New Mechanistic Insight on the PIM-1 Kinase Inhibitor AZD1208 Using Multidrug Resistant Human Erythroleukemia Cell Lines and Molecular Docking Simulations

Author(s): Maiara Bernardes Marques*, Michael González-Durruthy*, Bruna Félix da Silva Nornberg, Bruno Rodrigues Oliveira, Daniela Volcan Almeida, Ana Paula de Souza Votto, Luis Fernando Marins*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.

Objective: In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).

Materials and Methods: In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).

Results: Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.

Conclusion: Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.

Keywords: PIM-1 kinase, AZD1208, Molecular docking, Multidrug-resistance, Molecular docking simulations, Human erythroleukemia cell line.

[1]
Lee, S.J.; Han, B.G.; Cho, J.W.; Choi, J.S.; Lee, J.; Song, H.J.; Koh, J.S.; Lee, B. II. Crystal structure of pim1 kinase in complex with a pyrido[4,3-d]pyrimidine derivative suggests a unique binding mode. PLoS One, 2013, 8, 1-7. [DOI: https://doi.org/10.1371/journal.pone.0070358].
[2]
Cheng, H. Huang, C.; Xu, X.; Hu, X.; Gong, S.; Tang, G.; Song, X. PIM 1 mRNA expression is a potential prognostic biomarker in acute myeloid leukemia. J. Transl. Med., 2017, 15(1), 1-9. [DOI: 10.1186/s12967-017].
[3]
Amson, R.; Sigaux, F.; Przedborski, S.; Flandrin, G.; Givol, D.; Telerman, A. The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias. Proc. Natl. Acad. Sci. USA, 1989, 86(22), 8857-8861. [http://dx.doi.org/10.1073/pnas.86.22.8857]. [PMID: 2682662].
[4]
Cohen, A.M.; Grinblat, B.; Bessler, H.; Kristt, D.; Kremer, A.; Schwartz, A.; Halperin, M.; Shalom, S.; Merkel, D.; Don, J. Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk. Lymphoma, 2004, 45(5), 951-955. [http://dx.doi.org/10.1080/10428190310001641251]. [PMID: 15291354].
[5]
Ellwood-Yen, K.; Graeber, T.G.; Wongvipat, J.; Iruela-Arispe, M.L.; Zhang, J.; Matusik, R.; Thomas, G.V.; Sawyers, C.L. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell, 2003, 4(3), 223-238. [http://dx.doi.org/10.1016/S1535-6108(03)00197-1]. [PMID: 14522256].
[6]
Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042. [http://dx.doi.org/10.1093/bioinformatics/btx350]. [PMID: 28575181].
[7]
Nawijn, M.C.; Alendar, A.; Berns, A. For better or for worse: The role of Pim oncogenes in tumorigenesis. Nat. Rev. Cancer, 2011, 11(1), 23-34. [http://dx.doi.org/10.1038/nrc2986]. [PMID: 21150935].
[8]
Tursynbay, Y.; Zhang, J.; Li, Z.; Tokay, T.; Zhumadilov, Z.; Wu, D.; Xie, Y. Pim-1 kinase as cancer drug target: An update. Biomed. Rep., 2016, 4(2), 140-146. [http://dx.doi.org/10.3892/br.2015.561]. [PMID: 26893828].
[9]
Isaac, M.; Siu, A.; Jongstra, J. The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms. Drug Resist. Updat., 2011, 14(4-5), 203-211. [http://dx.doi.org/10.1016/j.drup.2011.04.002]. [PMID: 21601509].
[10]
Rumjanek, V.M.; Trindade, G.S.; Wagner-Souza, K.; de-Oliveira, M.C.; Marques-Santos, L.F.; Maia, R.C.; Capella, M.A.M. Multidrug resistance in tumour cells: Characterization of the multidrug resistant cell line K562-Lucena 1. An. Acad. Bras. Cienc., 2001, 73(1), 57-69. [http://dx.doi.org/10.1590/S0001-37652001000100007]. [PMID: 11246270].
