horm 2013; 91: 405-24.
[http://dx.doi.org/10.1016/B978-0-12-407766-9.00017-1] [PMID: 23374726]
[21]
Thomsen SK, Gloyn AL. Human genetics as a model for target validation: finding new therapies for diabetes. Diabetologia 2017; 60(6): 960-70.
[http://dx.doi.org/10.1007/s00125-017-4270-y] [PMID: 28447115]
[22]
Leonard CE, Bilker WB, Brensinger CM, et al. Severe hypoglycemia in users of sulfonylurea antidiabetic agents and antihyperlipidemics. Clin Pharmacol Ther 2016; 99(5): 538-47.
[http://dx.doi.org/10.1002/cpt.297] [PMID: 26566262]
[23]
Verma S, Hussain ME. Obesity and diabetes: An update. Diabetes Metab Syndr 2017; 11(1): 73-9.
[http://dx.doi.org/10.1016/j.dsx.2016.06.017] [PMID: 27353549]
[24]
Kumar N, Puri N, Marotta F, et al. Diabesity: an epidemic with its causes, prevention and control with special focus on dietary regime. Funct Food Health Dis 2017; 7(1): 1-16.
[http://dx.doi.org/10.31989/ffhd.v7i1.280]
[25]
Toplak H, Hoppichler F, Wascher TC, Schindler K, Ludvik B. Obesity and type 2 diabetes. Wien Klin Wochenschr 2016; 128(Suppl. 2): S196-200.
[http://dx.doi.org/10.1007/s00508-016-0986-9] [PMID: 27052246]
[26]
Stratmann B, Richter K, Wang R, et al. Metabolomic signature of coronary artery disease in type 2 diabetes mellitus. Int J Endocrinol 2017. 20177938216
[http://dx.doi.org/10.1155/2017/7938216] [PMID: 28348587]
[27]
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci (Qassim) 2017; 11(2): 65-71.
[PMID: 28539866]
[28]
Pandey A, Tripathi P, Pandey R, Srivatava R, Goswami S. Alternative therapies useful in the management of diabetes: A systematic review. J Pharm Bioallied Sci 2011; 3(4): 504-12.
[http://dx.doi.org/10.4103/0975-7406.90103] [PMID: 22219583]
[29]
Lee A-L, Chen B-C, Mou C-H, Sun M-F, Yen H-R. Association of traditional chinese medicine therapy and the risk of vascular complications in patients with type ii diabetes mellitus: A nationwide, retrospective, Taiwanese-registry, cohort study. Medicine (Baltimore) 2016; 95(3)e2536
[http://dx.doi.org/10.1097/MD.0000000000002536] [PMID: 26817897]
[30]
Kesavadev J, Saboo B, Sadikot S, et al. Unproven Therapies for diabetes and their implications. Adv Ther 2017; 34(1): 60-77.
[http://dx.doi.org/10.1007/s12325-016-0439-x] [PMID: 27864668]
[31]
Arends MJ, White ES, Whitelaw CB. Animal and cellular models of human disease. J Pathol 2016; 238(2): 137-40.
[http://dx.doi.org/10.1002/path.4662] [PMID: 26482929]
[32]
Islam MS, Wilson RD. Experimentally induced rodent models of type 2 diabetes. Methods Mol Biol 2012; 933: 161-74.
[http://dx.doi.org/10.1007/978-1-62703-068-7_10] [PMID: 22893406]
[33]
Islam MS, Loots T. Experimental rodent models of type 2 diabetes: A review. Methods Find Exp Clin Pharmacol 2009; 31(4): 249-61.
[http://dx.doi.org/10.1358/mf.2009.31.4.1362513] [PMID: 19557203]
[34]
Asrafuzzaman M, Cao Y, Afroz R, Kamato D, Gray S, Little PJ. Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomed Pharmacother 2017; 89: 1242-51.
[http://dx.doi.org/10.1016/j.biopha.2017.03.010] [PMID: 28320091]
[35]
Wang YW, Sun GD, Sun J, et al. Spontaneous type 2 diabetic rodent models. J Diabetes Res 2013. 2013401723
[http://dx.doi.org/10.1155/2013/401723] [PMID: 23671868]
[36]
Fröde TS, Medeiros YS. Animal models to test drugs with potential antidiabetic activity. J Ethnopharmacol 2008; 115(2): 173-83.
[http://dx.doi.org/10.1016/j.jep.2007.10.038] [PMID: 18068921]
[37]
Fontaine DA, Davis DB. Attention to background strain is essential for metabolic research: c57bl/6 and the international knockout mouse consortium. Diabetes 2016; 65(1): 25-33.
[http://dx.doi.org/10.2337/db15-0982] [PMID: 26696638]
[38]
Okon EB, Chung AW, Zhang H, Laher I, van Breemen C. Hyperglycemia and hyperlipidemia are associated with endothelial dysfunction during the development of type 2 diabetes. Can J Physiol Pharmacol 2007; 85(5): 562-7.
