Recent Advances in Palladium-Catalyzed Oxidative Cyclizations

Author(s): John C. Hershberger* .

Journal Name: Current Organic Chemistry

Volume 23 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Heterocycles are very common substructures in a number of pharmaceuticals. Over the past several years, the use of palladium-catalyzed oxidative cyclization for heterocyclic synthesis has become much more prevalent. This review collects recent reports using palladium catalysis to synthesize a wide variety of heterocyclic scaffolds. Many of these reactions use oxygen as the terminal oxidant. Some salient mechanistic features are discussed.

Keywords: Oxidation, palladium, palladium-catalyzed, carbocycle, heterocycle, synthesis.

[1]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: Miniperspective. J. Med. Chem., 2014, 57(24), 10257-10274.
[2]
McGrath, N.A.; Brichacek, M.; Njardarson, J.T. A Graphical journey of innovative organic architechtures that have improved our lives. J. Chem. Educ., 2010, 87, 1348-1349. https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/2016Top200PharmaceuticalPrescriptionSalesPosterLowResV2.pdf (accessed Dec 15, 2018).
[3]
Wang, D.; Weinstein, A.B.; White, P.B.; Stahl, S.S. Ligand-promoted palladium-catalyzed aerobic oxidation reactions. Chem. Rev., 2018, 118(5), 2636-2679.
[4]
Biemolt, J.; Ruijter, E. Advances in palladium-catalyzed cascade cyclizations. Adv. Synth. Catal., 2018, 360(20), 3821-3871.
[5]
Deng, Y.; Persson, A.K.A.; Baeckvall, J-E. Palladium‐catalyzed oxidative carbocyclizations. chemistry–A. Chem. Eur. J., , 2012, 18(37), 11498-11523.
[6]
Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed; Wiley & Sons, 1999.
[7]
Zheng, J.; Chen, P.; Yuan, Y.; Cheng, J. Pd-catalyzed arylperfluoroalkylation of unactivated olefins for the synthesis of heterocycles. J. Org. Chem., 2017, 82(11), 5790-5797.
[8]
Laha, J.K.; Kaur Hunjan, M.; Bhimpuria, R.A.; Kathuria, D.; Bharatam, P.V. Geometry driven intramolecular oxidative cyclization of enamides: An umpolung annulation of primary benzamides with acrylates for the synthesis of 3-Methyleneisoindolin-1-ones. J. Org. Chem., 2017, 82(14), 7346-7352.
[9]
Laha, J.K.; Sharma, S. Palladium-Catalyzed intramolecular oxidative arylations for the synthesis of fused biaryl sulfones. ACS Omega, 2018, 3(5), 4860-4870.
[10]
Huang, J.; Zheng, J.; Wu, W.; Li, J.; Ma, Z.; Ren, Y.; Jiang, H. Palladium-catalyzed intermolecular oxidative cyclization of allyltosylamides with AcOH: Assembly of 3-Pyrrolin-2-Ones. J. Org. Chem., 2017, 82(15), 8191-8198.
[11]
Peng, W-W.; Zeng, G-Z.; Song, W-W.; Tan, N-H. A new cytotoxic carbazole alkaloid and two new other alkaloids from Clausena excavata. chemistry & biodiversity. Chem. Biodivers., 2013, 10(7), 1317-1321.
[12]
Bruetting, C.; Kataeva, O.; Schmidt, A.W.; Knoelker, H-J. First total synthesis of the Cytotoxic Carbazole Alkaloid Excavatine-A and Regioselective Annulation to Pyrano[2,3-a]Carbazoles and [1,4]Oxazepino[2,3,4-Jk]Carbazoles. Eur. J. Org. Chem., 2017, 22, 3288-3300.
[13]
Hesse, R.; Jaeger, A.; Schmidt, A.W.; Knoelker, H-J. Palladium (II)-catalysed total synthesis of naturally occurring pyrano [3, 2-a] carbazole and pyrano [2, 3-b] carbazole alkaloids. Org. Biomol. Chem., 2014, 12(23), 3866-3876.
[14]
Forke, R.; Krahl, M.P.; Krause, T.; Schlechtingen, G.; Knoelker, H-J. Transition metals in organic synthesis, Part 82. First total synthesis of methyl 6-methoxycarbazole-3-carboxylate, glycomaurrol, the anti-TB active micromeline, and the furo [2, 3-c] carbazole alkaloid eustifoline-D. Synlett, 2007, No. 2, 268-272.
[15]
Schmidt, M.; Knoelker, H-J. Transition metals in organic synthesis, part 91: Palladium-catalyzed approach to 2, 6-dioxygenated carbazole alkaloids-first total synthesis of the phytoalexin carbalexin C. Synlett, 2009, 15, 2421-2424.
[16]
Berndt, A.; Gruner, M.; Schmidt, A.W.; Knoelker, H-J. Transition metals in organic synthesis, Part 111: First total synthesis and structural revision of antipathine A. Synlett, 2013, 24(16), 2102-2106.