[11]
Daflon-Yunes, N.; Pinto-Silva, F.E.; Vidal, R.S.; Novis, B.F.; Berguetti, T.; Lopes, R.R.S.; Polycarpo, C.; Rumjanek, V.M. Characterization of a multidrug-resistant chronic myeloid leukemia cell line presenting multiple resistance mechanisms. Mol. Cell. Biochem., 2013, 383(1-2), 123-135. [http://dx.doi.org/10.1007/s11010-013-1761-0]. [PMID: 23877223].
[12]
Keeton, E.K.; Mceachern, K.; Dillman, K.S.; Palakurthi, S.; Cao, Y.; Grondine, M.R.; Kaur, S.; Wang, S.; Chen, Y.; Wu, A.; Shen, M.; Gibbons, F.D.; Lamb, M.L.; Zheng, X.; Stone, R.M.; Deangelo, D.J.; Platanias, L.C.; Dakin, L. a; Chen, H.; Lyne, P.D.; Huszar, D. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates ef fi cacy in preclinical models of acute myeloid leukemia. Blood, 2014, 123, 905-914. [http://dx.doi.org/10.1182/blood-2013-04-495366]. [PMID: 24363397].
[13]
Dakin, L.A.; Block, M.H.; Chen, H.; Code, E.; Dowling, J.E.; Feng, X.; Ferguson, A.D.; Green, I.; Hird, A.W.; Howard, T.; Keeton, E.K.; Lamb, M.L.; Lyne, P.D.; Pollard, H.; Read, J.; Wu, A.J.; Zhang, T.; Zheng, X. Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorg. Med. Chem. Lett., 2012, 22(14), 4599-4604. [http://dx.doi.org/10.1016/j.bmcl.2012.05.098]. [PMID: 22727640].
[14]
Bachmann, M.; Möröy, T. The serine/threonine kinase Pim-1. Int. J. Biochem. Cell Biol., 2005, 37(4), 726-730. [http://dx.doi.org/10.1016/j.biocel.2004.11.005]. [PMID: 15694833].
[15]
Aouidate, A.; Ghaleb, A.; Ghamali, M.; Ousaa, A.; Choukrad, M.; Sbai, A.; Bouachrine, M.; Lakhlifi, T. 3D QSAR studies, molecular docking and ADMET evaluation, using thiazolidine derivatives as template to obtain new inhibitors of PIM1 kinase. Comput. Biol. Chem., 2018, 74, 201-211. [http://dx.doi.org/10.1016/j.compbiolchem.2018.03.008]. [PMID: 29635214].
[16]
Trindade, G.S.; Capella, M.A.; Capella, L.S.; Affonso-Mitidieri, O.R.; Rumjanek, V.M. Differences in sensitivity to UVC, UVB and UVA radiation of a multidrug-resistant cell line overexpressing P-glycoprotein. Photochem. Photobiol., 1999, 69(6), 694-699. [http://dx.doi.org/10.1111/j.1751-1097.1999.tb03348.x]. [PMID: 10378008].
[17]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. [PMID: 19499576].
[18]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919. [http://dx.doi.org/10.1038/nprot.2016.051]. [PMID: 27077332].
[19]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213. [http://dx.doi.org/10.1093/nar/gkv951]. [PMID: 26400175].
[20]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11. [http://dx.doi.org/10.2147/AABC.S105289]. [PMID: 27390530].
[21]
Lee, T-J.; Kim, O.H.; Kim, Y.H.; Lim, J.H.; Kim, S.; Park, J-W.; Kwon, T.K. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett., 2006, 240(2), 234-242. [http://dx.doi.org/10.1016/j.canlet.2005.09.013]. [PMID: 16274926].
[22]
Kramer, B.; Rarey, M.; Lengauer, T. CASP2 experiences with docking flexible ligands using FlexX. Proteins, 1997, 1(Suppl. 1), 221-225. [http://dx.doi.org/10.1002/(SICI)1097-0134(1997)1+<221:AID-PROT30>3.0.CO;2-O]. [PMID: 9485516].
[23]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786. [http://dx.doi.org/10.1021/ci200227u]. [PMID: 21919503].