[http://dx.doi.org/10.1139/Y07-026] [PMID: 17632592]
[39]
Clee SM, Nadler ST, Attie AD. Genetic and genomic studies of the BTBR ob/ob mouse model of type 2 diabetes. Am J Ther 2005; 12(6): 491-8.
[http://dx.doi.org/10.1097/01.mjt.0000178781.89789.25] [PMID: 16280642]
[40]
Sai P, Kremer M, Maurel C. Antibodies spontaneously bound to islet cells in diabetic C57BL/KsJ db/db mice. Diabetologia 1984; 27(27)(Suppl.): 139-42.
[http://dx.doi.org/10.1007/BF00275672] [PMID: 6383917]
[41]
Lim E, Lim JY, Kim E, et al. Xylobiose, an alternative sweetener, ameliorates diabetes-related metabolic changes by regulating hepatic lipogenesis and mir-122a/33a in db/db mice. Nutrients 2016; 8(12)E791
[http://dx.doi.org/10.3390/nu8120791] [PMID: 27929393]
[42]
Choi KH, Lee HA, Park MH, Han JS. Mulberry (Morus alba L.) fruit extract containing anthocyanins improves glycemic control and insulin sensitivity via activation of amp-activated protein kinase in diabetic C57BL/Ksj-db/db mice. J Med Food 2016; 19(8): 737-45.
[http://dx.doi.org/10.1089/jmf.2016.3665] [PMID: 27441957]
[43]
Chen J, Ma M, Lu Y, Wang L, Wu C, Duan H. Rhaponticin from rhubarb rhizomes alleviates liver steatosis and improves blood glucose and lipid profiles in KK/Ay diabetic mice. Planta Med 2009; 75(5): 472-7.
[http://dx.doi.org/10.1055/s-0029-1185304] [PMID: 19235684]
[44]
Suzuki M, Kakuta H, Takahashi A, et al. Effects of atorvastatin on glucose metabolism and insulin resistance in KK/Ay mice. J Atheroscler Thromb 2005; 12(2): 77-84.
[http://dx.doi.org/10.5551/jat.12.77] [PMID: 15942117]
[45]
Lamont BJ, Waters MF, Andrikopoulos S. A low-carbohydrate high-fat diet increases weight gain and does not improve glucose tolerance, insulin secretion or β-cell mass in NZO mice. Nutr Diabetes 2016; 6 e194
[http://dx.doi.org/10.1038/nutd.2016.2] [PMID: 26878317]
[46]
Kluth O, Matzke D, Kamitz A, et al. Identification of four mouse diabetes candidate genes altering beta-cell proliferation. PLoS Genet 2015; 11(9)e1005506
[http://dx.doi.org/10.1371/journal.pgen.1005506] [PMID: 26348837]
[47]
Joost HG, Schürmann A. The genetic basis of obesity-associated type 2 diabetes (diabesity) in polygenic mouse models. Mamm Genome 2014; 25(9-10): 401-12.
[http://dx.doi.org/10.1007/s00335-014-9514-2] [PMID: 24752583]
[48]
Kluge R, Scherneck S, Schürmann A, Joost HG. Pathophysiology and genetics of obesity and diabetes in the New Zealand obese mouse: A model of the human metabolic syndrome. Methods Mol Biol 2012; 933: 59-73.
[http://dx.doi.org/10.1007/978-1-62703-068-7_5] [PMID: 22893401]
[49]
Adi NC, Adi JN, Cesar L, Agatston AS, Kurlansky P, Webster KA. Influence of diet on visceral adipose remodeling in NONcNZO10 mice with polygenic susceptibility for type 2 diabetes. Obesity (Silver Spring) 2012; 20(10): 2142-6.
[http://dx.doi.org/10.1038/oby.2012.167] [PMID: 22858798]
[50]
Cho YR, Kim HJ, Park SY, et al. Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 293(1): E327-36.
[http://dx.doi.org/10.1152/ajpendo.00376.2006] [PMID: 17616608]
[51]
Guo K, Yu YH, Hou J, Zhang Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab (Lond) 2010; 7: 57.
[http://dx.doi.org/10.1186/1743-7075-7-57] [PMID: 20624298]
[52]
Nascimento NF, Hicks JA, Carlson KN, et al. Long-term wheel-running and acute 6-h advances alter glucose tolerance and insulin levels in TALLYHO/JngJ mice. Chronobiol Int 2016; 33(1): 108-16.
[http://dx.doi.org/10.3109/07420528.2015.1108330] [PMID: 26654732]
[53]
Devlin MJ, Van Vliet M, Motyl K, et al. Early-onset type 2 diabetes impairs skeletal acquisition in the male TALLYHO/JngJ mouse. Endocrinology 2014; 155(10): 3806-16.
