Breast Infrared Thermography Segmentation Based on Adaptive Tuning of a Fully Convolutional Network

Author(s): Mazhar Basyouni Tayel, Azza Mahmoud Elbagoury*.

Journal Name: Current Medical Imaging
Formerly: Current Medical Imaging Reviews

Volume 16 , Issue 5 , 2020

Become EABM
Become Reviewer

Abstract:

Background: Accurate segmentation of Breast Infrared Thermography is an important step for early detection of breast pathological changes. Automatic segmentation of Breast Infrared Thermography is a very challenging task, as it is difficult to find an accurate breast contour and extract regions of interest from it. Although several semi-automatic methods have been proposed for segmentation, their performance often depends on hand-crafted image features, as well as preprocessing operations.

Objective: In this work, an approach to automatic semantic segmentation the Breast Infrared Thermography is proposed based on end-to-end fully convolutional neural networks and without any pre or pos processing.

Method: The lack of labeled Breast Infrared Thermography data limits the full utilization of fully convolutional neural networks. The proposed model overcomes this challenge by applying data augmentation and two-tier transfer learning from bigger datasets combined with adaptive multi-tier fine-tuning before training the fully convolutional neural networks model.

Results: Experimental results show that the proposed approach achieves better segmentation results : 97.986% accuracy; 98.36% sensitivity and 97.61% specificity compared to hand-crafted segmentation methods.

Conclusion: This work provided an end-to-end automatic semantic segmentation of Breast Infrared Thermography combined a fully convolutional networks, adaptive multi-tier fine-tuning and transfer learning. Also, this work was able to beat on challenging of applying convolutional neural networks on such data and achieving the state-of-art accuracy.

Keywords: AlexNet, breast infrared thermography, fully convolutional networks, fine-tuning, semantic segmentation, transfer learning.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Page: [611 - 621]
Pages: 11
DOI: 10.2174/1573405615666190503142031
Price: $95

Article Metrics

PDF: 1