Recent Advances and Novel Approaches for Nose to Brain Drug Delivery for Treatment of Migraine

Author(s): Nidhi Sachan , Shiv Bahadur* , Pramod K. Sharma .

Journal Name: Drug Delivery Letters

Volume 9 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Nasal drug delivery has been used since ancient times for therapeutic and recreational purposes. For the last decades, nasal drug delivery has been extended for drug delivery to the brain. Therefore, it is important to understand the several physiological and physicochemical factors of the nose for brain drug delivery.

Objective: A major highlight of the present review article is the several aspects of the nose to brain delivery for migraine treatment. This review will help to understand different factors which are needed to be considered for intra-nasal formulations to achieve the desired therapeutic effects.

Methods: There are different drug delivery routes available for migraine treatment. Nasal route of administration may be optimal for migraine treatment which has better drug concentration in the brain. These approaches may be associated with limiting the adverse effects of drug therapeutics.

Results: A list of total FDA approved approaches has been provided. Novel approaches used for drug targeting to get maximum drug concentration in the brain have been highlighted. Several novel drug delivery approaches such as nanoparticle, nanoemulsion, microspheres, etc. have been reported and better therapeutic effects have been observed. Among the novel approaches, some of them are currently under either Phase II or Phase III development but may prove to offer better clinical effects. These approaches would become the alternate choice for migraine treatment with patients experiencing symptoms consistent with gastrointestinal dysfunction associated with migraine.

Conclusion: Intra-nasal administration of drugs for migraine treatment may offer an interesting alternative for achieving therapeutic effects of drugs which are comparable to the parenteral route. Nasal drug delivery can be an alternative route of drug administration for migraine treatment to achieve better bioavailability.

Keywords: Nose to brain drug delivery, Intra-nasal, bioavailability, migraine, novel drug delivery, nanoparticle.

[1]
Bhise, S.B.; Yadav, A.V.; Avachat, A.M.; Malayandi, R. Bioavailability of intranasal drug delivery system. AJP, 2008, 2(4), 201-215.
[2]
Alagusundaram, M.; Chengaiah, B.; Gnanaprakash, K.; Ramkanth, S.; Madhusudhana Chetty, C.; Dhachinamoorthi, D. Nasal drug delivery system - an overview. Int. J. Res. Pharm. Sci., 2010, 1(4), 454-465.
[3]
Mufassir, M.M.; Saifee, M.; Dehghan, M.H.; Zaheer, Z.; Khan, S.; Firoz, A.; Khan, K. Effects of solvents: Preparation and characterization of sustained release intranasal microspheres of rizatriptan benzoate. JIPBS, 2014, 1, 68-71.
[4]
Harikarnpakdee, S.; Lipipun, V.; Sutanthavibul, N.; Garnpimol, C. Spray-dried mucoadhesive microspheres: Preparation and transport through nasal cell monolayer. AAPS PharmSciTech, 2006, 7(1), E1-E10.
[5]
Chien, Y.W.; Chang, S.F. Intranasal drug delivery for systemic medications. Crit. Rev. Ther. Drug Carrier Syst., 1987, 4(2), 67-194.
[6]
Eller, N.; Kollenz, C.J.; Bauer, P.; Hitzenberger, G. The duration of antidiuretic response of two desmopressin nasal sprays. Int. J. Clin. Pharmacol. Ther., 1998, 36(9), 494-500.
[7]
Khan, A.R.; Liu, M.; Khan, M.W.; Zhai, G. Progress in brain targeting drug delivery system by nasal route. J. Control. Release, 2017, 268, 364-389.
[8]
Kublik, H.; Vidgren, M.T. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev., 1998, 29(1-2), 157-177.
[9]
Inoue, D.; Tanaka, A.; Kimura, S.; Kiriyama, A.; Katsumi, H.; Yamamoto, A.; Furubayashi, T. The relationship between in vivo nasal drug clearance and in vitro nasal mucociliary clearance: Application to the prediction of nasal drug absorption. Eur. J. Pharm. Sci., 2018, 117, 21-26.
