Role of Descending Dopaminergic Pathways in Pain Modulation

Author(s): Changsheng Li, Sufang Liu, Xihua Lu*, Feng Tao*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Pain, especially when chronic, is a common reason patients seek medical care and it affects the quality of life and well-being of the patients. Unfortunately, currently available therapies for chronic pain are often inadequate because the neurobiological basis of such pain is still not fully understood. Although dopamine has been known as a neurotransmitter to mediate reward and motivation, accumulating evidence has shown that dopamine systems in the brain are also involved in the central regulation of chronic pain. Most importantly, descending dopaminergic pathways play an important role in pain modulation. In this review, we discuss dopamine receptors, dopaminergic systems in the brain, and the role of descending dopaminergic pathways in the modulation of different types of pain.

Keywords: Chronic pain, dopamine, dopamine receptors, descending dopaminergic pathways, neuromodulation, descending pain control.

[1]
Carlsson, A.; Lindqvist, M.; Magnusson, T.; Waldeck, B. On the presence of 3-hydroxytyramine in brain. Science, 1958, 127(3296), 471.
[http://dx.doi.org/10.1126/science.127.3296.471] [PMID: 13529006]
[2]
Westbrook, A.; Braver, T.S. Dopamine does double duty in motivating cognitive effort. Neuron, 2016, 91(3), 708-708.
[http://dx.doi.org/10.1016/j.neuron.2016.07.020] [PMID: 27497225]
[3]
Murty, V.P.; Tompary, A.; Adcock, R.A.; Davachi, L. Selectivity in post-encoding connectivity with high-level visual cortex is associated with reward-motivated memory. J. Neurosci., 2017, 37(3), 537-545.
[4]
Kim, J.Y.; Tillu, D.V.; Quinn, T.L.; Mejia, G.L.; Shy, A.; Asiedu, M.N.; Murad, E.; Schumann, A.P.; Totsch, S.K.; Sorge, R.E.; Mantyh, P.W.; Dussor, G.; Price, T.J. Spinal dopaminergic projections control the transition to pathological pain plasticity via a D1/D5-mediated mechanism. J. Neurosci., 2015, 35(16), 6307-6317.
[http://dx.doi.org/10.1523/JNEUROSCI.3481-14.2015] [PMID: 25904784]
[5]
Wood, P.B. Role of central dopamine in pain and analgesia. Expert Rev. Neurother., 2008, 8(5), 781-797.
[http://dx.doi.org/10.1586/14737175.8.5.781] [PMID: 18457535]
[6]
Abdallah, K.; Monconduit, L.; Artola, A.; Luccarini, P.; Dallel, R. GABAAergic inhibition or dopamine denervation of the A11 hypothalamic nucleus induces trigeminal analgesia. Pain, 2015, 156(4), 644-655.
[http://dx.doi.org/10.1097/j.pain.0000000000000091] [PMID: 25790455]
[7]
Daubner, S.C.; Le, T.; Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys., 2011, 508(1), 1-12.
[http://dx.doi.org/10.1016/j.abb.2010.12.017] [PMID: 21176768]
[8]
Rice, M.E.; Patel, J.C.; Cragg, S.J. Dopamine release in the basal ganglia. Neuroscience, 2011, 198, 112-137.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.066] [PMID: 21939738]
[9]
Björklund, A.; Dunnett, S.B. Dopamine neuron systems in the brain: an update. Trends Neurosci., 2007, 30(5), 194-202.
[http://dx.doi.org/10.1016/j.tins.2007.03.006] [PMID: 17408759]
[10]
Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: from structure to function. Physiol. Rev., 1998, 78(1), 189-225.
[http://dx.doi.org/10.1152/physrev.1998.78.1.189] [PMID: 9457173]
[11]
Gurevich, E.V.; Joyce, J.N. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology, 1999, 20(1), 60-80.
[http://dx.doi.org/10.1016/S0893-133X(98)00066-9] [PMID: 9885786]
[12]
Maramai, S.; Gemma, S.; Brogi, S.; Campiani, G.; Butini, S.; Stark, H.; Brindisi, M. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front. Neurosci., 2016, 10, 451.
[http://dx.doi.org/10.3389/fnins.2016.00451] [PMID: 27761108]
[13]
Diaz, J.; Pilon, C.; Le Foll, B.; Gros, C.; Triller, A.; Schwartz, J.C.; Sokoloff, P. Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J. Neurosci., 2000, 20(23), 8677-8684.