[http://dx.doi.org/10.1210/en.2014-1041] [PMID: 25051433]
[54]
Leiter EH, Strobel M, O’Neill A, Schultz D, Schile A, Reifsnyder PC. Comparison of Two new mouse models of polygenic type 2 diabetes at the Jackson laboratory, NONcNZO10Lt/J and TALLYHO/JngJ. J Diabetes Res 2013. 2013165327
[http://dx.doi.org/10.1155/2013/165327] [PMID: 23671854]
[55]
Kim JH, Stewart TP, Soltani-Bejnood M, et al. Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J Endocrinol 2006; 191(2): 437-46.
[http://dx.doi.org/10.1677/joe.1.06647] [PMID: 17088413]
[56]
Watanabe S, Takahashi T, Ogawa H, et al. Daily coffee intake inhibits pancreatic beta cell damage and nonalcoholic steatohepatitis in a mouse model of spontaneous metabolic syndrome, Tsumura-Suzuki obese diabetic mice. Metab Syndr Relat Disord 2017; 15(4): 170-7.
[http://dx.doi.org/10.1089/met.2016.0114] [PMID: 28358620]
[57]
Kudo T, Shimada T, Toda T, et al. Altered expression of CYP in TSOD mice: A model of type 2 diabetes and obesity. Xenobiotica 2009; 39(12): 889-902.
[http://dx.doi.org/10.3109/00498250903242592] [PMID: 19925381]
[58]
Iizuka S, Suzuki W, Tabuchi M, et al. Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity. Exp Anim 2005; 54(1): 71-83.
[http://dx.doi.org/10.1538/expanim.54.71] [PMID: 15725683]
[59]
Allan MF, Eisen EJ, Pomp D. The M16 mouse: an outbred animal model of early onset polygenic obesity and diabesity. Obes Res 2004; 12(9): 1397-407.
[http://dx.doi.org/10.1038/oby.2004.176] [PMID: 15483204]
[60]
Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): A new model for type 2 diabetes. Diabetes 2004; 53(6): 1509-16.
[http://dx.doi.org/10.2337/diabetes.53.6.1509] [PMID: 15161755]
[61]
Lee KT, Karunakaran S, Ho MM, Clee SM. PWD/PhJ and WSB/EiJ mice are resistant to diet-induced obesity but have abnormal insulin secretion. Endocrinology 2011; 152(8): 3005-17.
[http://dx.doi.org/10.1210/en.2011-0060] [PMID: 21673102]
[62]
Cao P, Meng F, Abedini A, Raleigh DP. The ability of rodent islet amyloid polypeptide to inhibit amyloid formation by human islet amyloid polypeptide has important implications for the mechanism of amyloid formation and the design of inhibitors. Biochemistry 2010; 49(5): 872-81.
[http://dx.doi.org/10.1021/bi901751b] [PMID: 20028124]
[63]
Gregorová S, Forejt J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies--A valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha) 2000; 46(1): 31-41.
[PMID: 10730880]
[64]
Ho MM, Johnson JD, Clee SM. PWD/PhJ mice have a genetically determined increase in nutrient-stimulated insulin secretion. Mamm Genome 2015; 26(3-4): 131-41.
[http://dx.doi.org/10.1007/s00335-015-9554-2] [PMID: 25605412]
[65]
Ho MM, Hu X, Karunakaran S, Johnson JD, Clee SM. Altered pancreatic growth and insulin secretion in WSB/EiJ mice. PLoS One 2014; 9(2)e88352
[http://dx.doi.org/10.1371/journal.pone.0088352] [PMID: 24505481]
[66]
Chen TY, Ferruzzi MG, Wu QL, et al. Influence of diabetes on plasma pharmacokinetics and brain bioavailability of grape polyphenols and their phase II metabolites in the Zucker diabetic fatty rat. Mol Nutr Food Res 2017; 61(10)
[http://dx.doi.org/10.1002/mnfr.201700111] [PMID: 28568316]
[67]
Hvid H, Jensen SR, Witgen BM, et al. Diabetic phenotype in the small intestine of Zucker diabetic fatty rats. Digestion 2016; 94(4): 199-214.
[http://dx.doi.org/10.1159/000453107] [PMID: 27931035]
[68]
Godbole V, York DA. Lipogenesis in situ in the genetically obese Zucker fatty rat (fa/fa): Role of hyperphagia and hyperinsulinaemia. Diabetologia 1978; 14(3): 191-7.
[http://dx.doi.org/10.1007/BF00429780] [PMID: 566233]
[69]
Atgié C, Hadj-Sassi A, Bukowiecki L, Mauriège P. High lipolytic activity and dyslipidemia in a spontaneous hypertensive/NIH corpulent (SHR/N-cp) rat: A genetic model of obesity and type 2 diabetes mellitus. J Physiol Biochem 2009; 65(1): 33-41.
[http://dx.doi.org/10.1007/BF03165967] [PMID: 19588729]
[70]
Marette A, Atgié C, Liu Z, Bukowiecki LJ, Klip A. Differential regulation of GLUT1 and GLUT4 glucose transporters in skeletal muscle of a new model of type II diabetes. The obese SHR/N-cp rat. Diabetes 1993; 42(8): 1195-201.