[10]
Illum, L.; Watts, P.; Fisher, A.N.; Hinchcliffe, M.; Norbury, H.; Nankervis, R.; Davis, S.S. Intranasal delivery of morphine. J. Pharmacol. Exp. Ther., 2002, 301(1), 391-400.
[11]
Andrade, C. Intranasal drug delivery in neuropsychiatry: Focus on intranasal ketamine for refractory depression. J. Clin. Psychiatry, 2015, 76(5), 628-631.
[12]
Hermann, N. Effectiveness of live attenuated influenza vaccines and trivalent inactivated influenza vaccines against confirmed influenza in children and adolescents in Saxony-Anhalt. Gesundheitswesen, 2015, 77(7), 499-501.
[13]
Antonaci, F.; Ghiotto, N.; Wu, S.; Pucci, E.; Costa, A. Recent advances in migraine therapy. Springerplus, 2016, 5(1), 1-14.
[14]
Prajapati, S.T.; Pathak, S.P.; Thakkar, J.H.; Patel, C.N. Nanoemulsion based intranasal delivery of risperidone for nose to brain targeting. Br. J. Pharm. Res., 2015, 5(1), 6-13.
[15]
Knoester, P.D.; Jonker, D.M.; Hoeven, R.T.M.V.D.; Vermeij, T.A.C.; Edelbroek, P.M.; Brekelmans, G.J.; Haan, G.J.D. Pharmacokinetics and pharmacodynamics of midazolam administered as a concentrated intranasal spray. A study in healthy volunteers. Br. J. Clin. Pharmacol., 2002, 53, 501-507.
[16]
Ugwoke, M.I.; Agu, R.U.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv. Drug Deliv. Rev., 2005, 57(11), 1640-1665.
[17]
Vyas, T.K.; Shahiwala, A.; Marathe, S.; Misra, A. Intranasal drug delivery for brain targeting. Curr. Drug Deliv., 2005, 2(2), 165-175.
[18]
Hanson, L.R.; Frey, W.H. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. J. Psychiatry Neurosci., 2008, 9(3), S5-S15.
[19]
Harris, A.S. Review: Clinical opportunities provided by the nasal administration of peptides. J. Drug Target., 1993, 1(2), 101-116.
[20]
Duvvuri, S.; Majumdar, S.; Mitra, A.K. Drug delivery to the retina: Challenges and opportunities. EOBT, 2003, 3(1), 45-56.
[21]
Davis, S.S.; Illum, L. Absorption enhancers for nasal drug delivery. Clin. Pharmacokinet., 2003, 42(13), 1107-1128.
[22]
Huang, C.H.; Kimura, R.; Nassar, R.B.; Hussain, A. Mechanism of nasal absorption of drugs I: Physicochemical parameters influencing the rate of in situ nasal absorption of drugs in rats. J. Pharm. Sci., 1985, 74(6), 608-611.
[23]
Kumar, S.K.; Varma, M.G.; Vudaykiran, A.; Kumar, A.; Sudhakar, B. Nasal drug delivery system-an overview. IJPCS, 2012, 1(3), 1358-1368.
[24]
Sing, C.; Pardeshi, V.S.; Belgamwar, V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood--brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10(7), 957-972.
[25]
Katare, Y.K.; Piazza, J.S.; Bhandari, J.; Daya, R.P.; Akilan, K.; Simpson, M.J.; Hoare, T.; Mishra, R.K. Intranasal delivery of antipsychotic drugs. SIRS, 2017, 184, 2-13.
[26]
Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol., 2001, 53(1), 3-22.
[27]
Samaridou, E.; Alonso, M.J. Nose-to-brain peptide delivery -The potential of nanotechnology. Bioorg. Med. Chem., 2018, 26(10), 2888-2905.
[28]
Yapar, E.A. Nasal inserts for drug delivery: An overview tropical. J. Pharm. Res., 2014, 13(3), 459-467.