[http://dx.doi.org/10.1523/JNEUROSCI.20-23-08677.2000] [PMID: 11102473]
[14]
Nakajima, S.; Gerretsen, P.; Takeuchi, H.; Caravaggio, F.; Chow, T.; Le Foll, B.; Mulsant, B.; Pollock, B.; Graff-Guerrero, A. The potential role of dopamine D3 receptor neurotransmission in cognition. Eur. Neuropsychopharmacol., 2013, 23(8), 799-813.
[http://dx.doi.org/10.1016/j.euroneuro.2013.05.006] [PMID: 23791072]
[15]
Dearry, A.; Gingrich, J.A.; Falardeau, P.; Fremeau, R.T., Jr; Bates, M.D.; Caron, M.G. Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature, 1990, 347(6288), 72-76.
[http://dx.doi.org/10.1038/347072a0] [PMID: 2144334]
[16]
Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev., 2011, 63(1), 182-217.
[http://dx.doi.org/10.1124/pr.110.002642] [PMID: 21303898]
[17]
Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, signaling, and association with neurological diseases. Cell. Mol. Neurobiol., 2019, 39(1), 31-59.
[http://dx.doi.org/10.1007/s10571-018-0632-3] [PMID: 30446950]
[18]
Sahu, A.; Tyeryar, K.R.; Vongtau, H.O.; Sibley, D.R.; Undieh, A.S. D5 dopamine receptors are required for dopaminergic activation of phospholipase C. Mol. Pharmacol., 2009, 75(3), 447-453.
[http://dx.doi.org/10.1124/mol.108.053017] [PMID: 19047479]
[19]
Lee, S.P.; So, C.H.; Rashid, A.J.; Varghese, G.; Cheng, R.; Lança, A.J.; O’Dowd, B.F.; George, S.R. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J. Biol. Chem., 2004, 279(34), 35671-35678.
[http://dx.doi.org/10.1074/jbc.M401923200] [PMID: 15159403]
[20]
Beaulieu, J.M.; Del’guidice, T.; Sotnikova, T.D.; Lemasson, M.; Gainetdinov, R.R. Beyond cAMP: the regulation of Akt and GSK3 by dopamine receptors. Front. Mol. Neurosci., 2011, 4, 38.
[http://dx.doi.org/10.3389/fnmol.2011.00038] [PMID: 22065948]
[21]
Lee, F.J.; Xue, S.; Pei, L.; Vukusic, B.; Chéry, N.; Wang, Y.; Wang, Y.T.; Niznik, H.B.; Yu, X.M.; Liu, F. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell, 2002, 111(2), 219-230.
[http://dx.doi.org/10.1016/S0092-8674(02)00962-5] [PMID: 12408866]
[22]
Dunah, A.W.; Sirianni, A.C.; Fienberg, A.A.; Bastia, E.; Schwarzschild, M.A.; Standaert, D.G. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol. Pharmacol., 2004, 65(1), 121-129.
[http://dx.doi.org/10.1124/mol.65.1.121] [PMID: 14722243]
[23]
Cepeda, C.; Levine, M.S. Dopamine-NMDA receptor interactions: twenty years later. Dev. Neurosci., 2012, 34(1), 2-4.
[http://dx.doi.org/10.1159/000338590] [PMID: 22626881]
[24]
Tseng, K.Y.; O’Donnell, P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J. Neurosci., 2004, 24(22), 5131-5139.
[http://dx.doi.org/10.1523/JNEUROSCI.1021-04.2004] [PMID: 15175382]
[25]
Nair, V.D.; Savelli, J.E.; Mishra, R.K. Modulation of dopamine D2 receptor expression by an NMDA receptor antagonist in rat brain. J. Mol. Neurosci., 1998, 11(2), 121-126.
[http://dx.doi.org/10.1385/JMN:11:2:121] [PMID: 10096038]
[26]
Liu, X.Y.; Chu, X.P.; Mao, L.M.; Wang, M.; Lan, H.X.; Li, M.H.; Zhang, G.C.; Parelkar, N.K.; Fibuch, E.E.; Haines, M.; Neve, K.A.; Liu, F.; Xiong, Z.G.; Wang, J.Q. Modulation of D2R-NR2B interactions in response to cocaine. Neuron, 2006, 52(5), 897-909.