[17]
Schuster, C.; Boerger, C.; Julich-Gruner, K.K.; Hesse, R.; Jaeger, A.; Kaufmann, G.; Schmidt, A.W.; Knoelker, H-J. Synthesis of 2‐Hydroxy‐7‐methylcarbazole, Glycozolicine, Mukoline, Mukolidine, Sansoakamine, Clausine‐H, and Clausine‐K and Structural Revision of Clausine‐TY. Eur. J. Org. Chem., 2014, 22, 4741-4752.
[18]
Schuster, C.; Roennefahrt, M.; Julich-Gruner, K.K.; Jaeger, A.; Schmidt, A.W.; Knoelker, H-J. Synthesis of the pyrano [3, 2-a] carbazole alkaloids koenine, koenimbine, koenigine, koenigicine, and structural reassignment of mukonicine. Synthesis (Stuttg), 2016, 48(1), 150-160.
[19]
Alam, K.; Hong, S.W.; Oh, K.H.; Park, J.K. Divergent C–H Annulation for Multifused N‐Heterocycles: Regio‐and Stereospecific Cyclizations of N‐Alkynylindoles. Angew. Chem. Int. Ed., 2017, 56(43), 13387-13391.
[20]
Aebly, A.H.; Rainey, T.J. Pd (II)-catalyzed enantioselective intramolecular oxidative amination utilizing (+)-camphorsulfonic acid. Tetrahedron Lett., 2017, 58(40), 3795-3799.
[21]
Yang, C.; Lin, K.; Huang, L.; Pan, W.; Liu, S. Facile synthesis of indolo [3, 2-a] carbazoles via Pd-catalyzed twofold oxidative cyclization. Beilstein J. Org. Chem., 2016, 12, 2490-2494.
[22]
Shi, D.; Guan, Z.; Yao, X.; Shi, W.; Chen, H. One‐pot synthesis of indoles from alkynes and anilines through palladium‐catalyzed double C‐H Activation using O2 as the oxidant. ChemistrySelect, 2016, 1(1), 119-121.
[23]
Shen, R.; Kusakabe, T.; Yatsu, T.; Kanno, Y.; Takahashi, K.; Nemoto, K.; Kato, K. Palladium (II) catalyzed cyclization-carbonylation-cyclization coupling reaction of (ortho-Alkynyl Phenyl)(Methoxymethyl) sulfides using molecular oxygen as the terminal oxidant. Molecules, 2016, 21(9), 1177/1-1177/8.
[24]
Mishra, A.; Deb, I. Palladium‐catalyzed oxidative cyclization for the synthesis of Indolyl/Pyrrolyl 3‐Phosphonates. Adv. Synth. Catal., 2016, 358(14), 2267-2272.
[25]
Yao, B.; Wang, Q.; Zhu, J. Pd/C‐catalyzed cyclizative cross‐coupling of two ortho‐alkynylanilines under aerobic conditions: synthesis of 2, 3′‐bisindoles. chemistry–A. Chem. - Eur. J., 2015, 21(20), 7413-7416.
[26]
Yao, B.; Wang, Q.; Zhu, J. Palladium‐catalyzed coupling of ortho‐alkynylanilines with terminal alkynes under aerobic conditions: Efficient synthesis of 2, 3‐Disubstituted 3‐Alkynylindoles. Angew. Chem. Int. Ed., 2012, 51(49), 12311-12315.
[27]
Yao, B.; Wang, Q.; Zhu, J. Mechanistic study on the palladium (ii)‐catalyzed synthesis of 2, 3‐disubstituted indoles under aerobic conditions: anion effects and the development of a low‐catalyst‐loading process. Chem. - Eur. J., 2014, 20(38), 12255-12261.
[28]
Sun, W.; Wang, M.; Zhang, Y.; Wang, L. Synthesis of benzofuro [3, 2-b] pyridines via palladium-catalyzed dual C–H activation of 3-phenoxypyridine 1-Oxides. Org. Lett., 2015, 17(3), 426-429.
[29]
Senthil Kumar, G.; Ali, M.A.; Choon, T.S.; Rajendra Prasad, K.J. Palladium-catalyzed regioselective aerobic oxidative cyclization via C–H activation in chloroquine analogues: Synthesis and cytotoxic study. Monatsh. Chem., 2015, 146(12), 2127-2134.
[30]
Kaida, H.; Satoh, T.; Hirano, K.; Miura, M. Synthesis of Thieno [3, 2-b] benzofurans by Palladium-catalyzed Intramolecular C–H/C–H Coupling. Chem. Lett., 2015, 44(8), 1125-1127.
[31]
Goswami, S.; Harada, K.; El-Mansy, M.F.; Lingampally, R.; Carter, R.G. Enantioselective synthesis of (-)-Halenaquinone. Angew. Chem. Int. Ed., 2018, 57(29), 9117-9121.
[32]
Dethe, D.H.; Dherange, B.D.; Das, S. Biomimetic total syntheses of callistrilones A, B, and D. Org. Lett., 2018, 20(3), 680-683.
[33]
Dethe, D.H.; Dherange, B.D. Total synthesis of adunctin B. J. Org. Chem., 2018, 83(6), 3392-3396.