[29]
Barbara, P.; Alessandro, D.; Nunzia, C.; Carta, B.; Stefano, M.; Silvia, V. Progress in drug delivery to central nervous system by pro-drug approach. Molecules, 2008, 13(5), 1035-1065.
[30]
Djupesland, P.G.; John, C.; Mahmoud, R.A. The nasal approach to delivering treatment for brain diseases: An anatomic, physiologic, and delivery technology overview. Ther. Deliv., 2014, 5(6), 709-733.
[31]
Pagar, S.; Manohar, A.S.D.; Bhanudas, S.R. A review on intranasal drug delivery system. JAPER, 2013, 3(4), 333-346.
[32]
Parvathi, M. Intranasal drug delivery to brain: An overview. IJRPC, 2012, 2(3), 889-895.
[33]
Kao, H.D.; Traboulsi, A.; Itoh, S.; Dittert, L.; Hussain, A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm. Res., 2000, 17(8), 978-984.
[34]
Gizurarson, S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol. Pharm. Bull., 2015, 38, 497-506.
[35]
Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol., 2001, 53(1), 3-22.
[36]
Upadhyay, S.; Parikh, A.; Joshi, A.; Upadhyay, U.M.; Chotai, N.P. Intranasal drug delivery system- A glimpse to become maestro. J. Anim. Plant Sci., 2011, 1(3), 34-44.
[37]
Pires, A.; Fortuna, A.; Alves, G.; Falcao, A. Intranasal drug delivery: How, why and what for? J. Pharm. Pharm. Sci., 2009, 12(3), 288-311.
[38]
Jadhav, K.R.; Gambhire, M.N.; Shaikh, I.M.; Kadam, V.J.; Pisal, S.S. Nasal drug delivery system-factors affecting and applications. Curr. Drug Deliv., 2007, 2, 27-38.
[39]
Dey, S.; Mahanti, B.; Mazumder, B.; Malgope, A.; Dasgupta, S. Nasal drug delivery: An approach of drug delivery through nasal route. Pharm. Sin., 2011, 2(3), 94-106.
[40]
Putheti, R.R.; Patil, M.C.; Obire, O. Nasal drug delivery in pharmaceutical and biotechnology: Present and future e-JST, 2009, 4, 1-21.
[41]
Shaikh, M.F.; Fakir, H.S.; Shaikh, S. Mohd. M. G.; Patel H.Y.; Wedachchhiya, S.S. Intranasal route: A promising technique for brain targeting. IJARIIE, 2016, 2(1), 574-586.
[42]
Krishnamoorthya, R.; Mitra, A.K. Prodrugs for nasal drug delivery. Adv. Drug Deliv. Rev., 1998, 29(1-2), 135-146.
[43]
Cernada, A.M.; Cervera, M.F.; Cesar, J.; Rodríguez, G. Factors involved in the design of nasal delivery systems for peptides and proteins. Biotecnol. Apl., 2013, 30(2), 88-96.
[44]
Thorat, S. Formulation and product development of nasal spray: An overview sch. J. Appl. Med. Sci., 2016, 4(8D), 2976-2985.
[45]
Bhowmik, D.; Kharel, R.; Jaiswal, J.; Chiranjib, B.K.P.; Kumar, S. Innovative approaches for nasal drug delivery system and its challenges and opportunities. Ann. Biol. Res., 2010, 1(1), 21-26.
[46]
Pezron, I.; Mitra, A.K.; Duvvuri, S.; Tirucherai, S.G. Prodrug strategies in nasal drug delivery. Expert Opin. Ther. Pat., 2005, 331-340.
[47]
Kaur, H.; Singh, C.; Gupta, G.D. Nasal drug delivery. Indo. American J. Pharm. Res., 2015, 5(8), 2522-2530.
[48]
Khan, A.R.; Liu, M.; Khan, M.W.; Zhai, G. Progress in brain targeting drug delivery system by nasal route. J. Control. Release, 2017, 268, 364-389.
[49]
Dudhipala, N.; Narala, A.; Bomma, R. Recent updates in the formulation strategies to enhance the bioavailability of drugs administered via intranasal route. J. Bioequivalence Bioavailab., 2016, 204-207.