[http://dx.doi.org/10.1016/j.neuron.2006.10.011] [PMID: 17145509]
[27]
Gao, C.; Wolf, M.E. Dopamine receptors regulate NMDA receptor surface expression in prefrontal cortex neurons. J. Neurochem., 2008, 106(6), 2489-2501.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05597.x] [PMID: 18673451]
[28]
Sun, X.; Zhao, Y.; Wolf, M.E. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J. Neurosci., 2005, 25(32), 7342-7351.
[http://dx.doi.org/10.1523/JNEUROSCI.4603-04.2005] [PMID: 16093384]
[29]
Sun, X.; Milovanovic, M.; Zhao, Y.; Wolf, M.E. Acute and chronic dopamine receptor stimulation modulates AMPA receptor trafficking in nucleus accumbens neurons cocultured with prefrontal cortex neurons. J. Neurosci., 2008, 28(16), 4216-4230.
[http://dx.doi.org/10.1523/JNEUROSCI.0258-08.2008] [PMID: 18417701]
[30]
Chang, P.C.; Pollema-Mays, S.L.; Centeno, M.V.; Procissi, D.; Contini, M.; Baria, A.T.; Martina, M.; Apkarian, A.V. Role of nucleus accumbens in neuropathic pain: Linked multi-scale evidence in the rat transitioning to neuropathic pain. Pain, 2014, 155(6), 1128-1139.
[http://dx.doi.org/10.1016/j.pain.2014.02.019] [PMID: 24607959]
[31]
Liu, S.; Tang, Y.; Shu, H.; Tatum, D.; Bai, Q.; Crawford, J.; Xing, Y.; Lobo, M.K.; Bellinger, L.; Kramer, P.; Tao, F. Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway-produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain, 2019, 160(2), 334-344.
[http://dx.doi.org/10.1097/j.pain.0000000000001414] [PMID: 30325872]
[32]
Engert, V.; Pruessner, J.C. Dopaminergic and noradrenergic contributions to functionality in ADHD: the role of methylphenidate. Curr. Neuropharmacol., 2008, 6(4), 322-328.
[http://dx.doi.org/10.2174/157015908787386069] [PMID: 19587853]
[33]
Ashby, F.G.; Valentin, V.V.; von Meer, S.S. Differential effects of dopamine-directed treatments on cognition. Neuropsychiatr. Dis. Treat., 2015, 11, 1859-1875.
[http://dx.doi.org/10.2147/NDT.S65875] [PMID: 26251602]
[34]
Narayanan, N.S.; Rodnitzky, R.L.; Uc, E.Y. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev. Neurosci., 2013, 24(3), 267-278.
[http://dx.doi.org/10.1515/revneuro-2013-0004] [PMID: 23729617]
[35]
Sharples, S.A.; Koblinger, K.; Humphreys, J.M.; Whelan, P.J. Dopamine: a parallel pathway for the modulation of spinal locomotor networks. Front. Neural Circuits, 2014, 8, 55.
[http://dx.doi.org/10.3389/fncir.2014.00055] [PMID: 24982614]
[36]
Wei, H.; Viisanen, H.; Pertovaara, A. Descending modulation of neuropathic hypersensitivity by dopamine D2 receptors in or adjacent to the hypothalamic A11 cell group. Pharmacol. Res., 2009, 59(5), 355-363.
[http://dx.doi.org/10.1016/j.phrs.2009.01.001] [PMID: 19416636]
[37]
Koblinger, K.; Füzesi, T.; Ejdrygiewicz, J.; Krajacic, A.; Bains, J.S.; Whelan, P.J. Characterization of A11 neurons projecting to the spinal cord of mice. PLoS One, 2014, 9(10)e109636
[http://dx.doi.org/10.1371/journal.pone.0109636] [PMID: 25343491]
[38]
Akerman, S.; Holland, P.R.; Goadsby, P.J. Diencephalic and brainstem mechanisms in migraine. Nat. Rev. Neurosci., 2011, 12(10), 570-584.
[http://dx.doi.org/10.1038/nrn3057] [PMID: 21931334]
[39]
Almanza, A.; Simón-Arceo, K.; Coffeen, U.; Fuentes-García, R.; Contreras, B.; Pellicer, F.; Mercado, F.A. D2-like receptor family agonist produces analgesia in mechanonociception but not in thermonociception at the spinal cord level in rats. Pharmacol. Biochem. Behav., 2015, 137, 119-125.