[http://dx.doi.org/10.2337/diab.42.8.1195] [PMID: 8325452]
[71]
Marette A, Tulp OL, Bukowiecki LJ. Mechanism linking insulin resistance to defective thermogenesis in brown adipose tissue of obese diabetic SHR/N-cp rats. Int J Obes 1991; 15(12): 823-31.
[PMID: 1665483]
[72]
Diane A, Pierce WD, Kelly SE, et al. Mechanisms of comorbidities associated with the metabolic syndrome: insights from the JCR:LA-cp Corpulent rat strain. Front Nutr 2016; 3: 44.
[http://dx.doi.org/10.3389/fnut.2016.00044] [PMID: 27777929]
[73]
Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 2014; 10(2): 131-45.
[http://dx.doi.org/10.2174/1573399810666140508121012] [PMID: 24809394]
[74]
McKendrick JD, Salas E, Dubé GP, Murat J, Russell JC, Radomski MW. Inhibition of nitric oxide generation unmasks vascular dysfunction in insulin-resistant, obese JCR: LA-cp rats. Br J Pharmacol 1998; 124(2): 361-9.
[http://dx.doi.org/10.1038/sj.bjp.0701829] [PMID: 9641554]
[75]
Minematsu A, Hanaoka T, Takeshita D, et al. Long-term wheel-running can prevent deterioration of bone properties in diabetes mellitus model rats. J Musculoskelet Neuronal Interact 2017; 17(1): 433-43.
[PMID: 28250247]
[76]
Kawagoe N, Kano O, Kijima S, Tanaka H, Takayanagi M, Urita Y. Investigation of metabolism of exogenous glucose at the early stage and onset of diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats using [1, 2, 3-13c]glucose breath tests. PLoS One 2016; 11(8) e0160177
[http://dx.doi.org/10.1371/journal.pone.0160177] [PMID: 27483133]
[77]
Kawano K, Hirashima T, Mori S, Natori T. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: A new NIDDM rat strain. Diabetes Res Clin Pract 1994; 24(24)(Suppl.): S317-20.
[http://dx.doi.org/10.1016/0168-8227(94)90269-0] [PMID: 7859627]
[78]
Matsumoto K, Yokoyama S. Induction of uncoupling protein-1 and -3 in brown adipose tissue by kaki-tannin in type 2 diabetic NSY/Hos mice. Food Chem Toxicol 2012; 50(2): 184-90.
[http://dx.doi.org/10.1016/j.fct.2011.10.067] [PMID: 22079182]
[79]
Ueda H, Ikegami H, Kawaguchi Y, et al. Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse. Diabetologia 2000; 43(7): 932-8.
[http://dx.doi.org/10.1007/s001250051472] [PMID: 10952468]
[80]
Ueda H, Ikegami H, Yamato E, et al. The NSY mouse: A new animal model of spontaneous NIDDM with moderate obesity. Diabetologia 1995; 38(5): 503-8.
[http://dx.doi.org/10.1007/BF00400717] [PMID: 7489831]
[81]
Weksler-Zangen S, Jörns A, Tarsi-Chen L, et al. Dietary copper supplementation restores β-cell function of Cohen diabetic rats: A link between mitochondrial function and glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 2013; 304(10): E1023-34.
[http://dx.doi.org/10.1152/ajpendo.00036.2013] [PMID: 23512809]
[82]
Ryu S, Ornoy A, Samuni A, Zangen S, Kohen R. Oxidative stress in Cohen diabetic rat model by high-sucrose, low-copper diet: Inducing pancreatic damage and diabetes. Metabolism 2008; 57(9): 1253-61.
[http://dx.doi.org/10.1016/j.metabol.2008.04.021] [PMID: 18702952]
[83]
Rosenmann E, Yanko L, Cohen AM. Female sex hormone and nephropathy in Cohen diabetic rat (genetically selected sucrose-fed). Horm Metab Res 1984; 16(1): 11-6.
[http://dx.doi.org/10.1055/s-2007-1014683] [PMID: 6365715]
[84]
Watanabe S, Matsumoto T, Taguchi K, Kobayashi T. Relationship between PDK1 and contraction in carotid arteries in Goto-Kakizaki rat, a spontaneous type 2 diabetic animal model. Can J Physiol Pharmacol 2017; 95(4): 459-62.
[http://dx.doi.org/10.1139/cjpp-2016-0372] [PMID: 28118732]
[85]
Xue B, Nie J, Wang X, DuBois DC, Jusko WJ, Almon RR. Effects of high fat feeding on adipose tissue gene expression in diabetic Goto-Kakizaki rats. Gene Regul Syst Bio 2015; 9: 15-26.
[http://dx.doi.org/10.4137/GRSB.S25172] [PMID: 26309393]
[86]
Guenifi A, Abdel-Halim SM, Höög A, Falkmer S, Ostenson CG. Preserved beta-cell density in the endocrine pancreas of young, spontaneously diabetic Goto-Kakizaki (GK) rats. Pancreas 1995; 10(2): 148-53.