[50]
Mujawar, N.; Ghatage, S.; Navale, S.; Bhagyshree, S.; Patil, S.; Patil, S.K. Nasal drug delivery: Problem solution and its application. JCPR, 2014, 4(3), 1231-1245.
[51]
Hussein, N.R. In: Bioadhesive microparticles and liposomes of anti- Parkinson drugs for nasal delivery; PhD thesis, University of Central Lancashire, , 2014.
[52]
Mahdi, M.H.; Conway, B.R.; Smith, A.M. Development of mucoadhesive sprayable gellan gum fluid gels. Int. J. Pharm., 2015, 488(1), 12-19.
[53]
Chaturvedi, M. Kumar. M., Pathak. K. A review on mucoadhesive polymer used in nasal drug delivery system. JAPTR, 2011, 4, 215-222.
[54]
Rathbone, M.J.; Hadgraft, J.; Roberts, M.S. Modified-release drug delivery technology; CRC Press, 2002, pp. 234-278.
[55]
Patil, S.B.; Sawant, K.K. Mucoadhesive microspheres: A promising tool in drug delivery. Curr. Drug Deliv., 2008, 5(4), 312-318.
[56]
Gavini, E.; Rassu, G.; Ferraro, L.; Generosi, A.; Rau, J.V.; Brunetti, A.; Dalpiaz, A. Influence of chitosan glutamate on the in vivo intranasal absorption of rokitamycin from microspheres. J. Pharm. Sci., 2011, 100(4), 1488-1502.
[57]
Mahdi, M.H.; Conway, B.R.; Smith, A.M. Development of mucoadhesive sprayable gellan gum fluid gels. Int. J. Pharm., 2015, 488(1), 12-19.
[58]
Swamy, N.G.N.; Abbas, Z. Preparation and in vitro characterization of mucoadhesive polyvinyl alcohol microspheres containing amlodipine besylate for nasal administration. Indian J. Pharm. Educ., 2012, 46(1), 52-58.
[59]
Cao, S.L.; Zhang, Q.Z.; Jiang, X.G. Preparation of ion-activated in situ gel systems of scopolamine hydrobromide and evaluation of its antimotion sickness efficacy. Acta Pharmacol. Sin., 2007, 28(4), 584-590.
[60]
Dyer, A.M.; Watts, P.; Castile, J.; Jabbal-Gill, I.; Nankervis, R.; Smith, A.; Illum, L. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm. Res., 2002, 19, 998-1008.
[61]
Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal delivery of high molecular weight drugs. Molecules, 2000, 14(9), 3754-3779.
[62]
Sworn, G.; Sanderson, G.R.; Gibson, W. Gellan gum fluid gels. Food Hydrocoll., 1995, 9(4), 265-271.
[63]
DOI, K. Washington, DC: U.S. Patent and Trademark Office. U.S. Patent 6,368,616 2002.
[64]
Aikawa, K.; Matsumoto, K.; Uda, H.; Tanaka, S.; Shimamura, H.; Aramaki, Y.; Tsuchiya, S. Prolonged release of drug from o/w emulsion and residence in rat nasal cavity. Pharm. Dev. Technol., 1998, 3(4), 461-469.
[65]
Merkus, F.W.H.M.; Schipper, N.G.M.; Hermens, W.A.J.J.; Romeijn, S.G.; Verhoef, J.C. Absorption enhancers in nasal drug delivery: Efficacy and safety. J. Control. Release, 1993, 24(1), 201-208.
[66]
Klang, V.; Schwarz, J.C.; Valenta, C. Nanoemulsions in dermal drug delivery. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Dragicevic, N.; Maibach, H., Eds.; , 2015; pp. 255-266.
[67]
Merkus, F.W.H.M.; Schipper, N.G.M.; Hermens, W.A.J.J.; Romeijn, S.G.; Verhoef, J.C. Absorption enhancers in nasal drug delivery: Efficacy and safety. J. Control. Release, 1993, 24(1), 201-208.