[http://dx.doi.org/10.1016/j.pbb.2015.08.013] [PMID: 26303304]
[40]
Taylor, B.K.; Joshi, C.; Uppal, H. Stimulation of dopamine D2 receptors in the nucleus accumbens inhibits inflammatory pain. Brain Res., 2003, 987(2), 135-143.
[http://dx.doi.org/10.1016/S0006-8993(03)03318-3] [PMID: 14499957]
[41]
Ohtani, N.; Masaki, E. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats. J. Pain Res., 2016, 9, 865-869.
[http://dx.doi.org/10.2147/JPR.S120470] [PMID: 27799818]
[42]
Hagelberg, N.; Forssell, H.; Rinne, J.O.; Scheinin, H.; Taiminen, T.; Aalto, S.; Luutonen, S.; Någren, K.; Jääskeläinen, S. Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain, 2003, 101(1-2), 149-154.
[http://dx.doi.org/10.1016/S0304-3959(02)00323-8] [PMID: 12507709]
[43]
Hansen, G.R.; Streltzer, J. The psychology of pain. Emerg. Med. Clin. North Am., 2005, 23(2), 339-348.
[http://dx.doi.org/10.1016/j.emc.2004.12.005] [PMID: 15829386]
[44]
Leknes, S.; Tracey, I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci., 2008, 9(4), 314-320.
[http://dx.doi.org/10.1038/nrn2333] [PMID: 18354400]
[45]
Grace, A.A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 1991, 41(1), 1-24.
[http://dx.doi.org/10.1016/0306-4522(91)90196-U] [PMID: 1676137]
[46]
Church, W.H.; Justice, J.B., Jr; Neill, D.B. Detecting behaviorally relevant changes in extracellular dopamine with microdialysis. Brain Res., 1987, 412(2), 397-399.
[http://dx.doi.org/10.1016/0006-8993(87)91150-4] [PMID: 3607474]
[47]
Skyt, I.; Moslemi, K.; Baastrup, C.; Grosen, K.; Benedetti, F.; Petersen, G.L.; Price, D.D.; Hall, K.T.; Kaptchuk, T.J.; Svensson, P.; Jensen, T.S.; Vase, L. Dopaminergic tone does not influence pain levels during placebo interventions in patients with chronic neuropathic pain. Pain, 2018, 159(2), 261-272.
[http://dx.doi.org/10.1097/j.pain.0000000000001089] [PMID: 29068872]
[48]
Abdallah, K.; Artola, A.; Monconduit, L.; Dallel, R.; Luccarini, P. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats. PLoS One, 2013, 8.
[49]
Charbit, A.R.; Akerman, S.; Goadsby, P.J. Trigeminocervical complex responses after lesioning dopaminergic A11 nucleus are modified by dopamine and serotonin mechanisms. Pain, 2011, 152(10), 2365-2376.
[http://dx.doi.org/10.1016/j.pain.2011.07.002] [PMID: 21868165]
[50]
Fanciullacci, M.; Alessandri, M.; Del Rosso, A. Dopamine involvement in the migraine attack. Funct. Neurol., 2000, 15(Suppl. 3), 171-181.
[PMID: 11200788]
[51]
Marmura, M.J. Use of dopamine antagonists in treatment of migraine. Curr. Treat. Options Neurol., 2012, 14(1), 27-35.
[http://dx.doi.org/10.1007/s11940-011-0150-9] [PMID: 22012659]
[52]
Becker, W.J. Acute migraine treatment. Continuum (Minneap. Minn.), 2015, 21(4 Headache), 953-972.
[PMID: 26252584]
[53]
Haarmann, A.M.; Jafarian, M.; Karimzadeh, F.; Gorji, A. Modulatory effects of dopamine D2 receptors on spreading depression in rat somatosensory neocortex. Basic Clin. Neurosci., 2014, 5(4), 246-252.
[PMID: 27284388]
[54]
Sezer, S.; Kurt, S.; Ates, O. Analysis of dopamine beta hydroxylase gene polymorphisms in migraine. Clin. Neurol. Neurosurg., 2016, 145, 96-100.