[34]
Schmidt, B.; Riemer, M. Microwave‐promoted pd‐catalyzed synthesis of dibenzofurans from ortho‐arylphenols. J. Heterocycl. Chem., 2017, 54(2), 1287-1297.
[35]
Rehan, M.; Nallagonda, R.; Das, B.G.; Meena, T.; Ghorai, P. Synthesis of functionalized benzo [b] furans via oxidative cyclization of o-cinnamyl phenols. J. Org. Chem., 2017, 82(7), 3411-3424.
[36]
Hu, X-H.; Pu, X-Q.; Liu, R.; Cui, C-X.; Yang, J.; Yang, X-J. A facile access to cis-dihydrofurobenzofuran from 2-(2, 5-dihydro-furan-2-yl)-phenol. RSC Advances, 2016, 6(63), 58613-58616.
[37]
Gutmann, B.; Weigl, U.; Cox, D.P.; Kappe, C.O. Batch‐and continuous‐flow aerobic oxidation of 14‐Hydroxy Opioids to 1, 3‐Oxazolidines—a concise synthesis of noroxymorphone. Chem. - Eur. J., 2016, 22(30), 10393-10398.
[38]
Thompson, S.J.; Thach, D.Q.; Dong, G. Cyclic Ether Synthesis via Palladium-catalyzed directed dehydrogenative annulation at unactivated terminal positions. J. Am. Chem. Soc., 2015, 137(36), 11586-11589.
[39]
Tan, X.; Zhao, H.; Pan, Y.; Wu, N.; Wang, H.; Chen, Z. Atom-economical chemoselective synthesis of furocoumarins via cascade palladium catalyzed oxidative alkoxylation of 4-oxohydrocoumarins and alkenes. RSC Advances, 2015, 5(7), 4972-4975.
[40]
Li, Y.; Kou, X.; Ye, C.; Zhang, X.; Yang, G.; Zhang, W. Preparation of isoindolinones via a palladium-catalyzed diamination. Tetrahedron Lett., 2017, 58(4), 285-288.
[41]
Wacker, D.A.; Zhao, G.; Kwon, C.; Varnes, J.G.; Stein, P.D. Preparation of Pyrazino[2,1-a]Isoindol-6(2H)-One derivatives and related compounds as modulators of serotonin receptors., 2005.
[42]
Bjoere, A.; Bostroem, J; Davidsson, O.; Emtenaes, H.; Gran, U.; Iliefski, T.; Kajanus, J.; Olsson, R.; Sandberg, L.; Strandlund, G. Preparation of 3- oxoisoindoline-1-carboxamide derivatives for the treatment of cardiac arrhythmias. 2008.
[43]
Cao, B.; Simaan, M.; Marek, I.; Wei, Y.; Shi, M. Palladium-catalyzed oxidative cyclization of aniline-tethered alkylidenecyclopropanes with O2: A facile protocol to selectively synthesize 2- and 3-Vinylindoles. Chem. Commun. (Cambridge, U. K.), 2017, 53(1), 216-219.
[44]
Chen, L.; Luo, X.; Li, Y. Palladium-catalyzed intramolecular aminoiodination of alkenes using molecular oxygen as oxidant. Monatsh. Chem., 2017, 148(5), 957-961.
[45]
Zheng, J.; Huang, L.; Huang, C.; Wu, W.; Jiang, H. Synthesis of polysubstituted pyrroles via Pd-catalyzed oxidative alkene C–H bond arylation and amination. J. Org. Chem., 2015, 80(2), 1235-1242.
[46]
Youn, S.W.; Lee, S.R. Unusual 1, 2-aryl migration in Pd (II)-catalyzed aza-Wacker-type cyclization of 2-alkenylanilines. Org. Biomol. Chem., 2015, 13(16), 4652-4656.
[47]
Youn, S.W.; Ko, T.Y.; Jang, Y.H. Palladium‐catalyzed regioselective synthesis of 3‐Arylindoles from N‐Ts‐Anilines and styrenes. Angew. Chem. Int. Ed., 2017, 56(23), 6636-6640.
[48]
Santhini, P.V.; Nimisha, G.; John, J.; Suresh, E.; Varma, R.L.; Radhakrishnan, K.V. Pd-Catalyzed oxidative annulation of enamides with diazabicyclic olefins: Rapid access to cyclopentene fused 2-pyrrolines. Chem. Commun., 2017, 53(11), 1848-1851.
[49]
Frolova, L.V.; Malik, I.; Uglinskii, P.Y.; Rogelj, S.; Kornienko, A.; Magedov, I.V. Multicomponent synthesis of 2, 3-dihydrochromeno [4, 3-d] pyrazolo [3, 4-b] pyridine-1, 6-diones: a novel heterocyclic scaffold with antibacterial activity. Tetrahedron Lett., 2011, 52(49), 6643-6645.
[50]
Antonow, D.; Thurston, D.E. Synthesis of DNA-interactive pyrrolo [2, 1-c][1, 4] benzodiazepines (PBDs). Chem. Rev., 2011, 111(4), 2815-2864.
[51]
Li, W.; Zhao, Y.; Mai, S.; Song, Q. Thiocarbamate-directed tandem olefination–intramolecular sulfuration of two ortho C–H Bonds: Application to synthesis of a COX-2 Inhibitor. Org. Lett., 2018, 20(4), 1162-1166.