[24]
Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004, 4(6), 1633-1649. [http://dx.doi.org/10.1002/pmic.200300771]. [PMID: 15174133].
[25]
Niu, N.; Wang, L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics, 2015, 16(3), 273-285. [http://dx.doi.org/10.2217/pgs.14.170]. [PMID: 25712190].
[26]
Mazzacurati, L.; Lambert, Q.T.; Pradhan, A.; Griner, L.N.; Huszar, D.; Reuther, G.W. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget, 6(37), 40141-40157. 2015
[27]
Lee, M.; Lee, K-H.; Min, A.; Kim, J.; Kim, S.; Jang, H.; Lim, J.M.; Kim, S.H.; Ha, D.H.; Jeong, W.J.; Suh, K.J.; Yang, Y.W.; Kim, T.Y.; Oh, D.Y.; Bang, Y.J. Im, S.A. Pan-pim kinase inhibitor AZD1208 suppresses tumor growth and synergistically interacts with Akt inhibition in gastric cancer cells. Cancer Res. Treat., 2019, 51(2), 451-463. [http://dx.doi.org/10.4143/crt.2017.341]. [PMID: 29879757].
[28]
Xie, Y.; Xu, K.; Linn, D.E.; Yang, X.; Guo, Z.; Shimelis, H.; Nakanishi, T.; Ross, D.D.; Chen, H.; Fazli, L.; Gleave, M.E.; Qiu, Y. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J. Biol. Chem., 2008, 283(6), 3349-3356. [http://dx.doi.org/10.1074/jbc.M707773200]. [PMID: 18056989].
[29]
Mumenthaler, S.M.; Ng, P.Y.B.; Hodge, A.; Bearss, D.; Kanekal, S.; Redkar, S.; Taverna, P.; Agus, D.B. Pharmacological inhibition of Pim kinases alters prostate cancer cell growth and resensitives chemoresistant cells to taxanes. Mol. Cancer Ther., 2010, 8, 2882-2893.
[30]
Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 1), 12-21. [http://dx.doi.org/10.1107/S0907444909042073]. [PMID: 20057044].
[31]
da Silveira, C.H.; Pires, D.E.V.; Minardi, R.C.; Ribeiro, C.; Veloso, C.J.M.; Lopes, J.C.D.; Meira, W., Jr; Neshich, G.; Ramos, C.H.I.; Habesch, R.; Santoro, M.M. Protein cutoff scanning: A comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins, 2009, 74(3), 727-743. [http://dx.doi.org/10.1002/prot.22187]. [PMID: 18704933].
[32]
Lozzio, C.B.; Lozzio, B.B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975, 45(3), 321-334. [PMID: 163658].
[33]
Blanco-Aparicio, C.; Carnero, A. Pim kinases in cancer: Diagnostic, prognostic and treatment opportunities. Biochem. Pharmacol., 2013, 85(5), 629-643. [http://dx.doi.org/10.1016/j.bcp.2012.09.018]. [PMID: 23041228].
[34]
Mizuno, K.; Shirogane, T.; Shinohara, A.; Iwamatsu, A.; Hibi, M.; Hirano, T. Regulation of Pim-1 by Hsp90. Biochem. Biophys. Res. Commun., 2001, 281(3), 663-669. [http://dx.doi.org/10.1006/bbrc.2001.4405]. [PMID: 11237709].
[35]
Shay, K.P.; Wang, Z.; Xing, P-X.; McKenzie, I.F.C.; Magnuson, N.S. Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol. Cancer Res., 2005, 3(3), 170-181. [http://dx.doi.org/10.1158/1541-7786.MCR-04-0192]. [PMID: 15798097].
[36]
Mitternacht, S.; Berezovsky, I.N. Coherent conformational degrees of freedom as a structural basis for allosteric communication. PLOS Comput. Biol., 2011, 7(12)e1002301 [http://dx.doi.org/10.1371/journal.pcbi.1002301]. [PMID: 22174669].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 11
Year: 2019
Page: [914 - 926]
Pages: 13
DOI: 10.2174/1568026619666190509121606
Price: $58

Article Metrics

PDF: 10
HTML: 2