[http://dx.doi.org/10.1016/j.clineuro.2016.02.002] [PMID: 26868704]
[55]
Barbanti, P.; Fofi, L.; Aurilia, C.; Egeo, G. Dopaminergic symptoms in migraine. Neurol. Sci., 2013, 34(Suppl 1), S67-70.
[http://dx.doi.org/10.1007/s10072-013-1415-8]
[56]
Alstadhaug, K.B. Migraine and the hypothalamus. Cephalalgia, 2009, 29, 809-817.
[http://dx.doi.org/10.1111/j.1468-2982.2008.01814.x]
[57]
Schulte, L.H.; Allers, A.; May, A. Hypothalamus as a mediator of chronic migraine: Evidence from high-resolution fMRI. Neurology, 2017, 88(21), 2011-2016.
[http://dx.doi.org/10.1212/WNL.0000000000003963] [PMID: 28446645]
[58]
Russo, A.; Silvestro, M.; Tedeschi, G.; Tessitore, A. Physiopathology of migraine: What have we learned from functional imaging? Curr. Neurol. Neurosci. Rep., 2017, 17(12), 95.
[http://dx.doi.org/10.1007/s11910-017-0803-5] [PMID: 29063211]
[59]
Shamsizadeh, A.; Pahlevani, P.; Haghparast, A.; Moslehi, M.; Zarepour, L.; Haghparast, A. Involvement of dopamine receptors within the dorsal hippocampus in suppression of the formalin-induced orofacial pain. Pharmacol. Biochem. Behav., 2013, 114-115, 37-42.
[http://dx.doi.org/10.1016/j.pbb.2013.10.029] [PMID: 24201047]
[60]
Liu, H.Y.; Chou, K.H.; Chen, W.T. Migraine and the Hippocampus. Curr. Pain Headache Rep., 2018, 22(2), 13.
[http://dx.doi.org/10.1007/s11916-018-0668-6] [PMID: 29404714]
[61]
Chong, C.D.; Dumkrieger, G.M.; Schwedt, T.J. Structural co-variance patterns in migraine: A cross-sectional study exploring the role of the hippocampus. Headache, 2017, 57(10), 1522-1531.
[http://dx.doi.org/10.1111/head.13193] [PMID: 28976002]
[62]
Liu, H.Y.; Chou, K.H.; Lee, P.L.; Fuh, J.L.; Niddam, D.M.; Lai, K.L.; Hsiao, F.J.; Lin, Y.Y.; Chen, W.T.; Wang, S.J. Hippocampus and amygdala volume in relation to migraine frequency and prognosis. Cephalalgia, 2017, 37, 1329-1336.
[http://dx.doi.org/10.1177/0333102416678624]
[63]
Desouza, D.D.; Moayedi, M.; Chen, D.Q.; Davis, K.D.; Hodaie, M. Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: A paroxysmal, sensory-triggered neuropathic pain. PLoS One, 2013, 8(6)e66340
[http://dx.doi.org/10.1371/journal.pone.0066340] [PMID: 23823184]
[64]
Baliki, M.N.; Geha, P.Y.; Fields, H.L.; Apkarian, A.V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron, 2010, 66(1), 149-160.
[http://dx.doi.org/10.1016/j.neuron.2010.03.002] [PMID: 20399736]
[65]
Ren, W.; Centeno, M.V.; Berger, S.; Wu, Y.; Na, X.; Liu, X.; Kondapalli, J.; Apkarian, A.V.; Martina, M.; Surmeier, D.J. The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat. Neurosci., 2016, 19(2), 220-222.
[http://dx.doi.org/10.1038/nn.4199] [PMID: 26691834]
[66]
Navratilova, E.; Porreca, F. Reward and motivation in pain and pain relief. Nat. Neurosci., 2014, 17(10), 1304-1312.
[http://dx.doi.org/10.1038/nn.3811] [PMID: 25254980]
[67]
DosSantos, M.F.; Moura, B.S.; DaSilva, A.F. Reward circuitry plasticity in pain perception and modulation. Front. Pharmacol., 2017, 8, 790.
[http://dx.doi.org/10.3389/fphar.2017.00790] [PMID: 29209204]
[68]
Taylor, A.M.; Becker, S.; Schweinhardt, P.; Cahill, C. Mesolimbic dopamine signaling in acute and chronic pain: Implications for motivation, analgesia, and addiction. Pain, 2016, 157(6), 1194-1198.