[52]
Ning, X-S.; Liang, X.; Hu, K-F.; Yao, C-Z.; Qu, J-P.; Kang, Y-B. Pd‐tBuONO cocatalyzed aerobic indole synthesis. Adv. Synth. Catal., 2018, 360(8), 1590-1594.
[53]
Sheykhan, M.; Shafiee-Pour, M.; Abbasnia, M. C–H activation under the guise of diels–alder reaction: Annulation toward the synthesis of benzo [e] isoindole-1, 3-diones. Org. Lett., 2017, 19(6), 1270-1273.
[54]
Shakoori, A.; Ougolkov, A.; Yu, Z.W.; Zhang, B.; Modarressi, M.H.; Billadeau, D.D.; Mai, M.; Takahashi, Y.; Minamoto, T. Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem. Biophys. Res. Commun., 2005, 334(4), 1365-1373.
[55]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[56]
Hilioti, Z.; Gallagher, D.A.; Low-Nam, S.T.; Ramaswamy, P.; Gajer, P.; Kingsbury, T.J.; Birchwood, C.J.; Levchenko, A.; Cunningham, K.W. GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev., 2004, 18(1), 35-47.
[57]
Huang, H-C.; Klein, P.S. Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer’s disease. Curr. Drug Targets, 2006, 7(11), 1389-1397.
[58]
Eldar-Finkelman, H.; Schreyer, S.A.; Shinohara, M.M.; LeBoeuf, R.C.; Krebs, E.G. Increased glycogen synthase kinase-3 activity in diabetes-and obesity-prone C57BL/6J mice. Diabetes, 1999, 48(8), 1662-1666.
[59]
Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Palladium-catalyzed tandem cyclization/sulfonylation of homoallenyl amides with sodium sulfinates. Org. Biomol. Chem., 2017, 15(34), 7204-7211.
[60]
Wang, Y.; Meng, X.; Yang, Y.; Zhang, L.; Guo, S.; Tang, D.; Li, Y.; Chen, B. Palladium-catalyzed oxidative carbonylation of hydrazides: synthesis of 1, 3, 4-oxadiazol-2 (3H)-ones. Chem. Commun., (Cambridge, U. K.), 2015, 51(10), 1905-1907.
[61]
Jiang, L-L.; Tan, Y.; Zhu, X-L.; Wang, Z-F.; Zuo, Y.; Chen, Q.; Xi, Z.; Yang, G-F. Design, synthesis, and 3D-QSAR analysis of novel 1, 3, 4-oxadiazol-2 (3H)-ones as protoporphyrinogen oxidase inhibitors. J. Agric. Food Chem., 2010, 58(5), 2643-2651.
[62]
Jansen, M.; Rabe, H.; Strehless, A.; Dieler, S.; Debus, F.; Dannhardt, G.; Akabas, M.H.; Lueddens, H. Synthesis of GABAA receptor agonists and evaluation of their α-subunit selectivity and orientation in the GABA binding site. J. Med. Chem., 2008, 51(15), 4430-4448.
[63]
Romine, J.L.; Martin, S.W.; Meanwell, N.A.; Gribkoff, V.K.; Boissard, C.G.; Dworetzky, S.I.; Natale, J.; Moon, S.; Ortiz, A.; Yeleswaram, S.; Pajor, L. 3-[(5-Chloro-2-hydroxyphenyl) methyl]-5-[4-(trifluoromethyl) phenyl]-1, 3, 4-oxadiazol-2 (3H)-one, BMS-191011: Opener of Large-Conductance Ca2+-Activated potassium (Maxi-K) channels, identification, solubility, and SAR. J. Med. Chem., 2007, 50(3), 528-542.
[64]
Chen, H.; Li, Z.; Han, Y. Synthesis and fungicidal activity against rhizoctonia s olani of 2-Alkyl (Alkylthio)-5-pyrazolyl-1, 3, 4-oxadiazoles (Thiadiazoles). J. Agric. Food Chem., 2000, 48(11), 5312-5315.
[65]
Ben Ali, Y.; Verger, R.; Carriere, F.; Petry, S.; Muller, G.; Abousalham, A. The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl-5-alkoxy-1, 3, 4-oxadiazol-2-ones. Biochimie, 2012, 94(1), 137-145.
[66]
Ji, F.; Li, X.; Guo, W.; Wu, W.; Jiang, H. Palladium-catalyzed oxidative O–H/N–H carbonylation of hydrazides: access to substituted 1, 3, 4-Oxadiazole-2 (3 H)-ones. J. Org. Chem., 2015, 80(11), 5713-5718.
[67]
Qi, W.; Wu, Y.; Han, Y.; Li, Y. Synthesis of Isoquinolinones via Regioselective palladium-catalyzed C–H activation/annulation. Catalysts, 2017, 7(11), 320-329.
[68]
Gao, F.; Liu, H.; Li, L.; Guo, J.; Wang, Y.; Zhao, M.; Peng, S. Design, synthesis, and testing of an isoquinoline-3-carboxylic-based novel anti-tumor lead. Bioorg. Med. Chem. Lett., 2015, 25(20), 4434-4436.