[68]
Law, S.L.; Shih, C.L. Characterization of calcitonincontaining liposome formulations for intranasal delivery. J. Microencapsul., 2001, 18(2), 211-221.
[69]
Law, S.L.; Huang, K.J.; Chou, H.Y. Preparation of desmopressin-containing liposomes for intranasal delivery. J. Control. Release, 2001, 70(3), 375-382.
[70]
Muramatsu, M.; Sankaranand, V.S.; Anant, S.; Sugai, M.; Kinoshita, K.; Davidson, N.; Honjo, T. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem., 1999, 274(26), 18470-18476.
[71]
Nagai, K.; Thogersen, H.C. Generation of beta-globin by sequence specific disteolysis of a hybrid protein produced in E. coli. Nature, 1984, 308, 810-812.
[72]
Callens, C.; Remon, J.P. Evaluation of starch- maltodextrin-Carbopol 974 P mixtures for the nasal delivery of insulin in rabbits. J. Control. Release, 2000, 66(2), 215-220.
[73]
Teshima, D.; Yamauchi, A.; Makino, K.; Kataoka, Y.; Arita, Y.; Nawata, H.; Oishi, R. Nasal glucagon delivery using microcrystalline cellulose in healthy volunteers. Int. J. Pharm., 2002, 233(1), 61-66.
[74]
Ugwoke, M.I.; Sam, E.; Van Den Mooter, G.; Verbeke, N.; Kinget, R. Nasal mucoadhesive delivery systems of the anti-parkinsonian drug, apomorphine: Influence of drug-loading on in vitro and in vivo release in rabbits. Int. J. Pharm., 1999, 181(1), 125-138.
[75]
Illum, L.H.H.O.N.; Jørgensen, H.; Bisgaard, H.; Krogsgaard, O.; Rossing, N. Bioadhesive microspheres as a potential nasal drug delivery system. Int. J. Pharm., 1987, 39(3), 189-199.
[76]
Bjork, E.; Edman, P. Degradable starch microspheres as a nasal delivery system for insulin. Int. J. Pharmaceutic, 1999, 47(1-3), 233-238.
[77]
Pereswetoff-Morath, L. Microspheres as nasal drug delivery systems. Adv. Drug Deliv. Rev., 1998, 29(1), 185-194.
[78]
Krauland, A.H.; Guggi, D.; Bernkop-Schnürch, A. Thiolated chitosan microparticles: A vehicle for nasal peptide drug delivery. Int. J. Pharm., 2006, 307(2), 270-277.
[79]
Vindru, J.; Gowda, D.V.; Gupta, A. Recent advancements and novel approach through nasal delivery systems- A Review. IJPPT, 2016, 3(3), 20-32.
[80]
Zaman, M.; Chandrudu, S.; Toth, I. Strategies for intranasal delivery of vaccines. Drug Deliv. Transl. Res., 2013, 3(1), 100-109.
[81]
Galgatte, U.C.; Kumbhar, A.B.; Chaudhari, P.D. Development of insitu gel for nasal delivery: Design, optimization, in vitro and invivo evaluation. Drug Deliv., 2014, 21(1), 62-73.
[82]
Patil, S.K.; Dhage, A.N.; Patil, S.V.; Patil, S.S. Effect of different mucoadhesive polymers on release of ondansetron HCl from intranasal mucoadhesive in situ gel. IRJPBS, 2015, 2(2), 41-58.
[83]
Ban, M.M.; Chakote, V.R.; Dhembre, G.N.; Rajguru, J.R.; Joshi, D.A. In-situ gel for nasal drug delivery. IJDR, 2018, 8(2), 18763-18769.
[84]
Kashid, V.; Nikam, V.; Gaikwad, S.; Mahale, M.; Wagh, V.; Chaudhari, S. Nasal gel as promising mucosal drug delivery. WJPR, 2016, 5(6), 891-912.
[85]
Ampati, S.; Hanumakonda, A.; Maheshwaram, V. Formulation and evaluation of nasal insitu gel of fluoxetine hydrochloride. IAJPS, 2016, 3(6), 573-581.