[http://dx.doi.org/10.1097/j.pain.0000000000000494] [PMID: 26797678]
[69]
Kato, T.; Ide, S.; Minami, M. Pain relief induces dopamine release in the rat nucleus accumbens during the early but not late phase of neuropathic pain. Neurosci. Lett., 2016, 629, 73-78.
[http://dx.doi.org/10.1016/j.neulet.2016.06.060] [PMID: 27369326]
[70]
Wakaizumi, K.; Kondo, T.; Hamada, Y.; Narita, M.; Kawabe, R.; Narita, H.; Watanabe, M.; Kato, S.; Senba, E.; Kobayashi, K.; Kuzumaki, N.; Yamanaka, A.; Morisaki, H.; Narita, M. Involvement of mesolimbic dopaminergic network in neuropathic pain relief by treadmill exercise: A study for specific neural control with Gi-DREADD in mice. Mol. Pain, 2016, 12, 12.
[http://dx.doi.org/10.1177/1744806916681567] [PMID: 27909152]
[71]
Benarroch, E.E. Involvement of the nucleus accumbens and dopamine system in chronic pain. Neurology, 2016, 87(16), 1720-1726.
[http://dx.doi.org/10.1212/WNL.0000000000003243] [PMID: 27655737]
[72]
Cui, G.; Jun, S.B.; Jin, X.; Pham, M.D.; Vogel, S.S.; Lovinger, D.M.; Costa, R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 2013, 494(7436), 238-242.
[http://dx.doi.org/10.1038/nature11846] [PMID: 23354054]
[73]
Schwartz, N.; Temkin, P.; Jurado, S.; Lim, B.K.; Heifets, B.D.; Polepalli, J.S.; Malenka, R.C. Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science, 2014, 345(6196), 535-542.
[http://dx.doi.org/10.1126/science.1253994] [PMID: 25082697]
[74]
Yavich, L.; Ylinen, A. Spreading depression in the cortex differently modulates dopamine release in rat mesolimbic and nigrostriatal terminal fields. Exp. Neurol., 2005, 196(1), 47-53.
[http://dx.doi.org/10.1016/j.expneurol.2005.07.005] [PMID: 16084513]
[75]
DaSilva, A.F.; Nascimento, T.D.; Love, T.; DosSantos, M.F.; Martikainen, I.K.; Cummiford, C.M.; DeBoer, M.; Lucas, S.R.; Bender, M.A.; Koeppe, R.A. J. Vis. Exp, 2014, 2(88)
[http://dx.doi.org/10.3791/50682]
[76]
Yuan, K.; Zhao, L.; Cheng, P.; Yu, D.; Zhao, L.; Dong, T.; Xing, L.; Bi, Y.; Yang, X.; von Deneen, K.M.; Liang, F.; Gong, Q.; Qin, W.; Tian, J. Altered structure and resting-state functional connectivity of the basal ganglia in migraine patients without aura. J. Pain, 2013, 14(8), 836-844.
[http://dx.doi.org/10.1016/j.jpain.2013.02.010] [PMID: 23669074]
[77]
De Felice, M.; Eyde, N.; Dodick, D.; Dussor, G.O.; Ossipov, M.H.; Fields, H.L.; Porreca, F. Capturing the aversive state of cephalic pain preclinically. Ann. Neurol., 2013, 74(2), 257-265.
[http://dx.doi.org/10.1002/ana.23922] [PMID: 23686557]
[78]
Benarroch, E.E. Descending monoaminergic pain modulation: bidirectional control and clinical relevance. Neurology, 2008, 71(3), 217-221.
[http://dx.doi.org/10.1212/01.wnl.0000318225.51122.63] [PMID: 18625968]
[79]
Lopez-Alvarez, V.M.; Puigdomenech, M.; Navarro, X.; Cobianchi, S. Monoaminergic descending pathways contribute to modulation of neuropathic pain by increasing-intensity treadmill exercise after peripheral nerve injury. Exp. Neurol., 2018, 299(Pt A), 42-55.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.007] [PMID: 28993250]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 12
Year: 2019
Page: [1176 - 1182]
Pages: 7
DOI: 10.2174/1570159X17666190430102531
Price: $65

Article Metrics

PDF: 42
HTML: 4

Special-new-year-discount