[69]
Solecka, J.; Sitkowski, J.; Bocian, W.; Bednarek, E.; Kawecki, R.; Kozerski, L. A novel isoquinoline alkaloid, DD-Carboxypeptidase Inhibitor, with Antibacterial activity isolated from streptomyces Sp. 8812. Part II: Physicochemical properties and structure elucidation. J. Antibiot. (Tokyo), 2009, 62(10), 581-585.
[70]
Iwasa, K.; Moriyasu, M.; Tachibana, Y.; Kim, H-S.; Wataya, Y.; Wiegrebe, W.; Bastow, K.F.; Cosentino, L.M.; Kozuka, M.; Lee, K-H. Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-HIV agents. Bioorg. Med. Chem., 2001, 9(11), 2871-2884.
[71]
Fadaeinasab, M.; Taha, H.; Fauzi, P.N.M.; Ali, H.M.; Widyawaruyanti, A. Anti-malarial activity of isoquinoline alkaloids from the stem bark of Actinodaphne macrophylla. Nat. Prod. Commun., 2015, 10(9), 1541-1542.
[72]
Yang, Y.; Fei, C.; Wang, K.; Liu, B.; Jiang, D.; Yin, B. Access to densely functionalized chalcone derivatives with a 2-Pyridone Subunit via Pd/Cu-catalyzed oxidative furan–yne cyclization of N-(2-Furanylmethyl) Alkynamides under Air. Org. Lett., 2018, 20(8), 2273-2277.
[73]
Zang, Z-L.; Karnakanti, S.; Zhao, S.; Hu, P.; Wang, Z.; Shao, P-L.; He, Y. Synthesis of Spiro-dihydroquinoline and octahydrophenanthrene derivatives via palladium-catalyzed intramolecular oxidative arylation. Org. Lett., 2017, 19(6), 1354-1357.
[74]
Youn, S.W.; Lee, S.R.; Kim, Y.A.; Kang, D.Y.; Jang, M.J. Unusual 1, 2‐Aryl Migration and depalladation of alkylpalladium intermediates containing a syn‐β‐Hydrogen Atom. ChemistrySelect, 2016, 1(18), 5749-5757.
[75]
Yang, X.; Yang, S.; Xiang, L.; Pang, X.; Chen, B.; Huang, G.; Yan, R. Synthesis of 3‐Arylpyridines via palladium/copper‐catalyzed annulation of Allylamine/1, 3‐Propanediamine and Aldehydes. Advanced synthesis & catalysis. Adv. Synth. Catal., 2015, 357(16–17), 3732-3736.
[76]
Fischer, D.F.; Sarpong, R. Total synthesis of (+)-complanadine A using an iridium-catalyzed pyridine C− H functionalization. J. Am. Chem. Soc., 2010, 132(17), 5926-5927.
[77]
Gibson, V.C.; Redshaw, C.; Solan, G.A. Bis (imino) pyridines: surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev., (Washington, DC, United States), 2007, 107(5), 1745-1776.
[78]
Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 2005, 22(5), 627-646.
[79]
Pan, X.; Wang, K.; Guan, B.H.; Liu, Z.Z. Synthesis of Indolo [2, 3‐a] pyrrolo [3, 4‐c] carbazoles via the Oxidative cyclization of bisindolylmaleimides with Pd (TFA)2/Cu (OAc)2. J. Heterocycl. Chem., 2015, 52(3), 911-913.
[80]
Pereira, E.R.; Belin, L.; Sancelme, M.; Prudhomme, M.; Ollier, M.; Rapp, M.; Severe, D.; Riou, J-F.; Fabbro, D.; Meyer, T. Structure− activity relationships in a series of substituted indolocarbazoles: topoisomerase I and protein kinase C inhibition and antitumoral and antimicrobial properties. J. Med. Chem., 1996, 39(22), 4471-4477.
[81]
Kase, H.; Iwahashi, K.; Matsuda, Y. K-252a, a potent inhibitor of protein kinase C from microbial origin. J. Antibiot. (Tokyo), 1986, 39(8), 1059-1065.
[82]
Tamaoki, T.; Nomoto, H.; Takahashi, I.; Kato, Y.; Morimoto, M.; Tomita, F. Staurosporine, a potent inhibitor of phospholipid calcium dependent protein kinase. Biochem. Biophys. Res. Commun., 1986, 135(2), 397-402.
[83]
Liu, R.; Lu, Z-H.; Hu, X-H.; Li, J-L.; Yang, X-J. Monocarboxylation and intramolecular coupling of butenylated arenes via palladium-catalyzed C–H activation process. Org. Lett., 2015, 17(6), 1489-1492.
[84]
Jones, A.W.; Louillat-Habermeyer, M-L.; Patureau, F.W. Strained dehydrogenative ring closure of phenylcarbazoles. Adv. Synth. Catal., 2015, 357(5), 945-949.
[85]
Schmidt, A.W.; Reddy, K.R.; Knoelker, H-J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2012, 112(6), 3193-3328.