[86]
Ravi, P.R.; Aditya, N.; Patil, S.; Cherians, L. Nasal in-situ gels for delivery of rasagiline mesylate: Improvement in bioavailability and brain localization. Drug Deliv., 2015, 22(7), 903-910.
[87]
Himawan, A. Mucoadhesive microemulsion as a nose-to-brain (ntb) transmucosal drug carrier. IJPRS, 2016, 5(2), 293-302.
[88]
Thakkar, H.; Patel, A.A.; Chauhan, N.P. Intranasal mucoadhesive microemulsion of mirtazapine: Pharmacokinetic and pharmacodynamic studies. Asian J. Pharm., 2013, 7(1), 36-42.
[89]
Shah, B.M.; Misra, M.; Shishoo, C.J.; Padh, H. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization. Drug Deliv., 2015, 22(7), 918-930.
[90]
Ayoub, A.M.; Ibrahim, M.M.; Abdallah, M.H.; Mahdy, M.A. Intranasal microemulgel as surrogate carrier to enhance low oral bioavailability of sulpiride. Int. J. Pharm. Pharm. Sci., 2016, 8(10), 188-197.
[91]
Jha, S.K.; Dey, S.; Karki, R. Microemulsions- potential carrier for improved drug delivery. AJBPS, 2011, 1(1), 5-9.
[92]
Muneer, S.; Masood, Z.; Butt, S.; Anjum, S.; Zainab, H.; Anwar, N.; Ahmad, N. Proliposomes as pharmaceutical drug delivery system: A brief review. J. Nanomed. Nanotechnol., 2017, 8(3), 448-453.
[93]
Deepthi, V.; Kavitha, A.N. Liposomal drug delivery system-a review. RGUHS J. Pharm. Sci., 2014, 4(2), 47-56.
[94]
Alsarra, I.A.; Hamed, A.Y.; Alanazi, F.K. Acyclovir liposomes for intranasal systemic delivery: Development and pharmacokinetics evaluation. Drug Deliv., 2008, 15(5), 313-321.
[95]
Tiwari, S.; Goyal, A.K.; Mishra, N.; Vaidya, B.; Mehta, A.; Dube, D.; Vyas, S.P. Liposome in situ gelling system: Novel carrier based vaccine adjuvant for intranasal delivery of recombinant protein vaccine. Procedia Vaccinol., 2009, 1, 148-163.
[96]
Nayak, U.Y.; Singh, M. Formulation and in vitro-in vivo evaluation of risperidone liposomes for brain targeting; EACPT, 2015, pp. 20-22.
[97]
Chaudhari, A.; Jadhav, K.R.; Kadam, V.J. An over view: Microspheres as a nasal drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2010, 5, 34-44.
[98]
Duraivel, S.; Harish, G.; Kumar, P.B.; Bhowmik, D.; Midimalapu, S. Formulation and evaluation of ciprofloxacin microspheres for nasal drug delivery. Pharma. Innovation, 2013, 2(4), 34-39.
[99]
Gavini, E.; Rassu, G.; Ferraro, L.; Beggiato, S.; Alhalaweh, A.; Velaga, S.; Marchetti, N.; Bandiera, P.; Giunchedi, P.; Dalpiaz, A. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur. J. Pharm. Biopharm., 2013, 83(2), 174-183.
[100]
Jagtap, S.R.; Shete, A.S.J.V.J.D.R. Formulation and evaluation of particulate nasal drug delivery system for the treatment of migraine. J. Biomed. Pharm., 2017, 30(4), 345-356.
[101]
Mishra, S.D.; Singh, S.K.; Kumar, A. Development and characterization of zolmitriptan loaded thiolated chitosan nanoparticles for intranasal drug delivery. Pharma. Innovation, 2016, 5(7), 19-23.
[102]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: Formulation, optimization, evaluation and permeation studies. J. Liposome Res., 2016, 26(4), 313-323.