[http://dx.doi.org/10.1097/00006676-199503000-00007] [PMID: 7716139]
[87]
Miao G, Ito T, Uchikoshi F, et al. Development of islet-like cell clusters after pancreas transplantation in the spontaneously diabetic Torri rat. Am J Transplant 2005; 5(10): 2360-7.
[http://dx.doi.org/10.1111/j.1600-6143.2005.01023.x] [PMID: 16162183]
[88]
Mozar A, Lin H, Williams K, et al. Parathyroid hormone-related peptide (1-36) enhances beta cell regeneration and increases beta cell mass in a mouse model of partial pancreatectomy. PLoS One 2016; 11(7)e0158414
[http://dx.doi.org/10.1371/journal.pone.0158414] [PMID: 27391423]
[89]
Plachot C, Movassat J, Portha B. Impaired beta-cell regeneration after partial pancreatectomy in the adult Goto-Kakizaki rat, a spontaneous model of type II diabetes. Histochem Cell Biol 2001; 116(2): 131-9.
[PMID: 11685541]
[90]
Zangen DH, Bonner-Weir S, Lee CH, et al. Reduced insulin, GLUT2, and IDX-1 in beta-cells after partial pancreatectomy. Diabetes 1997; 46(2): 258-64.
[http://dx.doi.org/10.2337/diab.46.2.258] [PMID: 9000703]
[91]
Freyse EJ, Hahn von Dorsche H, Fischer U. Low dose streptozotocin diabetes after partial pancreatectomy in dogs. Histological findings in a new type of experimental diabetes. Acta Biol Med Ger 1982; 41(12): 1203-10.
[PMID: 6231789]
[92]
Shirakami A, Toyonaga T, Tsuruzoe K, et al. Heterozygous knockout of the IRS-1 gene in mice enhances obesity-linked insulin resistance: a possible model for the development of type 2 diabetes. J Endocrinol 2002; 174(2): 309-19.
[http://dx.doi.org/10.1677/joe.0.1740309] [PMID: 12176670]
[93]
Oliveira JM, Rebuffat SA, Gasa R, Gomis R. Targeting type 2 diabetes: lessons from a knockout model of insulin receptor substrate 2. Can J Physiol Pharmacol 2014; 92(8): 613-20.
[http://dx.doi.org/10.1139/cjpp-2014-0114] [PMID: 24977713]
[94]
Liang C, DeCourcy K, Prater MR. High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism 2010; 59(7): 943-50.
[http://dx.doi.org/10.1016/j.metabol.2009.10.015] [PMID: 20022072]
[95]
Schreyer SA, Wilson DL, LeBoeuf RC. C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis 1998; 136(1): 17-24.
[http://dx.doi.org/10.1016/S0021-9150(97)00165-2] [PMID: 9544727]
[96]
Gai W, Schott-Ohly P. Schulte im Walde S, Gleichmann H. Differential target molecules for toxicity induced by streptozotocin and alloxan in pancreatic islets of mice in vitro. Exp Clin Endocrinol Diabetes 2004; 112(1): 29-37.
[http://dx.doi.org/10.1055/s-2004-815724] [PMID: 14758569]
[97]
You Y, Ren T, Zhang S, Shirima GG, Cheng Y, Liu X. Hypoglycemic effects of Zanthoxylum alkylamides by enhancing glucose metabolism and ameliorating pancreatic dysfunction in streptozotocin-induced diabetic rats. Food Funct 2015; 6(9): 3144-54.
[http://dx.doi.org/10.1039/C5FO00432B] [PMID: 26222710]
[98]
Goyal SN, Reddy NM, Patil KR, et al. Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 2016; 244: 49-63.
[http://dx.doi.org/10.1016/j.cbi.2015.11.032] [PMID: 26656244]
[99]
Hemmings SJ, Spafford D. Neonatal STZ model of type II diabetes mellitus in the Fischer 344 rat: Characteristics and assessment of the status of the hepatic adrenergic receptors. Int J Biochem Cell Biol 2000; 32(8): 905-19.
[http://dx.doi.org/10.1016/S1357-2725(00)00019-4] [PMID: 10940648]
[100]
Takada J, Machado MA, Peres SB, et al. Neonatal streptozotocin-induced diabetes mellitus: A model of insulin resistance associated with loss of adipose mass. Metabolism 2007; 56(7): 977-84.
[http://dx.doi.org/10.1016/j.metabol.2006.05.021] [PMID: 17570261]
[101]
Masiello P, Broca C, Gross R, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998; 47(2): 224-9.
[http://dx.doi.org/10.2337/diab.47.2.224] [PMID: 9519717]
[102]
Ovalle-Magallanes B, Déciga-Campos M, Mata R. Antihyperalgesic activity of a mexicanolide isolated from Swietenia humilis extract in nicotinamide-streptozotocin hyperglycemic mice. Biomed Pharmacother 2017; 92: 324-30.