[86]
Molette, J.; Routier, J.; Abla, N.; Besson, D.; Bombrun, A.; Brun, R.; Burt, H.; Georgi, K.; Kaiser, M.; Nwaka, S.; Muzerelle, M. Identification and optimization of an aminoalcohol-carbazole series with antimalarial properties. ACS Med. Chem. Lett., 2013, 4(11), 1037-1041.
[87]
Xia, X-F.; Zhu, S-L.; Hu, Q.; Li, Y.; Xu, X. Dienyl esters synthesis: Palladium-catalyzed C–H olefination of electron-deficient alkenes with allenoates. Tetrahedron, 2017, 73(25), 3529-3535.
[88]
Sharma, N.; Saha, R.; Parveen, N.; Sekar, G. Palladium‐Nanoparticles‐catalyzed oxidative annulation of benzamides with alkynes for the synthesis of isoquinolones. Adv. Synth. Catal., 2017, 359(11), 1947-1958.
[89]
Butler, J.R.; Wang, C.; Bian, J.; Ready, J.M. Enantioselective total synthesis of (−)-kibdelone C. J. Am. Chem. Soc., 2011, 133(26), 9956-9959.
[90]
Bentley, K.W. β-Phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep., 1992, 9(4), 365-391.
[91]
Li, D.; Zeng, F. Palladium-catalyzed domino alkenylation/ami-nation/pyridination reactions of 2-vinylanilines with alkynes: Access to cyclopentaquinolines. Org. Lett., 2017, 19(24), 6498-6501.
[92]
Zheng, J.; Li, Z.; Huang, L.; Wu, W.; Li, J.; Jiang, H. Palladium-catalyzed intermolecular aerobic annulation of o-alkenylanilines and alkynes for quinoline synthesis. Org. Lett., 2016, 18(15), 3514-3517.
[93]
Vlahopoulos, S.; Critselis, E.; Voutsas, I.F.; Perez, S.A.; Moschovi, M.; Baxevanis, C.N.; Chrousos, G.P. New use for old drugs? Prospective targets of chloroquines in cancer therapy. Curr. Drug Targets, 2014, 15(9), 843-851.
[94]
Zajdel, P.; Partyka, A.; Marciniec, K.; Bojarski, A.J.; Pawlowski, M.; Wesolowska, A. Quinoline-and isoquinoline-sulfonamide analogs of aripiprazole: Novel antipsychotic agents? Future Med. Chem., 2014, 6(1), 57-75.
[95]
Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; Huang, J. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 2010, 466(7309), 935-940.
[96]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[97]
Wang, W.; Peng, X.; Qin, X.; Zhao, X.; Ma, C.; Tung, C-H.; Xu, Z. Synthesis of quinolinones with palladium-catalyzed oxidative annulation between acrylamides and arynes. J. Org. Chem., 2015, 80(5), 2835-2841.
[98]
Jeon, W.H.; Son, J-Y.; Kim, S-E.; Lee, P.H. Phosphaannulation of Aryl‐and benzylphosphonic acids with unactivated alkenes via palladium‐catalyzed C–H Activation/Oxidative Cyclization Reaction. Adv. Synth. Catal., 2015, 357(4), 811-817.
[99]
Pancrazzi, F.; Motti, E.; Costa, M.; Mancuso, R.; Gabriele, B.; Della Ca, N. (Z)-4-(Carbomethoxymethylene)-2-(4-fluorophenyl)-4H-benzo [d][1,3] oxazine. Molbank, 2017, No. 1, M927/1--M927/5..
[100]
Alvarez, R.; Vilar, U.; Madich, Y.; Aurrecoechea, J.M. On the regiochemical differences between Pd-catalyzed heterocyclization–allylation and–arylation reactions of alkynylbenzamides: Preparation of 4-allyl-isochromen-1-imines and computational study. Org. Biomol. Chem., 2017, 15(40), 8594-8605.
[101]
Choppakatla, S.; Dachepally, A.K.; Bollikolla, H.B. Palladium-catalyzed double C–H functionalization of 2-aryl-1, 3-dicarbonyl compounds: a facile access to alkenylated benzopyrans. Tetrahedron Lett., 2016, 57(23), 2488-2491.
[102]
Cai, Z-J.; Li, F-H.; Wang, S-Y.; Ji, S-J. Palladium-catalyzed double C–H functionalization of 2-aryl-1, 3-dicarbonyl compounds: A facile access to alkenylated benzopyrans. Org. Lett., 2016, 18(19), 4810-4813.
[103]
Benhamou, L.; Walker, D.W.; Bucar, D-K.; Aliev, A.E.; Sheppard, T.D. Synthesis of substituted benzooxaborinin-1-ols via palladium-catalysed cyclisation of alkenyl-and alkynyl-boronic acids. Org. Biomol. Chem., 2016, 14(34), 8039-8043.
[104]
Fang, X.; Gao, S.; Wu, Z.; Yao, H.; Lin, A. Pd (II)-Catalyzed oxidative dearomatization of indoles: Substrate-controlled synthesis of indolines and indolones. Org. Chem. Front., 2017, 4(2), 292-296.