[103]
Winner, P.; Farkas, V.; Štillová, H.; Woodruff, B.; Liss, C.; Lillieborg, S. Efficacy and tolerability of zolmitriptan nasal spray for the treatment of acute migraine in adolescents: Results of a randomized, double-blind, multi-center, parallel-group study (TEENZ). Headache, 2016, 6(7), 1107-1119.
[104]
Butani, S.; Shah, T.; Parmar, K.; Rajput, A. Development of rizatriptan benzoate microspheres for nose to brain targeting. Int. J. App. Pharm, 2016, 8(4), 69-74.
[105]
Nair, R.; Kumar, K.S.A.; Vishnu, K.P.; Badivaddin, T.M.; Sevukarajan, M. Preparation and characterization of rizatriptan loaded solid lipid nanoparticles. J. Biomed. Sci. Res, 2011, 3(2), 392-396.
[106]
Singh, A.; Ubrane, R.; Prasad, P.; Ramteke, S. Preparation and characterization of rizatriptan benzoate loaded solid lipid nanoparticles for brain targeting. Mater Today Proc., 2015, 2(9), 4521-4543.
[107]
Eskandari, S.; Varshosaz, J.; Minaiyan, M.; Tabbakhian, M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: In vivo pharmacodynamic studies using rat electroshock model. Int. J. Nanomedicine, 2011, 6, 363-371.
[108]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D.; Shengule, S. Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. J. Drug Deliv. Sci. Technol., 2015, 29, 238-244.
[109]
Silberstein, S.D. A review of clinical safety data for sumatriptan nasal powder administered by a breath powered exhalation delivery system in the acute treatment of migraine. Expert Opin. Drug Saf., 2017, 17(1), 89-97.
[110]
Jaiswal, P.L.; Darekar, A.B.; Saudagar, R.B. A recent review on nasal microemulsion for treatment of CNS disorder. Int. J. Curr. Pharm. Res., 2017, 9(4), 5-13.
[111]
Gulati, N.; Nagaich, U.; Saraf, S.A. Intranasal delivery of chitosan nanoparticles for migraine therapy. Sci. Pharm., 2013, 81(3), 843-854.
[112]
Tepper, D.E. Nasal sprays for the treatment of migraine. Headache, 2013, 53(3), 577-578.
[113]
Marmura, M.J.; Silberstein, S.D.; Schwedt, T.J. The acute treatment of migraine in adults: The american headache society evidence assessment of migraine pharmacotherapies. Headache, 2015, 55(1), 3-20.
[114]
Mohammadkarimi, N.; Jafari, M.; Mellat, A.; Kazemi, E.; Shirali, A. Evaluation of efficacy of intra-nasal lidocaine for headache relief in patients refer to emergency department. J. Res. Med. Sci., 2014, 19(4), 1-5.
[115]
Diamond, S.; Freitag, F.; Phillips, S.; Bernstein, J.; Saper, J. Intranasal Civamide for the Acute Treatment of Migraine Headache. Cephalalgia, 2000, 20(6), 597-602.
[116]
Gooriah, R.; Nimeri, R.; Ahmed, F. Evidence-based treatments for adults with migraine. Pain Res. Treat., 2015, 2015, 629382-629395.
[117]
American Migraine Foundation. Nasal Sprays for the Treatment of Migraine. https://americanmigrainefoundation.org/resourcelibrary/nasal-sprays-treatment-migraine/ [Accessed 7 July, 2019].
[118]
Ausanil Nasal Spray for Rapid Relief of Severe Headaches + Migraine. https://www.amazon.com/Ausanil-Headaches-Migraine Formulated-neurologist/dp/B00GP3UCYK [Accessed 7 July, 2019]
[119]
Imigran 10mg Nasal Spray. https://www.medicines.org.uk/emc/ product/2214/smpc [Accessed 7 July, 2019]
[120]
Imigran 10mg Nasal Spray. https://www.medicines.org.uk/emc/ product/2214/smpc [Accessed 7 July, 2019]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2019
Page: [182 - 198]
Pages: 17
DOI: 10.2174/2210303109666190508083142
Price: $58

Article Metrics

PDF: 20
HTML: 3
EPUB: 1
PRC: 1