[http://dx.doi.org/10.1016/j.biopha.2017.05.073] [PMID: 28551554]
[103]
Nath S, Ghosh SK, Choudhury Y. A murine model of type 2 diabetes mellitus developed using a combination of high fat diet and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. J Pharmacol Toxicol Methods 2017; 84: 20-30.
[http://dx.doi.org/10.1016/j.vascn.2016.10.007] [PMID: 27773844]
[104]
Saad MI, Kamel MA, Hanafi MY. Modulation of adipocytokines production and serum NEFA level by metformin, glimepiride, and sitagliptin in HFD/STZ diabetic rats. Biochem Res Int 2015. 2015138134
[http://dx.doi.org/10.1155/2015/138134] [PMID: 25838947]
[105]
Sahin K, Onderci M, Tuzcu M, et al. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism 2007; 56(9): 1233-40.
[http://dx.doi.org/10.1016/j.metabol.2007.04.021] [PMID: 17697867]
[106]
Dunn JS, Duffy E, Gilmour MK, Kirkpatrick J, McLetchie NG. Further observations on the effects of alloxan on the pancreatic islets. J Physiol 1944; 103(2): 233-43.
[http://dx.doi.org/10.1113/jphysiol.1944.sp004072] [PMID: 16991641]
[107]
im Walde SS. Dohle C, Schott-Ohly P, Gleichmann H. Molecular target structures in alloxan-induced diabetes in mice. Life Sci 2002; 71(14): 1681-94.
[http://dx.doi.org/10.1016/S0024-3205(02)01918-5] [PMID: 12137914]
[108]
Karasawa H, Takaishi K, Kumagae Y. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction. Obesity (Silver Spring) 2011; 19(3): 514-21.
[http://dx.doi.org/10.1038/oby.2010.171] [PMID: 20706204]
[109]
Lazaris YA, Meiramov GG. Mechanism of damage to the pancreatic islets in dithisone diabetes. Bull Exp Biol Med 1974; 77(3): 235-8.
[http://dx.doi.org/10.1007/BF00802465] [PMID: 4606796]
[110]
Monago CC, Onwuka F, Osaro E. Effect of combined therapy of diabinese and nicotinic acid on liver enzymes in rabbits with dithizone-induced diabetes. J Exp Pharmacol 2010; 2: 145-53.
[PMID: 27186100]
[111]
Komeda K, Yokote M, Oki Y. Diabetic syndrome in the Chinese hamster induced with monosodium glutamate. Experientia 1980; 36(2): 232-4.
[http://dx.doi.org/10.1007/BF01953751] [PMID: 6989622]
[112]
Nagata M, Suzuki W, Iizuka S, et al. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim 2006; 55(2): 109-15.
[http://dx.doi.org/10.1538/expanim.55.109] [PMID: 16651693]
[113]
Moloney PJ, Coval M. Antigenicity of insulin: diabetes induced by specific antibodies. Biochem J 1955; 59(2): 179-85.
[http://dx.doi.org/10.1042/bj0590179] [PMID: 14351177]
[114]
Su CT, Lin YC. Hyperinsulinemic hypoglycemia associated with insulin antibodies caused by exogenous insulin analog. Endocrinol Diabetes Metab Case Rep 2016; 2016: 16-0079.
[http://dx.doi.org/10.1530/EDM-16-0079] [PMID: 27933175]
[115]
Awai M, Narasaki M, Yamanoi Y, Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 1979; 95(3): 663-73.
[PMID: 377994]
[116]
Logan JI, Harveyson KB, Wisdom GB, Hughes AE, Archbold GP. Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. QJM 1994; 87(11): 663-70.
[PMID: 7820540]
[117]
Izumi K, Mine K, Inoue Y, et al. Reduced Tyk2 gene expression in β-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat Commun 2015; 6: 6748.
[http://dx.doi.org/10.1038/ncomms7748] [PMID: 25849081]
[118]
Onodera T, Jenson AB, Yoon JW, Notkins AL. Virus-induced diabetes mellitus: Reovirus infection of pancreatic beta cells in mice. Science 1978; 201(4355): 529-31.
[http://dx.doi.org/10.1126/science.208156] [PMID: 208156]
[119]
Notkins AL. Virus-induced diabetes mellitus. Arch Virol 1977; 54(1-2): 1-17.
[http://dx.doi.org/10.1007/BF01314374] [PMID: 196570]
[120]
Craighead JE. Virus induced insulitis in experimental animal models. Acta Endocrinol Suppl (Copenh) 1976; 205: 123-8.
[PMID: 793274]
[121]
Smith TR, Elmendorf JS, David TS, Turinsky J. Growth hormone-induced insulin resistance: Role of the insulin receptor, IRS-1, GLUT-1, and GLUT-4. Am J Physiol 1997; 272(6 Pt 1): E1071-9.