[105]
Ramirez, A.; Garcia-Rubio, S. Current progress in the chemistry and pharmacology of akuammiline alkaloids. Curr. Med. Chem., 2003, 10(18), 1891-1915.
[106]
Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T-S. Biologically active aspidofractinine, rhazinilam, akuammiline, and vincorine alkaloids from Kopsia. J. Nat. Prod., 2007, 70(11), 1783-1789.
[107]
Feng, T.; Cai, X-H.; Li, Y.; Wang, Y-Y.; Liu, Y-P.; Xie, M-J.; Luo, X-D. Melohenines A and B, two unprecedented alkaloids from Melodinus henryi. Org. Lett., 2009, 11(21), 4834-4837.
[108]
Tan, S-J.; Choo, Y-M.; Thomas, N.F.; Robinson, W.T.; Komiyama, K.; Kam, T-S. Unusual indole alkaloid -pyrrole, -pyrone, and -carbamic acid adducts from alstonia angustifolia. Tetrahedron, 2010, 66(39), 7799-7806.
[109]
Zu, L.; Boal, B.W.; Garg, N.K. Total synthesis of (±)-aspidophylline A. J. Am. Chem. Soc., 2011, 133(23), 8877-8879.
[110]
Louafi, F.; Lorion, M.M.; Oble, J.; Poli, G. Dichotomous reaction pathways for the oxidative palladium (II)-catalyzed intramolecular acyloxylation of alkenes. Synlett, 2015, 26(16), 2237-2242.
[111]
Vidyacharan, S.; Murugan, A.; Sharada, D.S.C. (sp2)–H Functionalization of 2 H-Indazoles at C3-Position via Palladium (II)-Catalyzed isocyanide insertion strategy leading to diverse heterocycles. J. Org. Chem., 2016, 81(7), 2837-2848.
[112]
Han, W.; Pelletier, J.C.; Hodge, C.N. Tricyclic Ureas: A new class of HIV-1 protease inhibitors. Bioorg. Med. Chem. Lett., 1998, 8(24), 3615-3620.
[113]
Cerecetto, H.; Gerpe, A.; Gonzalez, M.; Aran, V.J. de, O.C.O. Pharma-cological properties of indazole derivatives: recent developments. Mini Rev. Med. Chem., 2005, 5(10), 869-878.
[114]
Jia, Y.; Zhang, J.; Feng, J.; Xu, F.; Pan, H.; Xu, W. Design, synthesis and biological evaluation of pazopanib derivatives as antitumor agents. Chem. Biol. Drug Des., 2014, 83(3), 306-316.
[115]
Li, X.; Chu, S.; Feher, V.A.; Khalili, M.; Nie, Z.; Margosiak, S.; Nikulin, V.; Levin, J.; Sprankle, K.G.; Tedder, M.E.; Almassy, R. Structure-based design, synthesis, and antimicrobial activity of indazole-derived SAH/MTA nucleosidase inhibitors. J. Med. Chem., 2003, 46(26), 5663-5673.
[116]
Chung, C.K.; Bulger, P.G.; Kosjek, B.; Belyk, K.M.; Rivera, N.; Scott, M.E.; Humphrey, G.R.; Limanto, J.; Bachert, D.C.; Emerson, K.M. Process development of C–N cross-coupling and enantioselective biocatalytic reactions for the asymmetric synthesis of niraparib. Org. Process Res. Dev., 2014, 18(1), 215-227.
[117]
Zheng, Q.; Ding, Q.; Wang, C.; Chen, W.; Peng, Y. Synthesis of 2-aminoquinolines via palladium-catalyzed intermolecular oxidative cyclization of 2-vinylanilines with isocyanides. Tetrahedron, 2016, 72(7), 952-958.
[118]
Zheng, Q.; Luo, P.; Lin, Y.; Chen, W.; Liu, X.; Zhang, Y.; Ding, Q. Palladium-catalyzed intermolecular oxidative cyclization of N-aryl enamines with isocyanides through double sp2 C–H bonds cleavage: facile synthesis of 4-aminoquinoline derivatives. Org. Biomol. Chem., 2015, 13(16), 4657-4660.
[119]
Asamdi, M.; Shaikh, M.M.; Chauhan, P.M.; Chikhalia, K.H. Palladium-catalyzed [5+2] oxidative annulation of N-Arylhydrazones with alkynes through CH activation to synthesize Benzo [d][1, 2] diazepines. Tetrahedron, 2018, 74(27), 3719-3727.
[120]
Desai, A.J.; Lam, P.C.H.; Orry, A.; Abagyan, R.; Christopoulos, A.; Sexton, P.M.; Miller, L.J. Molecular mechanism of action of triazoloben-zodiazepinone agonists of the type 1 cholecystokinin receptor. Possible cooperativity across the receptor homodimeric complex. J. Med. Chem., 2015, 58(24), 9562-9577.
[121]
Chen, X.; Chew, S.L.; Kerton, F.M.; Yan, N. Direct conversion of chitin into a N-containing furan derivative. Green Chem., 2014, 16(4), 2204-2212.
[122]
Kodomari, M.; Noguchi, T.; Aoyama, T. Solvent‐free synthesis of 1, 5‐benzothiazepines and benzodiazepines on inorganic supports. Synth. Commun., 2004, 34(10), 1783-1790.
[123]
Breslin, H.J.; Kukla, M.J.; Ludovici, D.W.; Mohrbacher, R.; Ho, W.; Miranda, M.; Rodgers, J.D.; Hitchens, T.K.; Leo, G. Synthesis and anti-HIV-1 activity of 4,5,6,7-Tetrahydro-5-Methylimidazo[4,5,1-Jk][1,4]Benzo-diazepin-2(1H)-One (TIBO) derivatives. 3. J. Med. Chem., 1995, 38(5), 771-793.
[124]
Wu, L.; Meng, Y.; Ferguson, J.; Wang, L.; Zeng, F. Palladium-catalyzed oxidative annulation of ortho-alkenylanilines and allenes: An access to benzo [b] azepines. J. Org. Chem., 2017, 82(8), 4121-4128.
[125]
Ghose, A.K.; Herbertz, T.; Hudkins, R.L.; Dorsey, B.D.; Mallamo, J.P.; Dorsey, B.D.; Mallamo, J.P. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem. Neurosci., 2012, 3(1), 50-68.
[126]
Gillman, P.K. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br. J. Pharmacol., 2007, 151(6), 737-748.
[127]
Qadir, M.; Cobb, J.; Sheldrake, P.W.; Whittall, N.; White, A.J.P.; Hii, K.K.; Horton, P.N.; Hursthouse, M.B. Conformation analyses, dynamic behavior and amide bond distortions of medium-sized heterocycles. 1. Partially and fully reduced 1-benzazepines. J. Org. Chem., 2005, 70(5), 1545-1551.
[128]
Singh, H.; Gupta, N.; Kumar, P.; Dubey, S.K.; Sharma, P.K. A new industrial process for 10-methoxyiminostilbene: Key intermediate for the synthesis of oxcarbazepine. Org. Process Res. Dev., 2009, 13(5), 870-874.
[129]
Hou, F.F.; Zhang, X.; Zhang, G.H.; Xie, D.; Chen, P.Y.; Zhang, W.R.; Jiang, J.P.; Liang, M.; Wang, G.B.; Liu, Z.R.; Geng, R.W. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med., 2006, 354(2), 131-140.
[130]
Zuo, Z.; Liu, J.; Nan, J.; Fan, L.; Sun, W.; Wang, Y.; Luan, X. Highly stereoselective synthesis of imine‐containing dibenzo [b,d] azepines by a palladium (II)‐Catalyzed [5+ 2] oxidative annulation of o‐Arylanilines with alkynes. Angew. Chem. Int. Ed., 2015, 54(51), 15385-15389.
[131]
Rajagopalan, R.; Bandyopadhyaya, A.; Rajagopalan, D.R.; Rajagopalan, P. The synthesis and comparative receptor binding affinities of novel, isomeric pyridoindolobenzazepine scaffolds. Bioorg. Med. Chem. Lett., 2014, 24(2), 576-579.
[132]
Pegoraro, S.; Lang, M.; Dreker, T.; Kraus, J.; Hamm, S.; Meere, C.; Feurle, J.; Tasler, S.; Prütting, S.; Kuras, Z.; Visan, V. Inhibitors of potassium channels KV1. 3 and IK-1 as immunosuppressants. Bioorg. Med. Chem. Lett., 2009, 19(8), 2299-2304.
[133]
Wong, G.T.; Manfra, D.; Poulet, F.M.; Zhang, Q.; Josien, H.; Bara, T.; Engstrom, L.; Pinzon-Ortiz, M.; Fine, J.S.; Lee, H.J.; Zhang, L. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem., 2004, 279(13), 12876-12882.
[134]
Zhang, B-J.; Bao, M-F.; Zeng, C-X.; Zhong, X-H.; Ni, L.; Zeng, Y.; Cai, X-H. Dimeric Erythrina alkaloids from the flower of Erythrina variegata. Org. Lett., 2014, 16(24), 6400-6403.
[135]
Gazzola, S.; Beccalli, E.M.; Borelli, T.; Castellano, C.; Diamante, D.; Broggini, G. Selective 7-endo-cyclization of 3-aza-5-alkenols through oxidative Pd (II)-catalyzed olefin oxyarylation. Synlett, 2018, 29(4), 503-508.
[136]
da Silva, M.J.; Villarreal, J.A. Novel palladium-catalyzed oxidative intramolecular cyclization of β-Citronellol with H2O2: A green and selective process to synthesize oxocine. Catal. Lett., 2017, 147(7), 1646-1653.
[137]
Boon, B.A.; Green, A.G.; Liu, P.; Houk, K.N.; Merlic, C.A. Using ring strain to control 4π-Electrocyclization reactions: Torquoselectivity in ring closing of medium-ring dienes and ring opening of bicyclic cyclobutenes. J. Org. Chem., 2017, 82(9), 4613-4624.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 9
Year: 2019
Page: [1019 - 1044]
Pages: 26
DOI: 10.2174/1385272823666190429155004
Price: $58

Article Metrics

PDF: 18
HTML: 2