[PMID: 9227454]
[122]
De Micheli A. Corticosteroid induced diabetes mellitus: Diagnosis and management. G Ital Nefrol. Malattie Metaboliche e Rene 2016; 33(S68)
[123]
Kleinbaum H. Steroid diabetes and steroid-induced renal glycosuria in childhood. Monatsschr Kinderheilkd 1966; 114(1): 10-4.
[PMID: 5973892]
[124]
Phillips RW, Panepinto LM, Spangler R, Westmoreland N. Yucatan miniature swine as a model for the study of human diabetes mellitus. Diabetes 1982; 31(Suppl. 1 Pt 2): 30-6.
[http://dx.doi.org/10.2337/diab.31.1.S30] [PMID: 6761193]
[125]
Potz BA, Sabe AA, Elmadhun NY, et al. Glycogen synthase kinase 3beta inhibition improves myocardial angiogenesis and perfusion in a swine model of metabolic syndrome. J Am Heart Assoc 2016; 5(7) e003694
[http://dx.doi.org/10.1161/JAHA.116.003694] [PMID: 27405812]
[126]
Lu SY, Qi SD, Zhao Y, et al. Type 2 diabetes mellitus non-genetic Rhesus monkey model induced by high fat and high sucrose diet. Exp Clin Endocrinol Diabetes 2015; 123(1): 19-26.
[PMID: 25314651]
[127]
Li L, Liao G, Yang G, et al. High-fat diet combined with low-dose streptozotocin injections induces metabolic syndrome in Macaca mulatta. Endocrine 2015; 49(3): 659-68.
[http://dx.doi.org/10.1007/s12020-015-0542-9] [PMID: 25672777]
[128]
Blevins JE, Graham JL, Morton GJ, et al. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am J Physiol Regul Integr Comp Physiol 2015; 308(5): R431-8.
[http://dx.doi.org/10.1152/ajpregu.00441.2014] [PMID: 25540103]
[129]
Sangeetha R, Vedasree N. In vitro alpha-amylase inhibitory activity of the leaves of Thespesia populnea. ISRN Pharmacol 2012; •••2012515634
[http://dx.doi.org/10.5402/2012/515634] [PMID: 22550597]
[130]
Somtimuang C, Olatunji OJ, Ovatlarnporn C. Evaluation of in vitro alpha-amylase and alpha-glucosidase inhibitory potentials of 14 medicinal plants constituted in Thai folk antidiabetic formularies. Chem Biodivers 2018; 15(4)e1800025
[http://dx.doi.org/10.1002/cbdv.201800025] [PMID: 29460340]
[131]
Ortiz-Andrade RR, García-Jiménez S, Castillo-España P, Ramírez-Avila G, Villalobos-Molina R, Estrada-Soto S. Alpha-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent. J Ethnopharmacol 2007; 109(1): 48-53.
[http://dx.doi.org/10.1016/j.jep.2006.07.002] [PMID: 16920301]
[132]
Matsui T, Yoshimoto C, Osajima K, Oki T, Osajima Y. In vitro survey of alpha-glucosidase inhibitory food components. Biosci Biotechnol Biochem 1996; 60(12): 2019-22.
[http://dx.doi.org/10.1271/bbb.60.2019] [PMID: 8988634]
[133]
Cerón-Romero L, Paoli P, Camici G, et al. In vitro and in silico PTP-1B inhibition and in vivo antidiabetic activity of semisynthetic moronic acid derivatives. Bioorg Med Chem Lett 2016; 26(8): 2018-22.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.082] [PMID: 26961283]
[134]
Ramírez-Espinosa JJ, Rios MY, López-Martínez S, et al. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: In vitro, in silico, and in vivo approaches. Eur J Med Chem 2011; 46(6): 2243-51.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.005] [PMID: 21453996]
[135]
Gouni-Berthold I, Giannakidou E, Müller-Wieland D, et al. The Pro387Leu variant of protein tyrosine phosphatase-1B is not associated with diabetes mellitus type 2 in a German population. J Intern Med 2005; 257(3): 272-80.
[http://dx.doi.org/10.1111/j.1365-2796.2004.01446.x] [PMID: 15715684]
[136]
Grimshaw CE, Jennings A, Kamran R, et al. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (dpp-4) via a non-covalent mechanism. PLoS One 2016; 11(6)e0157509
[http://dx.doi.org/10.1371/journal.pone.0157509] [PMID: 27328054]
[137]
Takai S, Sakonjo H, Jin D. Significance of vascular dipeptidyl peptidase-4 inhibition on vascular protection in Zucker diabetic fatty rats. J Pharmacol Sci 2014; 125(4): 386-93.
[http://dx.doi.org/10.1254/jphs.14052FP] [PMID: 25030743]
[138]
Kim SJ, Nian C, Doudet DJ, McIntosh CH. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 2008; 57(5): 1331-9.
[http://dx.doi.org/10.2337/db07-1639] [PMID: 18299314]
[139]
Lammi C, Zanoni C, Arnoldi A, Vistoli G. Peptides derived from Soy and Lupin protein as dipeptidyl-peptidase IV inhibitors: in vitro biochemical screening and in silico molecular modeling study. J Agric Food Chem 2016; 64(51): 9601-6.
[http://dx.doi.org/10.1021/acs.jafc.6b04041] [PMID: 27983830]
[140]
Skarbaliene J, Rigbolt KT, Fosgerau K, Billestrup N. In-vitro and in-vivo studies supporting the therapeutic potential of ZP3022 in diabetes. Eur J Pharmacol 2017; 815: 181-9.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.026] [PMID: 28928089]
[141]
Gault VA, Bhat VK, Irwin N, Flatt PR. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J Biol Chem 2013; 288(49): 35581-91.
[http://dx.doi.org/10.1074/jbc.M113.512046] [PMID: 24165127]
[142]
Haque TS, Martinez RL, Lee VG, et al. Exploration of structure-activity relationships at the two C-terminal residues of potent 11mer Glucagon-Like Peptide-1 receptor agonist peptides via parallel synthesis. Peptides 2010; 31(7): 1353-60.
[http://dx.doi.org/10.1016/j.peptides.2010.04.013] [PMID: 20420872]
[143]
Ohtake Y, Sato T, Kobayashi T, et al. Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 2012; 55(17): 7828-40.
[http://dx.doi.org/10.1021/jm300884k] [PMID: 22889351]
[144]
Demin O Jr, Yakovleva T, Kolobkov D, Demin O. Analysis of the efficacy of SGLT2 inhibitors using semi-mechanistic model. Front Pharmacol 2014; 5: 218.
[http://dx.doi.org/10.3389/fphar.2014.00218] [PMID: 25352807]
[145]
Shibazaki T, Tomae M, Ishikawa-Takemura Y, et al. KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther 2012; 342(2): 288-96.
[http://dx.doi.org/10.1124/jpet.112.193045] [PMID: 22537769]
[146]
Elaidy SM, Hussain MA, El-Kherbetawy MK. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: Effects on hepatic peroxisome proliferator-activated receptor-gamma receptors. Can J Physiol Pharmacol 2018; 96(5): 485-97.
[http://dx.doi.org/10.1139/cjpp-2017-0533] [PMID: 29244961]
[147]
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270(22): 12953-6.
[http://dx.doi.org/10.1074/jbc.270.22.12953] [PMID: 7768881]
[148]
Ilavenil S, Kim H, Vijayakumar M, et al. Potential role of marine algae extract on 3T3-L1 cell proliferation and differentiation: An in vitro approach. Biol Res 2016; 49(1): 38.
[http://dx.doi.org/10.1186/s40659-016-0098-z] [PMID: 27604997]
[149]
Kong CS, Kim JA, Kim SK. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol 2009; 47(10): 2401-6.
[http://dx.doi.org/10.1016/j.fct.2009.06.010] [PMID: 19520133]
[150]
Xiong H, Zhang S, Zhao Z, Zhao P, Chen L, Mei Z. Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and L6 myotubes via AMPK/GLUT4 pathway. J Ethnopharmacol 2018; 211: 366-74.
[http://dx.doi.org/10.1016/j.jep.2017.10.004] [PMID: 28993280]
[151]
Yaluri N, Modi S, Kokkola T. Simvastatin induces insulin resistance in L6 skeletal muscle myotubes by suppressing insulin signaling, GLUT4 expression and GSK-3β phosphorylation. Biochem Biophys Res Commun 2016; 480(2): 194-200.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.026] [PMID: 27743890]
[152]
Sagheb MM, Azarpira N, Mokhtary M. The effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line. Iran J Basic Med Sci 2017; 20(1): 36-40.
[PMID: 28133522]
[153]
Kay TW, Campbell IL, Malcolm L, Harrison LC. Murine models of autoimmune diabetes: Nonspecific cytotoxic lymphocytes derived from pancreatic islets in the presence of IL-2. Cell Immunol 1989; 120(2): 341-50.
[http://dx.doi.org/10.1016/0008-8749(89)90202-5] [PMID: 2524276]
[154]
Lawandi J, Tao C, Ren B, et al. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells. Mol Ther Methods Clin Dev 2015; 2: 15011.
[http://dx.doi.org/10.1038/mtm.2015.11] [PMID: 26029722]
[155]
Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res (Amst) 2012; 8(2): 274-84.
[http://dx.doi.org/10.1016/j.scr.2011.10.002] [PMID: 22056147]
[156]
Poitout V, Olson LK, Robertson RP. Insulin-secreting cell lines: classification, characteristics and potential applications. Diabetes Metab 1996; 22(1): 7-14.
[PMID: 8697299]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [104 - 116]
Pages: 13
DOI: 10.2174/1573399815666190510112035
Price: $65

Article Metrics

PDF: 30
HTML: 2
EPUB: 1